Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 | /* * kernel/sched.c * * Kernel scheduler and related syscalls * * Copyright (C) 1991-2002 Linus Torvalds * * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and * make semaphores SMP safe * 1998-11-19 Implemented schedule_timeout() and related stuff * by Andrea Arcangeli * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar: * hybrid priority-list and round-robin design with * an array-switch method of distributing timeslices * and per-CPU runqueues. Cleanups and useful suggestions * by Davide Libenzi, preemptible kernel bits by Robert Love. * 2003-09-03 Interactivity tuning by Con Kolivas. * 2004-04-02 Scheduler domains code by Nick Piggin * 2007-04-15 Work begun on replacing all interactivity tuning with a * fair scheduling design by Con Kolivas. * 2007-05-05 Load balancing (smp-nice) and other improvements * by Peter Williams * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins, * Thomas Gleixner, Mike Kravetz */ #include <linux/mm.h> #include <linux/module.h> #include <linux/nmi.h> #include <linux/init.h> #include <linux/uaccess.h> #include <linux/highmem.h> #include <asm/mmu_context.h> #include <linux/interrupt.h> #include <linux/capability.h> #include <linux/completion.h> #include <linux/kernel_stat.h> #include <linux/debug_locks.h> #include <linux/perf_event.h> #include <linux/security.h> #include <linux/notifier.h> #include <linux/profile.h> #include <linux/freezer.h> #include <linux/vmalloc.h> #include <linux/blkdev.h> #include <linux/delay.h> #include <linux/pid_namespace.h> #include <linux/smp.h> #include <linux/threads.h> #include <linux/timer.h> #include <linux/rcupdate.h> #include <linux/cpu.h> #include <linux/cpuset.h> #include <linux/percpu.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <linux/stop_machine.h> #include <linux/sysctl.h> #include <linux/syscalls.h> #include <linux/times.h> #include <linux/tsacct_kern.h> #include <linux/kprobes.h> #include <linux/delayacct.h> #include <linux/unistd.h> #include <linux/pagemap.h> #include <linux/hrtimer.h> #include <linux/tick.h> #include <linux/debugfs.h> #include <linux/ctype.h> #include <linux/ftrace.h> #include <linux/slab.h> #include <linux/init_task.h> #include <asm/tlb.h> #include <asm/irq_regs.h> #include <asm/mutex.h> #ifdef CONFIG_PARAVIRT #include <asm/paravirt.h> #endif #include "sched_cpupri.h" #include "workqueue_sched.h" #include "sched_autogroup.h" #define CREATE_TRACE_POINTS #include <trace/events/sched.h> /* * Convert user-nice values [ -20 ... 0 ... 19 ] * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ], * and back. */ #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20) #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20) #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio) /* * 'User priority' is the nice value converted to something we * can work with better when scaling various scheduler parameters, * it's a [ 0 ... 39 ] range. */ #define USER_PRIO(p) ((p)-MAX_RT_PRIO) #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio) #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO)) /* * Helpers for converting nanosecond timing to jiffy resolution */ #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ)) #define NICE_0_LOAD SCHED_LOAD_SCALE #define NICE_0_SHIFT SCHED_LOAD_SHIFT /* * These are the 'tuning knobs' of the scheduler: * * default timeslice is 100 msecs (used only for SCHED_RR tasks). * Timeslices get refilled after they expire. */ #define DEF_TIMESLICE (100 * HZ / 1000) /* * single value that denotes runtime == period, ie unlimited time. */ #define RUNTIME_INF ((u64)~0ULL) static inline int rt_policy(int policy) { if (policy == SCHED_FIFO || policy == SCHED_RR) return 1; return 0; } static inline int task_has_rt_policy(struct task_struct *p) { return rt_policy(p->policy); } /* * This is the priority-queue data structure of the RT scheduling class: */ struct rt_prio_array { DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ struct list_head queue[MAX_RT_PRIO]; }; struct rt_bandwidth { /* nests inside the rq lock: */ raw_spinlock_t rt_runtime_lock; ktime_t rt_period; u64 rt_runtime; struct hrtimer rt_period_timer; }; static struct rt_bandwidth def_rt_bandwidth; static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun); static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer) { struct rt_bandwidth *rt_b = container_of(timer, struct rt_bandwidth, rt_period_timer); ktime_t now; int overrun; int idle = 0; for (;;) { now = hrtimer_cb_get_time(timer); overrun = hrtimer_forward(timer, now, rt_b->rt_period); if (!overrun) break; idle = do_sched_rt_period_timer(rt_b, overrun); } return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; } static void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime) { rt_b->rt_period = ns_to_ktime(period); rt_b->rt_runtime = runtime; raw_spin_lock_init(&rt_b->rt_runtime_lock); hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); rt_b->rt_period_timer.function = sched_rt_period_timer; } static inline int rt_bandwidth_enabled(void) { return sysctl_sched_rt_runtime >= 0; } static void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period) { unsigned long delta; ktime_t soft, hard, now; for (;;) { if (hrtimer_active(period_timer)) break; now = hrtimer_cb_get_time(period_timer); hrtimer_forward(period_timer, now, period); soft = hrtimer_get_softexpires(period_timer); hard = hrtimer_get_expires(period_timer); delta = ktime_to_ns(ktime_sub(hard, soft)); __hrtimer_start_range_ns(period_timer, soft, delta, HRTIMER_MODE_ABS_PINNED, 0); } } static void start_rt_bandwidth(struct rt_bandwidth *rt_b) { if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF) return; if (hrtimer_active(&rt_b->rt_period_timer)) return; raw_spin_lock(&rt_b->rt_runtime_lock); start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period); raw_spin_unlock(&rt_b->rt_runtime_lock); } #ifdef CONFIG_RT_GROUP_SCHED static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b) { hrtimer_cancel(&rt_b->rt_period_timer); } #endif /* * sched_domains_mutex serializes calls to init_sched_domains, * detach_destroy_domains and partition_sched_domains. */ static DEFINE_MUTEX(sched_domains_mutex); #ifdef CONFIG_CGROUP_SCHED #include <linux/cgroup.h> struct cfs_rq; static LIST_HEAD(task_groups); struct cfs_bandwidth { #ifdef CONFIG_CFS_BANDWIDTH raw_spinlock_t lock; ktime_t period; u64 quota, runtime; s64 hierarchal_quota; u64 runtime_expires; int idle, timer_active; struct hrtimer period_timer, slack_timer; struct list_head throttled_cfs_rq; /* statistics */ int nr_periods, nr_throttled; u64 throttled_time; #endif }; /* task group related information */ struct task_group { struct cgroup_subsys_state css; #ifdef CONFIG_FAIR_GROUP_SCHED /* schedulable entities of this group on each cpu */ struct sched_entity **se; /* runqueue "owned" by this group on each cpu */ struct cfs_rq **cfs_rq; unsigned long shares; atomic_t load_weight; #endif #ifdef CONFIG_RT_GROUP_SCHED struct sched_rt_entity **rt_se; struct rt_rq **rt_rq; struct rt_bandwidth rt_bandwidth; #endif struct rcu_head rcu; struct list_head list; struct task_group *parent; struct list_head siblings; struct list_head children; #ifdef CONFIG_SCHED_AUTOGROUP struct autogroup *autogroup; #endif struct cfs_bandwidth cfs_bandwidth; }; /* task_group_lock serializes the addition/removal of task groups */ static DEFINE_SPINLOCK(task_group_lock); #ifdef CONFIG_FAIR_GROUP_SCHED # define ROOT_TASK_GROUP_LOAD NICE_0_LOAD /* * A weight of 0 or 1 can cause arithmetics problems. * A weight of a cfs_rq is the sum of weights of which entities * are queued on this cfs_rq, so a weight of a entity should not be * too large, so as the shares value of a task group. * (The default weight is 1024 - so there's no practical * limitation from this.) */ #define MIN_SHARES (1UL << 1) #define MAX_SHARES (1UL << 18) static int root_task_group_load = ROOT_TASK_GROUP_LOAD; #endif /* Default task group. * Every task in system belong to this group at bootup. */ struct task_group root_task_group; #endif /* CONFIG_CGROUP_SCHED */ /* CFS-related fields in a runqueue */ struct cfs_rq { struct load_weight load; unsigned long nr_running, h_nr_running; u64 exec_clock; u64 min_vruntime; #ifndef CONFIG_64BIT u64 min_vruntime_copy; #endif struct rb_root tasks_timeline; struct rb_node *rb_leftmost; struct list_head tasks; struct list_head *balance_iterator; /* * 'curr' points to currently running entity on this cfs_rq. * It is set to NULL otherwise (i.e when none are currently running). */ struct sched_entity *curr, *next, *last, *skip; #ifdef CONFIG_SCHED_DEBUG unsigned int nr_spread_over; #endif #ifdef CONFIG_FAIR_GROUP_SCHED struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */ /* * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in * a hierarchy). Non-leaf lrqs hold other higher schedulable entities * (like users, containers etc.) * * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This * list is used during load balance. */ int on_list; struct list_head leaf_cfs_rq_list; struct task_group *tg; /* group that "owns" this runqueue */ #ifdef CONFIG_SMP /* * the part of load.weight contributed by tasks */ unsigned long task_weight; /* * h_load = weight * f(tg) * * Where f(tg) is the recursive weight fraction assigned to * this group. */ unsigned long h_load; /* * Maintaining per-cpu shares distribution for group scheduling * * load_stamp is the last time we updated the load average * load_last is the last time we updated the load average and saw load * load_unacc_exec_time is currently unaccounted execution time */ u64 load_avg; u64 load_period; u64 load_stamp, load_last, load_unacc_exec_time; unsigned long load_contribution; #endif #ifdef CONFIG_CFS_BANDWIDTH int runtime_enabled; u64 runtime_expires; s64 runtime_remaining; u64 throttled_timestamp; int throttled, throttle_count; struct list_head throttled_list; #endif #endif }; #ifdef CONFIG_FAIR_GROUP_SCHED #ifdef CONFIG_CFS_BANDWIDTH static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) { return &tg->cfs_bandwidth; } static inline u64 default_cfs_period(void); static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun); static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b); static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) { struct cfs_bandwidth *cfs_b = container_of(timer, struct cfs_bandwidth, slack_timer); do_sched_cfs_slack_timer(cfs_b); return HRTIMER_NORESTART; } static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) { struct cfs_bandwidth *cfs_b = container_of(timer, struct cfs_bandwidth, period_timer); ktime_t now; int overrun; int idle = 0; for (;;) { now = hrtimer_cb_get_time(timer); overrun = hrtimer_forward(timer, now, cfs_b->period); if (!overrun) break; idle = do_sched_cfs_period_timer(cfs_b, overrun); } return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; } static void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) { raw_spin_lock_init(&cfs_b->lock); cfs_b->runtime = 0; cfs_b->quota = RUNTIME_INF; cfs_b->period = ns_to_ktime(default_cfs_period()); INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); cfs_b->period_timer.function = sched_cfs_period_timer; hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); cfs_b->slack_timer.function = sched_cfs_slack_timer; } static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) { cfs_rq->runtime_enabled = 0; INIT_LIST_HEAD(&cfs_rq->throttled_list); } /* requires cfs_b->lock, may release to reprogram timer */ static void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) { /* * The timer may be active because we're trying to set a new bandwidth * period or because we're racing with the tear-down path * (timer_active==0 becomes visible before the hrtimer call-back * terminates). In either case we ensure that it's re-programmed */ while (unlikely(hrtimer_active(&cfs_b->period_timer))) { raw_spin_unlock(&cfs_b->lock); /* ensure cfs_b->lock is available while we wait */ hrtimer_cancel(&cfs_b->period_timer); raw_spin_lock(&cfs_b->lock); /* if someone else restarted the timer then we're done */ if (cfs_b->timer_active) return; } cfs_b->timer_active = 1; start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period); } static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) { hrtimer_cancel(&cfs_b->period_timer); hrtimer_cancel(&cfs_b->slack_timer); } #else static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} static void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) { return NULL; } #endif /* CONFIG_CFS_BANDWIDTH */ #endif /* CONFIG_FAIR_GROUP_SCHED */ /* Real-Time classes' related field in a runqueue: */ struct rt_rq { struct rt_prio_array active; unsigned long rt_nr_running; #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED struct { int curr; /* highest queued rt task prio */ #ifdef CONFIG_SMP int next; /* next highest */ #endif } highest_prio; #endif #ifdef CONFIG_SMP unsigned long rt_nr_migratory; unsigned long rt_nr_total; int overloaded; struct plist_head pushable_tasks; #endif int rt_throttled; u64 rt_time; u64 rt_runtime; /* Nests inside the rq lock: */ raw_spinlock_t rt_runtime_lock; #ifdef CONFIG_RT_GROUP_SCHED unsigned long rt_nr_boosted; struct rq *rq; struct list_head leaf_rt_rq_list; struct task_group *tg; #endif }; #ifdef CONFIG_SMP /* * We add the notion of a root-domain which will be used to define per-domain * variables. Each exclusive cpuset essentially defines an island domain by * fully partitioning the member cpus from any other cpuset. Whenever a new * exclusive cpuset is created, we also create and attach a new root-domain * object. * */ struct root_domain { atomic_t refcount; atomic_t rto_count; struct rcu_head rcu; cpumask_var_t span; cpumask_var_t online; /* * The "RT overload" flag: it gets set if a CPU has more than * one runnable RT task. */ cpumask_var_t rto_mask; struct cpupri cpupri; }; /* * By default the system creates a single root-domain with all cpus as * members (mimicking the global state we have today). */ static struct root_domain def_root_domain; #endif /* CONFIG_SMP */ /* * This is the main, per-CPU runqueue data structure. * * Locking rule: those places that want to lock multiple runqueues * (such as the load balancing or the thread migration code), lock * acquire operations must be ordered by ascending &runqueue. */ struct rq { /* runqueue lock: */ raw_spinlock_t lock; /* * nr_running and cpu_load should be in the same cacheline because * remote CPUs use both these fields when doing load calculation. */ unsigned long nr_running; #define CPU_LOAD_IDX_MAX 5 unsigned long cpu_load[CPU_LOAD_IDX_MAX]; unsigned long last_load_update_tick; #ifdef CONFIG_NO_HZ u64 nohz_stamp; unsigned char nohz_balance_kick; #endif int skip_clock_update; /* capture load from *all* tasks on this cpu: */ struct load_weight load; unsigned long nr_load_updates; u64 nr_switches; struct cfs_rq cfs; struct rt_rq rt; #ifdef CONFIG_FAIR_GROUP_SCHED /* list of leaf cfs_rq on this cpu: */ struct list_head leaf_cfs_rq_list; #endif #ifdef CONFIG_RT_GROUP_SCHED struct list_head leaf_rt_rq_list; #endif /* * This is part of a global counter where only the total sum * over all CPUs matters. A task can increase this counter on * one CPU and if it got migrated afterwards it may decrease * it on another CPU. Always updated under the runqueue lock: */ unsigned long nr_uninterruptible; struct task_struct *curr, *idle, *stop; unsigned long next_balance; struct mm_struct *prev_mm; u64 clock; u64 clock_task; atomic_t nr_iowait; #ifdef CONFIG_SMP struct root_domain *rd; struct sched_domain *sd; unsigned long cpu_power; unsigned char idle_balance; /* For active balancing */ int post_schedule; int active_balance; int push_cpu; struct cpu_stop_work active_balance_work; /* cpu of this runqueue: */ int cpu; int online; u64 rt_avg; u64 age_stamp; u64 idle_stamp; u64 avg_idle; #endif #ifdef CONFIG_IRQ_TIME_ACCOUNTING u64 prev_irq_time; #endif #ifdef CONFIG_PARAVIRT u64 prev_steal_time; #endif #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING u64 prev_steal_time_rq; #endif /* calc_load related fields */ unsigned long calc_load_update; long calc_load_active; #ifdef CONFIG_SCHED_HRTICK #ifdef CONFIG_SMP int hrtick_csd_pending; struct call_single_data hrtick_csd; #endif struct hrtimer hrtick_timer; #endif #ifdef CONFIG_SCHEDSTATS /* latency stats */ struct sched_info rq_sched_info; unsigned long long rq_cpu_time; /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ /* sys_sched_yield() stats */ unsigned int yld_count; /* schedule() stats */ unsigned int sched_switch; unsigned int sched_count; unsigned int sched_goidle; /* try_to_wake_up() stats */ unsigned int ttwu_count; unsigned int ttwu_local; #endif #ifdef CONFIG_SMP struct llist_head wake_list; #endif }; static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags); static inline int cpu_of(struct rq *rq) { #ifdef CONFIG_SMP return rq->cpu; #else return 0; #endif } #define rcu_dereference_check_sched_domain(p) \ rcu_dereference_check((p), \ lockdep_is_held(&sched_domains_mutex)) /* * The domain tree (rq->sd) is protected by RCU's quiescent state transition. * See detach_destroy_domains: synchronize_sched for details. * * The domain tree of any CPU may only be accessed from within * preempt-disabled sections. */ #define for_each_domain(cpu, __sd) \ for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent) #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) #define this_rq() (&__get_cpu_var(runqueues)) #define task_rq(p) cpu_rq(task_cpu(p)) #define cpu_curr(cpu) (cpu_rq(cpu)->curr) #define raw_rq() (&__raw_get_cpu_var(runqueues)) #ifdef CONFIG_CGROUP_SCHED /* * Return the group to which this tasks belongs. * * We use task_subsys_state_check() and extend the RCU verification with * pi->lock and rq->lock because cpu_cgroup_attach() holds those locks for each * task it moves into the cgroup. Therefore by holding either of those locks, * we pin the task to the current cgroup. */ static inline struct task_group *task_group(struct task_struct *p) { struct task_group *tg; struct cgroup_subsys_state *css; css = task_subsys_state_check(p, cpu_cgroup_subsys_id, lockdep_is_held(&p->pi_lock) || lockdep_is_held(&task_rq(p)->lock)); tg = container_of(css, struct task_group, css); return autogroup_task_group(p, tg); } /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { #ifdef CONFIG_FAIR_GROUP_SCHED p->se.cfs_rq = task_group(p)->cfs_rq[cpu]; p->se.parent = task_group(p)->se[cpu]; #endif #ifdef CONFIG_RT_GROUP_SCHED p->rt.rt_rq = task_group(p)->rt_rq[cpu]; p->rt.parent = task_group(p)->rt_se[cpu]; #endif } #else /* CONFIG_CGROUP_SCHED */ static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } static inline struct task_group *task_group(struct task_struct *p) { return NULL; } #endif /* CONFIG_CGROUP_SCHED */ static void update_rq_clock_task(struct rq *rq, s64 delta); static void update_rq_clock(struct rq *rq) { s64 delta; if (rq->skip_clock_update > 0) return; delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; rq->clock += delta; update_rq_clock_task(rq, delta); } /* * Tunables that become constants when CONFIG_SCHED_DEBUG is off: */ #ifdef CONFIG_SCHED_DEBUG # define const_debug __read_mostly #else # define const_debug static const #endif /** * runqueue_is_locked - Returns true if the current cpu runqueue is locked * @cpu: the processor in question. * * This interface allows printk to be called with the runqueue lock * held and know whether or not it is OK to wake up the klogd. */ int runqueue_is_locked(int cpu) { return raw_spin_is_locked(&cpu_rq(cpu)->lock); } /* * Debugging: various feature bits */ #define SCHED_FEAT(name, enabled) \ __SCHED_FEAT_##name , enum { #include "sched_features.h" }; #undef SCHED_FEAT #define SCHED_FEAT(name, enabled) \ (1UL << __SCHED_FEAT_##name) * enabled | const_debug unsigned int sysctl_sched_features = #include "sched_features.h" 0; #undef SCHED_FEAT #ifdef CONFIG_SCHED_DEBUG #define SCHED_FEAT(name, enabled) \ #name , static __read_mostly char *sched_feat_names[] = { #include "sched_features.h" NULL }; #undef SCHED_FEAT static int sched_feat_show(struct seq_file *m, void *v) { int i; for (i = 0; sched_feat_names[i]; i++) { if (!(sysctl_sched_features & (1UL << i))) seq_puts(m, "NO_"); seq_printf(m, "%s ", sched_feat_names[i]); } seq_puts(m, "\n"); return 0; } static ssize_t sched_feat_write(struct file *filp, const char __user *ubuf, size_t cnt, loff_t *ppos) { char buf[64]; char *cmp; int neg = 0; int i; if (cnt > 63) cnt = 63; if (copy_from_user(&buf, ubuf, cnt)) return -EFAULT; buf[cnt] = 0; cmp = strstrip(buf); if (strncmp(cmp, "NO_", 3) == 0) { neg = 1; cmp += 3; } for (i = 0; sched_feat_names[i]; i++) { if (strcmp(cmp, sched_feat_names[i]) == 0) { if (neg) sysctl_sched_features &= ~(1UL << i); else sysctl_sched_features |= (1UL << i); break; } } if (!sched_feat_names[i]) return -EINVAL; *ppos += cnt; return cnt; } static int sched_feat_open(struct inode *inode, struct file *filp) { return single_open(filp, sched_feat_show, NULL); } static const struct file_operations sched_feat_fops = { .open = sched_feat_open, .write = sched_feat_write, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static __init int sched_init_debug(void) { debugfs_create_file("sched_features", 0644, NULL, NULL, &sched_feat_fops); return 0; } late_initcall(sched_init_debug); #endif #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) /* * Number of tasks to iterate in a single balance run. * Limited because this is done with IRQs disabled. */ const_debug unsigned int sysctl_sched_nr_migrate = 32; /* * period over which we average the RT time consumption, measured * in ms. * * default: 1s */ const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; /* * period over which we measure -rt task cpu usage in us. * default: 1s */ unsigned int sysctl_sched_rt_period = 1000000; static __read_mostly int scheduler_running; /* * part of the period that we allow rt tasks to run in us. * default: 0.95s */ int sysctl_sched_rt_runtime = 950000; static inline u64 global_rt_period(void) { return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; } static inline u64 global_rt_runtime(void) { if (sysctl_sched_rt_runtime < 0) return RUNTIME_INF; return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; } #ifndef prepare_arch_switch # define prepare_arch_switch(next) do { } while (0) #endif #ifndef finish_arch_switch # define finish_arch_switch(prev) do { } while (0) #endif static inline int task_current(struct rq *rq, struct task_struct *p) { return rq->curr == p; } static inline int task_running(struct rq *rq, struct task_struct *p) { #ifdef CONFIG_SMP return p->on_cpu; #else return task_current(rq, p); #endif } #ifndef __ARCH_WANT_UNLOCKED_CTXSW static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) { #ifdef CONFIG_SMP /* * We can optimise this out completely for !SMP, because the * SMP rebalancing from interrupt is the only thing that cares * here. */ next->on_cpu = 1; #endif } static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) { #ifdef CONFIG_SMP /* * After ->on_cpu is cleared, the task can be moved to a different CPU. * We must ensure this doesn't happen until the switch is completely * finished. */ smp_wmb(); prev->on_cpu = 0; #endif #ifdef CONFIG_DEBUG_SPINLOCK /* this is a valid case when another task releases the spinlock */ rq->lock.owner = current; #endif /* * If we are tracking spinlock dependencies then we have to * fix up the runqueue lock - which gets 'carried over' from * prev into current: */ spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); raw_spin_unlock_irq(&rq->lock); } #else /* __ARCH_WANT_UNLOCKED_CTXSW */ static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) { #ifdef CONFIG_SMP /* * We can optimise this out completely for !SMP, because the * SMP rebalancing from interrupt is the only thing that cares * here. */ next->on_cpu = 1; #endif #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW raw_spin_unlock_irq(&rq->lock); #else raw_spin_unlock(&rq->lock); #endif } static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) { #ifdef CONFIG_SMP /* * After ->on_cpu is cleared, the task can be moved to a different CPU. * We must ensure this doesn't happen until the switch is completely * finished. */ smp_wmb(); prev->on_cpu = 0; #endif #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW local_irq_enable(); #endif } #endif /* __ARCH_WANT_UNLOCKED_CTXSW */ /* * __task_rq_lock - lock the rq @p resides on. */ static inline struct rq *__task_rq_lock(struct task_struct *p) __acquires(rq->lock) { struct rq *rq; lockdep_assert_held(&p->pi_lock); for (;;) { rq = task_rq(p); raw_spin_lock(&rq->lock); if (likely(rq == task_rq(p))) return rq; raw_spin_unlock(&rq->lock); } } /* * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. */ static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags) __acquires(p->pi_lock) __acquires(rq->lock) { struct rq *rq; for (;;) { raw_spin_lock_irqsave(&p->pi_lock, *flags); rq = task_rq(p); raw_spin_lock(&rq->lock); if (likely(rq == task_rq(p))) return rq; raw_spin_unlock(&rq->lock); raw_spin_unlock_irqrestore(&p->pi_lock, *flags); } } static void __task_rq_unlock(struct rq *rq) __releases(rq->lock) { raw_spin_unlock(&rq->lock); } static inline void task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags) __releases(rq->lock) __releases(p->pi_lock) { raw_spin_unlock(&rq->lock); raw_spin_unlock_irqrestore(&p->pi_lock, *flags); } /* * this_rq_lock - lock this runqueue and disable interrupts. */ static struct rq *this_rq_lock(void) __acquires(rq->lock) { struct rq *rq; local_irq_disable(); rq = this_rq(); raw_spin_lock(&rq->lock); return rq; } #ifdef CONFIG_SCHED_HRTICK /* * Use HR-timers to deliver accurate preemption points. * * Its all a bit involved since we cannot program an hrt while holding the * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a * reschedule event. * * When we get rescheduled we reprogram the hrtick_timer outside of the * rq->lock. */ /* * Use hrtick when: * - enabled by features * - hrtimer is actually high res */ static inline int hrtick_enabled(struct rq *rq) { if (!sched_feat(HRTICK)) return 0; if (!cpu_active(cpu_of(rq))) return 0; return hrtimer_is_hres_active(&rq->hrtick_timer); } static void hrtick_clear(struct rq *rq) { if (hrtimer_active(&rq->hrtick_timer)) hrtimer_cancel(&rq->hrtick_timer); } /* * High-resolution timer tick. * Runs from hardirq context with interrupts disabled. */ static enum hrtimer_restart hrtick(struct hrtimer *timer) { struct rq *rq = container_of(timer, struct rq, hrtick_timer); WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); raw_spin_lock(&rq->lock); update_rq_clock(rq); rq->curr->sched_class->task_tick(rq, rq->curr, 1); raw_spin_unlock(&rq->lock); return HRTIMER_NORESTART; } #ifdef CONFIG_SMP /* * called from hardirq (IPI) context */ static void __hrtick_start(void *arg) { struct rq *rq = arg; raw_spin_lock(&rq->lock); hrtimer_restart(&rq->hrtick_timer); rq->hrtick_csd_pending = 0; raw_spin_unlock(&rq->lock); } /* * Called to set the hrtick timer state. * * called with rq->lock held and irqs disabled */ static void hrtick_start(struct rq *rq, u64 delay) { struct hrtimer *timer = &rq->hrtick_timer; ktime_t time = ktime_add_ns(timer->base->get_time(), delay); hrtimer_set_expires(timer, time); if (rq == this_rq()) { hrtimer_restart(timer); } else if (!rq->hrtick_csd_pending) { __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0); rq->hrtick_csd_pending = 1; } } static int hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu) { int cpu = (int)(long)hcpu; switch (action) { case CPU_UP_CANCELED: case CPU_UP_CANCELED_FROZEN: case CPU_DOWN_PREPARE: case CPU_DOWN_PREPARE_FROZEN: case CPU_DEAD: case CPU_DEAD_FROZEN: hrtick_clear(cpu_rq(cpu)); return NOTIFY_OK; } return NOTIFY_DONE; } static __init void init_hrtick(void) { hotcpu_notifier(hotplug_hrtick, 0); } #else /* * Called to set the hrtick timer state. * * called with rq->lock held and irqs disabled */ static void hrtick_start(struct rq *rq, u64 delay) { __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0, HRTIMER_MODE_REL_PINNED, 0); } static inline void init_hrtick(void) { } #endif /* CONFIG_SMP */ static void init_rq_hrtick(struct rq *rq) { #ifdef CONFIG_SMP rq->hrtick_csd_pending = 0; rq->hrtick_csd.flags = 0; rq->hrtick_csd.func = __hrtick_start; rq->hrtick_csd.info = rq; #endif hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); rq->hrtick_timer.function = hrtick; } #else /* CONFIG_SCHED_HRTICK */ static inline void hrtick_clear(struct rq *rq) { } static inline void init_rq_hrtick(struct rq *rq) { } static inline void init_hrtick(void) { } #endif /* CONFIG_SCHED_HRTICK */ /* * resched_task - mark a task 'to be rescheduled now'. * * On UP this means the setting of the need_resched flag, on SMP it * might also involve a cross-CPU call to trigger the scheduler on * the target CPU. */ #ifdef CONFIG_SMP #ifndef tsk_is_polling #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG) #endif static void resched_task(struct task_struct *p) { int cpu; assert_raw_spin_locked(&task_rq(p)->lock); if (test_tsk_need_resched(p)) return; set_tsk_need_resched(p); cpu = task_cpu(p); if (cpu == smp_processor_id()) return; /* NEED_RESCHED must be visible before we test polling */ smp_mb(); if (!tsk_is_polling(p)) smp_send_reschedule(cpu); } static void resched_cpu(int cpu) { struct rq *rq = cpu_rq(cpu); unsigned long flags; if (!raw_spin_trylock_irqsave(&rq->lock, flags)) return; resched_task(cpu_curr(cpu)); raw_spin_unlock_irqrestore(&rq->lock, flags); } #ifdef CONFIG_NO_HZ /* * In the semi idle case, use the nearest busy cpu for migrating timers * from an idle cpu. This is good for power-savings. * * We don't do similar optimization for completely idle system, as * selecting an idle cpu will add more delays to the timers than intended * (as that cpu's timer base may not be uptodate wrt jiffies etc). */ int get_nohz_timer_target(void) { int cpu = smp_processor_id(); int i; struct sched_domain *sd; rcu_read_lock(); for_each_domain(cpu, sd) { for_each_cpu(i, sched_domain_span(sd)) { if (!idle_cpu(i)) { cpu = i; goto unlock; } } } unlock: rcu_read_unlock(); return cpu; } /* * When add_timer_on() enqueues a timer into the timer wheel of an * idle CPU then this timer might expire before the next timer event * which is scheduled to wake up that CPU. In case of a completely * idle system the next event might even be infinite time into the * future. wake_up_idle_cpu() ensures that the CPU is woken up and * leaves the inner idle loop so the newly added timer is taken into * account when the CPU goes back to idle and evaluates the timer * wheel for the next timer event. */ void wake_up_idle_cpu(int cpu) { struct rq *rq = cpu_rq(cpu); if (cpu == smp_processor_id()) return; /* * This is safe, as this function is called with the timer * wheel base lock of (cpu) held. When the CPU is on the way * to idle and has not yet set rq->curr to idle then it will * be serialized on the timer wheel base lock and take the new * timer into account automatically. */ if (rq->curr != rq->idle) return; /* * We can set TIF_RESCHED on the idle task of the other CPU * lockless. The worst case is that the other CPU runs the * idle task through an additional NOOP schedule() */ set_tsk_need_resched(rq->idle); /* NEED_RESCHED must be visible before we test polling */ smp_mb(); if (!tsk_is_polling(rq->idle)) smp_send_reschedule(cpu); } static inline bool got_nohz_idle_kick(void) { return idle_cpu(smp_processor_id()) && this_rq()->nohz_balance_kick; } #else /* CONFIG_NO_HZ */ static inline bool got_nohz_idle_kick(void) { return false; } #endif /* CONFIG_NO_HZ */ static u64 sched_avg_period(void) { return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2; } static void sched_avg_update(struct rq *rq) { s64 period = sched_avg_period(); while ((s64)(rq->clock - rq->age_stamp) > period) { /* * Inline assembly required to prevent the compiler * optimising this loop into a divmod call. * See __iter_div_u64_rem() for another example of this. */ asm("" : "+rm" (rq->age_stamp)); rq->age_stamp += period; rq->rt_avg /= 2; } } static void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { rq->rt_avg += rt_delta; sched_avg_update(rq); } #else /* !CONFIG_SMP */ static void resched_task(struct task_struct *p) { assert_raw_spin_locked(&task_rq(p)->lock); set_tsk_need_resched(p); } static void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { } static void sched_avg_update(struct rq *rq) { } #endif /* CONFIG_SMP */ #if BITS_PER_LONG == 32 # define WMULT_CONST (~0UL) #else # define WMULT_CONST (1UL << 32) #endif #define WMULT_SHIFT 32 /* * Shift right and round: */ #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y)) /* * delta *= weight / lw */ static unsigned long calc_delta_mine(unsigned long delta_exec, unsigned long weight, struct load_weight *lw) { u64 tmp; /* * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched * entities since MIN_SHARES = 2. Treat weight as 1 if less than * 2^SCHED_LOAD_RESOLUTION. */ if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION))) tmp = (u64)delta_exec * scale_load_down(weight); else tmp = (u64)delta_exec; if (!lw->inv_weight) { unsigned long w = scale_load_down(lw->weight); if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) lw->inv_weight = 1; else if (unlikely(!w)) lw->inv_weight = WMULT_CONST; else lw->inv_weight = WMULT_CONST / w; } /* * Check whether we'd overflow the 64-bit multiplication: */ if (unlikely(tmp > WMULT_CONST)) tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight, WMULT_SHIFT/2); else tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT); return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX); } static inline void update_load_add(struct load_weight *lw, unsigned long inc) { lw->weight += inc; lw->inv_weight = 0; } static inline void update_load_sub(struct load_weight *lw, unsigned long dec) { lw->weight -= dec; lw->inv_weight = 0; } static inline void update_load_set(struct load_weight *lw, unsigned long w) { lw->weight = w; lw->inv_weight = 0; } /* * To aid in avoiding the subversion of "niceness" due to uneven distribution * of tasks with abnormal "nice" values across CPUs the contribution that * each task makes to its run queue's load is weighted according to its * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a * scaled version of the new time slice allocation that they receive on time * slice expiry etc. */ #define WEIGHT_IDLEPRIO 3 #define WMULT_IDLEPRIO 1431655765 /* * Nice levels are multiplicative, with a gentle 10% change for every * nice level changed. I.e. when a CPU-bound task goes from nice 0 to * nice 1, it will get ~10% less CPU time than another CPU-bound task * that remained on nice 0. * * The "10% effect" is relative and cumulative: from _any_ nice level, * if you go up 1 level, it's -10% CPU usage, if you go down 1 level * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. * If a task goes up by ~10% and another task goes down by ~10% then * the relative distance between them is ~25%.) */ static const int prio_to_weight[40] = { /* -20 */ 88761, 71755, 56483, 46273, 36291, /* -15 */ 29154, 23254, 18705, 14949, 11916, /* -10 */ 9548, 7620, 6100, 4904, 3906, /* -5 */ 3121, 2501, 1991, 1586, 1277, /* 0 */ 1024, 820, 655, 526, 423, /* 5 */ 335, 272, 215, 172, 137, /* 10 */ 110, 87, 70, 56, 45, /* 15 */ 36, 29, 23, 18, 15, }; /* * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated. * * In cases where the weight does not change often, we can use the * precalculated inverse to speed up arithmetics by turning divisions * into multiplications: */ static const u32 prio_to_wmult[40] = { /* -20 */ 48388, 59856, 76040, 92818, 118348, /* -15 */ 147320, 184698, 229616, 287308, 360437, /* -10 */ 449829, 563644, 704093, 875809, 1099582, /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, }; /* Time spent by the tasks of the cpu accounting group executing in ... */ enum cpuacct_stat_index { CPUACCT_STAT_USER, /* ... user mode */ CPUACCT_STAT_SYSTEM, /* ... kernel mode */ CPUACCT_STAT_NSTATS, }; #ifdef CONFIG_CGROUP_CPUACCT static void cpuacct_charge(struct task_struct *tsk, u64 cputime); static void cpuacct_update_stats(struct task_struct *tsk, enum cpuacct_stat_index idx, cputime_t val); #else static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {} static inline void cpuacct_update_stats(struct task_struct *tsk, enum cpuacct_stat_index idx, cputime_t val) {} #endif static inline void inc_cpu_load(struct rq *rq, unsigned long load) { update_load_add(&rq->load, load); } static inline void dec_cpu_load(struct rq *rq, unsigned long load) { update_load_sub(&rq->load, load); } #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) typedef int (*tg_visitor)(struct task_group *, void *); /* * Iterate task_group tree rooted at *from, calling @down when first entering a * node and @up when leaving it for the final time. * * Caller must hold rcu_lock or sufficient equivalent. */ static int walk_tg_tree_from(struct task_group *from, tg_visitor down, tg_visitor up, void *data) { struct task_group *parent, *child; int ret; parent = from; down: ret = (*down)(parent, data); if (ret) goto out; list_for_each_entry_rcu(child, &parent->children, siblings) { parent = child; goto down; up: continue; } ret = (*up)(parent, data); if (ret || parent == from) goto out; child = parent; parent = parent->parent; if (parent) goto up; out: return ret; } /* * Iterate the full tree, calling @down when first entering a node and @up when * leaving it for the final time. * * Caller must hold rcu_lock or sufficient equivalent. */ static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) { return walk_tg_tree_from(&root_task_group, down, up, data); } static int tg_nop(struct task_group *tg, void *data) { return 0; } #endif #ifdef CONFIG_SMP /* Used instead of source_load when we know the type == 0 */ static unsigned long weighted_cpuload(const int cpu) { return cpu_rq(cpu)->load.weight; } /* * Return a low guess at the load of a migration-source cpu weighted * according to the scheduling class and "nice" value. * * We want to under-estimate the load of migration sources, to * balance conservatively. */ static unsigned long source_load(int cpu, int type) { struct rq *rq = cpu_rq(cpu); unsigned long total = weighted_cpuload(cpu); if (type == 0 || !sched_feat(LB_BIAS)) return total; return min(rq->cpu_load[type-1], total); } /* * Return a high guess at the load of a migration-target cpu weighted * according to the scheduling class and "nice" value. */ static unsigned long target_load(int cpu, int type) { struct rq *rq = cpu_rq(cpu); unsigned long total = weighted_cpuload(cpu); if (type == 0 || !sched_feat(LB_BIAS)) return total; return max(rq->cpu_load[type-1], total); } static unsigned long power_of(int cpu) { return cpu_rq(cpu)->cpu_power; } static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd); static unsigned long cpu_avg_load_per_task(int cpu) { struct rq *rq = cpu_rq(cpu); unsigned long nr_running = ACCESS_ONCE(rq->nr_running); if (nr_running) return rq->load.weight / nr_running; return 0; } #ifdef CONFIG_PREEMPT static void double_rq_lock(struct rq *rq1, struct rq *rq2); /* * fair double_lock_balance: Safely acquires both rq->locks in a fair * way at the expense of forcing extra atomic operations in all * invocations. This assures that the double_lock is acquired using the * same underlying policy as the spinlock_t on this architecture, which * reduces latency compared to the unfair variant below. However, it * also adds more overhead and therefore may reduce throughput. */ static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) __releases(this_rq->lock) __acquires(busiest->lock) __acquires(this_rq->lock) { raw_spin_unlock(&this_rq->lock); double_rq_lock(this_rq, busiest); return 1; } #else /* * Unfair double_lock_balance: Optimizes throughput at the expense of * latency by eliminating extra atomic operations when the locks are * already in proper order on entry. This favors lower cpu-ids and will * grant the double lock to lower cpus over higher ids under contention, * regardless of entry order into the function. */ static int _double_lock_balance(struct rq *this_rq, struct rq *busiest) __releases(this_rq->lock) __acquires(busiest->lock) __acquires(this_rq->lock) { int ret = 0; if (unlikely(!raw_spin_trylock(&busiest->lock))) { if (busiest < this_rq) { raw_spin_unlock(&this_rq->lock); raw_spin_lock(&busiest->lock); raw_spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING); ret = 1; } else raw_spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING); } return ret; } #endif /* CONFIG_PREEMPT */ /* * double_lock_balance - lock the busiest runqueue, this_rq is locked already. */ static int double_lock_balance(struct rq *this_rq, struct rq *busiest) { if (unlikely(!irqs_disabled())) { /* printk() doesn't work good under rq->lock */ raw_spin_unlock(&this_rq->lock); BUG_ON(1); } return _double_lock_balance(this_rq, busiest); } static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) __releases(busiest->lock) { raw_spin_unlock(&busiest->lock); lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_); } /* * double_rq_lock - safely lock two runqueues * * Note this does not disable interrupts like task_rq_lock, * you need to do so manually before calling. */ static void double_rq_lock(struct rq *rq1, struct rq *rq2) __acquires(rq1->lock) __acquires(rq2->lock) { BUG_ON(!irqs_disabled()); if (rq1 == rq2) { raw_spin_lock(&rq1->lock); __acquire(rq2->lock); /* Fake it out ;) */ } else { if (rq1 < rq2) { raw_spin_lock(&rq1->lock); raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING); } else { raw_spin_lock(&rq2->lock); raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING); } } } /* * double_rq_unlock - safely unlock two runqueues * * Note this does not restore interrupts like task_rq_unlock, * you need to do so manually after calling. */ static void double_rq_unlock(struct rq *rq1, struct rq *rq2) __releases(rq1->lock) __releases(rq2->lock) { raw_spin_unlock(&rq1->lock); if (rq1 != rq2) raw_spin_unlock(&rq2->lock); else __release(rq2->lock); } #else /* CONFIG_SMP */ /* * double_rq_lock - safely lock two runqueues * * Note this does not disable interrupts like task_rq_lock, * you need to do so manually before calling. */ static void double_rq_lock(struct rq *rq1, struct rq *rq2) __acquires(rq1->lock) __acquires(rq2->lock) { BUG_ON(!irqs_disabled()); BUG_ON(rq1 != rq2); raw_spin_lock(&rq1->lock); __acquire(rq2->lock); /* Fake it out ;) */ } /* * double_rq_unlock - safely unlock two runqueues * * Note this does not restore interrupts like task_rq_unlock, * you need to do so manually after calling. */ static void double_rq_unlock(struct rq *rq1, struct rq *rq2) __releases(rq1->lock) __releases(rq2->lock) { BUG_ON(rq1 != rq2); raw_spin_unlock(&rq1->lock); __release(rq2->lock); } #endif static void calc_load_account_idle(struct rq *this_rq); static void update_sysctl(void); static int get_update_sysctl_factor(void); static void update_cpu_load(struct rq *this_rq); static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) { set_task_rq(p, cpu); #ifdef CONFIG_SMP /* * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be * successfully executed on another CPU. We must ensure that updates of * per-task data have been completed by this moment. */ smp_wmb(); task_thread_info(p)->cpu = cpu; #endif } static const struct sched_class rt_sched_class; #define sched_class_highest (&stop_sched_class) #define for_each_class(class) \ for (class = sched_class_highest; class; class = class->next) #include "sched_stats.h" static void inc_nr_running(struct rq *rq) { rq->nr_running++; } static void dec_nr_running(struct rq *rq) { rq->nr_running--; } static void set_load_weight(struct task_struct *p) { int prio = p->static_prio - MAX_RT_PRIO; struct load_weight *load = &p->se.load; /* * SCHED_IDLE tasks get minimal weight: */ if (p->policy == SCHED_IDLE) { load->weight = scale_load(WEIGHT_IDLEPRIO); load->inv_weight = WMULT_IDLEPRIO; return; } load->weight = scale_load(prio_to_weight[prio]); load->inv_weight = prio_to_wmult[prio]; } static void enqueue_task(struct rq *rq, struct task_struct *p, int flags) { update_rq_clock(rq); sched_info_queued(p); p->sched_class->enqueue_task(rq, p, flags); } static void dequeue_task(struct rq *rq, struct task_struct *p, int flags) { update_rq_clock(rq); sched_info_dequeued(p); p->sched_class->dequeue_task(rq, p, flags); } /* * activate_task - move a task to the runqueue. */ static void activate_task(struct rq *rq, struct task_struct *p, int flags) { if (task_contributes_to_load(p)) rq->nr_uninterruptible--; enqueue_task(rq, p, flags); } /* * deactivate_task - remove a task from the runqueue. */ static void deactivate_task(struct rq *rq, struct task_struct *p, int flags) { if (task_contributes_to_load(p)) rq->nr_uninterruptible++; dequeue_task(rq, p, flags); } #ifdef CONFIG_IRQ_TIME_ACCOUNTING /* * There are no locks covering percpu hardirq/softirq time. * They are only modified in account_system_vtime, on corresponding CPU * with interrupts disabled. So, writes are safe. * They are read and saved off onto struct rq in update_rq_clock(). * This may result in other CPU reading this CPU's irq time and can * race with irq/account_system_vtime on this CPU. We would either get old * or new value with a side effect of accounting a slice of irq time to wrong * task when irq is in progress while we read rq->clock. That is a worthy * compromise in place of having locks on each irq in account_system_time. */ static DEFINE_PER_CPU(u64, cpu_hardirq_time); static DEFINE_PER_CPU(u64, cpu_softirq_time); static DEFINE_PER_CPU(u64, irq_start_time); static int sched_clock_irqtime; void enable_sched_clock_irqtime(void) { sched_clock_irqtime = 1; } void disable_sched_clock_irqtime(void) { sched_clock_irqtime = 0; } #ifndef CONFIG_64BIT static DEFINE_PER_CPU(seqcount_t, irq_time_seq); static inline void irq_time_write_begin(void) { __this_cpu_inc(irq_time_seq.sequence); smp_wmb(); } static inline void irq_time_write_end(void) { smp_wmb(); __this_cpu_inc(irq_time_seq.sequence); } static inline u64 irq_time_read(int cpu) { u64 irq_time; unsigned seq; do { seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu)); irq_time = per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu); } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq)); return irq_time; } #else /* CONFIG_64BIT */ static inline void irq_time_write_begin(void) { } static inline void irq_time_write_end(void) { } static inline u64 irq_time_read(int cpu) { return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu); } #endif /* CONFIG_64BIT */ /* * Called before incrementing preempt_count on {soft,}irq_enter * and before decrementing preempt_count on {soft,}irq_exit. */ void account_system_vtime(struct task_struct *curr) { unsigned long flags; s64 delta; int cpu; if (!sched_clock_irqtime) return; local_irq_save(flags); cpu = smp_processor_id(); delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time); __this_cpu_add(irq_start_time, delta); irq_time_write_begin(); /* * We do not account for softirq time from ksoftirqd here. * We want to continue accounting softirq time to ksoftirqd thread * in that case, so as not to confuse scheduler with a special task * that do not consume any time, but still wants to run. */ if (hardirq_count()) __this_cpu_add(cpu_hardirq_time, delta); else if (in_serving_softirq() && curr != this_cpu_ksoftirqd()) __this_cpu_add(cpu_softirq_time, delta); irq_time_write_end(); local_irq_restore(flags); } EXPORT_SYMBOL_GPL(account_system_vtime); #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ #ifdef CONFIG_PARAVIRT static inline u64 steal_ticks(u64 steal) { if (unlikely(steal > NSEC_PER_SEC)) return div_u64(steal, TICK_NSEC); return __iter_div_u64_rem(steal, TICK_NSEC, &steal); } #endif static void update_rq_clock_task(struct rq *rq, s64 delta) { /* * In theory, the compile should just see 0 here, and optimize out the call * to sched_rt_avg_update. But I don't trust it... */ #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) s64 steal = 0, irq_delta = 0; #endif #ifdef CONFIG_IRQ_TIME_ACCOUNTING irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; /* * Since irq_time is only updated on {soft,}irq_exit, we might run into * this case when a previous update_rq_clock() happened inside a * {soft,}irq region. * * When this happens, we stop ->clock_task and only update the * prev_irq_time stamp to account for the part that fit, so that a next * update will consume the rest. This ensures ->clock_task is * monotonic. * * It does however cause some slight miss-attribution of {soft,}irq * time, a more accurate solution would be to update the irq_time using * the current rq->clock timestamp, except that would require using * atomic ops. */ if (irq_delta > delta) irq_delta = delta; rq->prev_irq_time += irq_delta; delta -= irq_delta; #endif #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING if (static_branch((¶virt_steal_rq_enabled))) { u64 st; steal = paravirt_steal_clock(cpu_of(rq)); steal -= rq->prev_steal_time_rq; if (unlikely(steal > delta)) steal = delta; st = steal_ticks(steal); steal = st * TICK_NSEC; rq->prev_steal_time_rq += steal; delta -= steal; } #endif rq->clock_task += delta; #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) if ((irq_delta + steal) && sched_feat(NONTASK_POWER)) sched_rt_avg_update(rq, irq_delta + steal); #endif } #ifdef CONFIG_IRQ_TIME_ACCOUNTING static int irqtime_account_hi_update(void) { struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; unsigned long flags; u64 latest_ns; int ret = 0; local_irq_save(flags); latest_ns = this_cpu_read(cpu_hardirq_time); if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq)) ret = 1; local_irq_restore(flags); return ret; } static int irqtime_account_si_update(void) { struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; unsigned long flags; u64 latest_ns; int ret = 0; local_irq_save(flags); latest_ns = this_cpu_read(cpu_softirq_time); if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq)) ret = 1; local_irq_restore(flags); return ret; } #else /* CONFIG_IRQ_TIME_ACCOUNTING */ #define sched_clock_irqtime (0) #endif #include "sched_idletask.c" #include "sched_fair.c" #include "sched_rt.c" #include "sched_autogroup.c" #include "sched_stoptask.c" #ifdef CONFIG_SCHED_DEBUG # include "sched_debug.c" #endif void sched_set_stop_task(int cpu, struct task_struct *stop) { struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; struct task_struct *old_stop = cpu_rq(cpu)->stop; if (stop) { /* * Make it appear like a SCHED_FIFO task, its something * userspace knows about and won't get confused about. * * Also, it will make PI more or less work without too * much confusion -- but then, stop work should not * rely on PI working anyway. */ sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); stop->sched_class = &stop_sched_class; } cpu_rq(cpu)->stop = stop; if (old_stop) { /* * Reset it back to a normal scheduling class so that * it can die in pieces. */ old_stop->sched_class = &rt_sched_class; } } /* * __normal_prio - return the priority that is based on the static prio */ static inline int __normal_prio(struct task_struct *p) { return p->static_prio; } /* * Calculate the expected normal priority: i.e. priority * without taking RT-inheritance into account. Might be * boosted by interactivity modifiers. Changes upon fork, * setprio syscalls, and whenever the interactivity * estimator recalculates. */ static inline int normal_prio(struct task_struct *p) { int prio; if (task_has_rt_policy(p)) prio = MAX_RT_PRIO-1 - p->rt_priority; else prio = __normal_prio(p); return prio; } /* * Calculate the current priority, i.e. the priority * taken into account by the scheduler. This value might * be boosted by RT tasks, or might be boosted by * interactivity modifiers. Will be RT if the task got * RT-boosted. If not then it returns p->normal_prio. */ static int effective_prio(struct task_struct *p) { p->normal_prio = normal_prio(p); /* * If we are RT tasks or we were boosted to RT priority, * keep the priority unchanged. Otherwise, update priority * to the normal priority: */ if (!rt_prio(p->prio)) return p->normal_prio; return p->prio; } /** * task_curr - is this task currently executing on a CPU? * @p: the task in question. */ inline int task_curr(const struct task_struct *p) { return cpu_curr(task_cpu(p)) == p; } static inline void check_class_changed(struct rq *rq, struct task_struct *p, const struct sched_class *prev_class, int oldprio) { if (prev_class != p->sched_class) { if (prev_class->switched_from) prev_class->switched_from(rq, p); p->sched_class->switched_to(rq, p); } else if (oldprio != p->prio) p->sched_class->prio_changed(rq, p, oldprio); } static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) { const struct sched_class *class; if (p->sched_class == rq->curr->sched_class) { rq->curr->sched_class->check_preempt_curr(rq, p, flags); } else { for_each_class(class) { if (class == rq->curr->sched_class) break; if (class == p->sched_class) { resched_task(rq->curr); break; } } } /* * A queue event has occurred, and we're going to schedule. In * this case, we can save a useless back to back clock update. */ if (rq->curr->on_rq && test_tsk_need_resched(rq->curr)) rq->skip_clock_update = 1; } #ifdef CONFIG_SMP /* * Is this task likely cache-hot: */ static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd) { s64 delta; if (p->sched_class != &fair_sched_class) return 0; if (unlikely(p->policy == SCHED_IDLE)) return 0; /* * Buddy candidates are cache hot: */ if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running && (&p->se == cfs_rq_of(&p->se)->next || &p->se == cfs_rq_of(&p->se)->last)) return 1; if (sysctl_sched_migration_cost == -1) return 1; if (sysctl_sched_migration_cost == 0) return 0; delta = now - p->se.exec_start; return delta < (s64)sysctl_sched_migration_cost; } void set_task_cpu(struct task_struct *p, unsigned int new_cpu) { #ifdef CONFIG_SCHED_DEBUG /* * We should never call set_task_cpu() on a blocked task, * ttwu() will sort out the placement. */ WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE)); #ifdef CONFIG_LOCKDEP /* * The caller should hold either p->pi_lock or rq->lock, when changing * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. * * sched_move_task() holds both and thus holding either pins the cgroup, * see set_task_rq(). * * Furthermore, all task_rq users should acquire both locks, see * task_rq_lock(). */ WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || lockdep_is_held(&task_rq(p)->lock))); #endif #endif trace_sched_migrate_task(p, new_cpu); if (task_cpu(p) != new_cpu) { p->se.nr_migrations++; perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0); } __set_task_cpu(p, new_cpu); } struct migration_arg { struct task_struct *task; int dest_cpu; }; static int migration_cpu_stop(void *data); /* * wait_task_inactive - wait for a thread to unschedule. * * If @match_state is nonzero, it's the @p->state value just checked and * not expected to change. If it changes, i.e. @p might have woken up, * then return zero. When we succeed in waiting for @p to be off its CPU, * we return a positive number (its total switch count). If a second call * a short while later returns the same number, the caller can be sure that * @p has remained unscheduled the whole time. * * The caller must ensure that the task *will* unschedule sometime soon, * else this function might spin for a *long* time. This function can't * be called with interrupts off, or it may introduce deadlock with * smp_call_function() if an IPI is sent by the same process we are * waiting to become inactive. */ unsigned long wait_task_inactive(struct task_struct *p, long match_state) { unsigned long flags; int running, on_rq; unsigned long ncsw; struct rq *rq; for (;;) { /* * We do the initial early heuristics without holding * any task-queue locks at all. We'll only try to get * the runqueue lock when things look like they will * work out! */ rq = task_rq(p); /* * If the task is actively running on another CPU * still, just relax and busy-wait without holding * any locks. * * NOTE! Since we don't hold any locks, it's not * even sure that "rq" stays as the right runqueue! * But we don't care, since "task_running()" will * return false if the runqueue has changed and p * is actually now running somewhere else! */ while (task_running(rq, p)) { if (match_state && unlikely(p->state != match_state)) return 0; cpu_relax(); } /* * Ok, time to look more closely! We need the rq * lock now, to be *sure*. If we're wrong, we'll * just go back and repeat. */ rq = task_rq_lock(p, &flags); trace_sched_wait_task(p); running = task_running(rq, p); on_rq = p->on_rq; ncsw = 0; if (!match_state || p->state == match_state) ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ task_rq_unlock(rq, p, &flags); /* * If it changed from the expected state, bail out now. */ if (unlikely(!ncsw)) break; /* * Was it really running after all now that we * checked with the proper locks actually held? * * Oops. Go back and try again.. */ if (unlikely(running)) { cpu_relax(); continue; } /* * It's not enough that it's not actively running, * it must be off the runqueue _entirely_, and not * preempted! * * So if it was still runnable (but just not actively * running right now), it's preempted, and we should * yield - it could be a while. */ if (unlikely(on_rq)) { ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ); set_current_state(TASK_UNINTERRUPTIBLE); schedule_hrtimeout(&to, HRTIMER_MODE_REL); continue; } /* * Ahh, all good. It wasn't running, and it wasn't * runnable, which means that it will never become * running in the future either. We're all done! */ break; } return ncsw; } /*** * kick_process - kick a running thread to enter/exit the kernel * @p: the to-be-kicked thread * * Cause a process which is running on another CPU to enter * kernel-mode, without any delay. (to get signals handled.) * * NOTE: this function doesn't have to take the runqueue lock, * because all it wants to ensure is that the remote task enters * the kernel. If the IPI races and the task has been migrated * to another CPU then no harm is done and the purpose has been * achieved as well. */ void kick_process(struct task_struct *p) { int cpu; preempt_disable(); cpu = task_cpu(p); if ((cpu != smp_processor_id()) && task_curr(p)) smp_send_reschedule(cpu); preempt_enable(); } EXPORT_SYMBOL_GPL(kick_process); #endif /* CONFIG_SMP */ #ifdef CONFIG_SMP /* * ->cpus_allowed is protected by both rq->lock and p->pi_lock */ static int select_fallback_rq(int cpu, struct task_struct *p) { int dest_cpu; const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu)); /* Look for allowed, online CPU in same node. */ for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask) if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) return dest_cpu; /* Any allowed, online CPU? */ dest_cpu = cpumask_any_and(tsk_cpus_allowed(p), cpu_active_mask); if (dest_cpu < nr_cpu_ids) return dest_cpu; /* No more Mr. Nice Guy. */ dest_cpu = cpuset_cpus_allowed_fallback(p); /* * Don't tell them about moving exiting tasks or * kernel threads (both mm NULL), since they never * leave kernel. */ if (p->mm && printk_ratelimit()) { printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n", task_pid_nr(p), p->comm, cpu); } return dest_cpu; } /* * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable. */ static inline int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags) { int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags); /* * In order not to call set_task_cpu() on a blocking task we need * to rely on ttwu() to place the task on a valid ->cpus_allowed * cpu. * * Since this is common to all placement strategies, this lives here. * * [ this allows ->select_task() to simply return task_cpu(p) and * not worry about this generic constraint ] */ if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) || !cpu_online(cpu))) cpu = select_fallback_rq(task_cpu(p), p); return cpu; } static void update_avg(u64 *avg, u64 sample) { s64 diff = sample - *avg; *avg += diff >> 3; } #endif static void ttwu_stat(struct task_struct *p, int cpu, int wake_flags) { #ifdef CONFIG_SCHEDSTATS struct rq *rq = this_rq(); #ifdef CONFIG_SMP int this_cpu = smp_processor_id(); if (cpu == this_cpu) { schedstat_inc(rq, ttwu_local); schedstat_inc(p, se.statistics.nr_wakeups_local); } else { struct sched_domain *sd; schedstat_inc(p, se.statistics.nr_wakeups_remote); rcu_read_lock(); for_each_domain(this_cpu, sd) { if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { schedstat_inc(sd, ttwu_wake_remote); break; } } rcu_read_unlock(); } if (wake_flags & WF_MIGRATED) schedstat_inc(p, se.statistics.nr_wakeups_migrate); #endif /* CONFIG_SMP */ schedstat_inc(rq, ttwu_count); schedstat_inc(p, se.statistics.nr_wakeups); if (wake_flags & WF_SYNC) schedstat_inc(p, se.statistics.nr_wakeups_sync); #endif /* CONFIG_SCHEDSTATS */ } static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags) { activate_task(rq, p, en_flags); p->on_rq = 1; /* if a worker is waking up, notify workqueue */ if (p->flags & PF_WQ_WORKER) wq_worker_waking_up(p, cpu_of(rq)); } /* * Mark the task runnable and perform wakeup-preemption. */ static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) { trace_sched_wakeup(p, true); check_preempt_curr(rq, p, wake_flags); p->state = TASK_RUNNING; #ifdef CONFIG_SMP if (p->sched_class->task_woken) p->sched_class->task_woken(rq, p); if (rq->idle_stamp) { u64 delta = rq->clock - rq->idle_stamp; u64 max = 2*sysctl_sched_migration_cost; if (delta > max) rq->avg_idle = max; else update_avg(&rq->avg_idle, delta); rq->idle_stamp = 0; } #endif } static void ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags) { #ifdef CONFIG_SMP if (p->sched_contributes_to_load) rq->nr_uninterruptible--; #endif ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING); ttwu_do_wakeup(rq, p, wake_flags); } /* * Called in case the task @p isn't fully descheduled from its runqueue, * in this case we must do a remote wakeup. Its a 'light' wakeup though, * since all we need to do is flip p->state to TASK_RUNNING, since * the task is still ->on_rq. */ static int ttwu_remote(struct task_struct *p, int wake_flags) { struct rq *rq; int ret = 0; rq = __task_rq_lock(p); if (p->on_rq) { ttwu_do_wakeup(rq, p, wake_flags); ret = 1; } __task_rq_unlock(rq); return ret; } #ifdef CONFIG_SMP static void sched_ttwu_pending(void) { struct rq *rq = this_rq(); struct llist_node *llist = llist_del_all(&rq->wake_list); struct task_struct *p; raw_spin_lock(&rq->lock); while (llist) { p = llist_entry(llist, struct task_struct, wake_entry); llist = llist_next(llist); ttwu_do_activate(rq, p, 0); } raw_spin_unlock(&rq->lock); } void scheduler_ipi(void) { if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()) return; /* * Not all reschedule IPI handlers call irq_enter/irq_exit, since * traditionally all their work was done from the interrupt return * path. Now that we actually do some work, we need to make sure * we do call them. * * Some archs already do call them, luckily irq_enter/exit nest * properly. * * Arguably we should visit all archs and update all handlers, * however a fair share of IPIs are still resched only so this would * somewhat pessimize the simple resched case. */ irq_enter(); sched_ttwu_pending(); /* * Check if someone kicked us for doing the nohz idle load balance. */ if (unlikely(got_nohz_idle_kick() && !need_resched())) { this_rq()->idle_balance = 1; raise_softirq_irqoff(SCHED_SOFTIRQ); } irq_exit(); } static void ttwu_queue_remote(struct task_struct *p, int cpu) { if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) smp_send_reschedule(cpu); } #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW static int ttwu_activate_remote(struct task_struct *p, int wake_flags) { struct rq *rq; int ret = 0; rq = __task_rq_lock(p); if (p->on_cpu) { ttwu_activate(rq, p, ENQUEUE_WAKEUP); ttwu_do_wakeup(rq, p, wake_flags); ret = 1; } __task_rq_unlock(rq); return ret; } #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */ #endif /* CONFIG_SMP */ static void ttwu_queue(struct task_struct *p, int cpu) { struct rq *rq = cpu_rq(cpu); #if defined(CONFIG_SMP) if (sched_feat(TTWU_QUEUE) && cpu != smp_processor_id()) { sched_clock_cpu(cpu); /* sync clocks x-cpu */ ttwu_queue_remote(p, cpu); return; } #endif raw_spin_lock(&rq->lock); ttwu_do_activate(rq, p, 0); raw_spin_unlock(&rq->lock); } /** * try_to_wake_up - wake up a thread * @p: the thread to be awakened * @state: the mask of task states that can be woken * @wake_flags: wake modifier flags (WF_*) * * Put it on the run-queue if it's not already there. The "current" * thread is always on the run-queue (except when the actual * re-schedule is in progress), and as such you're allowed to do * the simpler "current->state = TASK_RUNNING" to mark yourself * runnable without the overhead of this. * * Returns %true if @p was woken up, %false if it was already running * or @state didn't match @p's state. */ static int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) { unsigned long flags; int cpu, success = 0; smp_wmb(); raw_spin_lock_irqsave(&p->pi_lock, flags); if (!(p->state & state)) goto out; success = 1; /* we're going to change ->state */ cpu = task_cpu(p); if (p->on_rq && ttwu_remote(p, wake_flags)) goto stat; #ifdef CONFIG_SMP /* * If the owning (remote) cpu is still in the middle of schedule() with * this task as prev, wait until its done referencing the task. */ while (p->on_cpu) { #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW /* * In case the architecture enables interrupts in * context_switch(), we cannot busy wait, since that * would lead to deadlocks when an interrupt hits and * tries to wake up @prev. So bail and do a complete * remote wakeup. */ if (ttwu_activate_remote(p, wake_flags)) goto stat; #else cpu_relax(); #endif } /* * Pairs with the smp_wmb() in finish_lock_switch(). */ smp_rmb(); p->sched_contributes_to_load = !!task_contributes_to_load(p); p->state = TASK_WAKING; if (p->sched_class->task_waking) p->sched_class->task_waking(p); cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags); if (task_cpu(p) != cpu) { wake_flags |= WF_MIGRATED; set_task_cpu(p, cpu); } #endif /* CONFIG_SMP */ ttwu_queue(p, cpu); stat: ttwu_stat(p, cpu, wake_flags); out: raw_spin_unlock_irqrestore(&p->pi_lock, flags); return success; } /** * try_to_wake_up_local - try to wake up a local task with rq lock held * @p: the thread to be awakened * * Put @p on the run-queue if it's not already there. The caller must * ensure that this_rq() is locked, @p is bound to this_rq() and not * the current task. */ static void try_to_wake_up_local(struct task_struct *p) { struct rq *rq = task_rq(p); BUG_ON(rq != this_rq()); BUG_ON(p == current); lockdep_assert_held(&rq->lock); if (!raw_spin_trylock(&p->pi_lock)) { raw_spin_unlock(&rq->lock); raw_spin_lock(&p->pi_lock); raw_spin_lock(&rq->lock); } if (!(p->state & TASK_NORMAL)) goto out; if (!p->on_rq) ttwu_activate(rq, p, ENQUEUE_WAKEUP); ttwu_do_wakeup(rq, p, 0); ttwu_stat(p, smp_processor_id(), 0); out: raw_spin_unlock(&p->pi_lock); } /** * wake_up_process - Wake up a specific process * @p: The process to be woken up. * * Attempt to wake up the nominated process and move it to the set of runnable * processes. Returns 1 if the process was woken up, 0 if it was already * running. * * It may be assumed that this function implies a write memory barrier before * changing the task state if and only if any tasks are woken up. */ int wake_up_process(struct task_struct *p) { return try_to_wake_up(p, TASK_ALL, 0); } EXPORT_SYMBOL(wake_up_process); int wake_up_state(struct task_struct *p, unsigned int state) { return try_to_wake_up(p, state, 0); } /* * Perform scheduler related setup for a newly forked process p. * p is forked by current. * * __sched_fork() is basic setup used by init_idle() too: */ static void __sched_fork(struct task_struct *p) { p->on_rq = 0; p->se.on_rq = 0; p->se.exec_start = 0; p->se.sum_exec_runtime = 0; p->se.prev_sum_exec_runtime = 0; p->se.nr_migrations = 0; p->se.vruntime = 0; INIT_LIST_HEAD(&p->se.group_node); #ifdef CONFIG_SCHEDSTATS memset(&p->se.statistics, 0, sizeof(p->se.statistics)); #endif INIT_LIST_HEAD(&p->rt.run_list); #ifdef CONFIG_PREEMPT_NOTIFIERS INIT_HLIST_HEAD(&p->preempt_notifiers); #endif } /* * fork()/clone()-time setup: */ void sched_fork(struct task_struct *p) { unsigned long flags; int cpu = get_cpu(); __sched_fork(p); /* * We mark the process as running here. This guarantees that * nobody will actually run it, and a signal or other external * event cannot wake it up and insert it on the runqueue either. */ p->state = TASK_RUNNING; /* * Make sure we do not leak PI boosting priority to the child. */ p->prio = current->normal_prio; /* * Revert to default priority/policy on fork if requested. */ if (unlikely(p->sched_reset_on_fork)) { if (task_has_rt_policy(p)) { p->policy = SCHED_NORMAL; p->static_prio = NICE_TO_PRIO(0); p->rt_priority = 0; } else if (PRIO_TO_NICE(p->static_prio) < 0) p->static_prio = NICE_TO_PRIO(0); p->prio = p->normal_prio = __normal_prio(p); set_load_weight(p); /* * We don't need the reset flag anymore after the fork. It has * fulfilled its duty: */ p->sched_reset_on_fork = 0; } if (!rt_prio(p->prio)) p->sched_class = &fair_sched_class; if (p->sched_class->task_fork) p->sched_class->task_fork(p); /* * The child is not yet in the pid-hash so no cgroup attach races, * and the cgroup is pinned to this child due to cgroup_fork() * is ran before sched_fork(). * * Silence PROVE_RCU. */ raw_spin_lock_irqsave(&p->pi_lock, flags); set_task_cpu(p, cpu); raw_spin_unlock_irqrestore(&p->pi_lock, flags); #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) if (likely(sched_info_on())) memset(&p->sched_info, 0, sizeof(p->sched_info)); #endif #if defined(CONFIG_SMP) p->on_cpu = 0; #endif #ifdef CONFIG_PREEMPT_COUNT /* Want to start with kernel preemption disabled. */ task_thread_info(p)->preempt_count = 1; #endif #ifdef CONFIG_SMP plist_node_init(&p->pushable_tasks, MAX_PRIO); #endif put_cpu(); } /* * wake_up_new_task - wake up a newly created task for the first time. * * This function will do some initial scheduler statistics housekeeping * that must be done for every newly created context, then puts the task * on the runqueue and wakes it. */ void wake_up_new_task(struct task_struct *p) { unsigned long flags; struct rq *rq; raw_spin_lock_irqsave(&p->pi_lock, flags); #ifdef CONFIG_SMP /* * Fork balancing, do it here and not earlier because: * - cpus_allowed can change in the fork path * - any previously selected cpu might disappear through hotplug */ set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0)); #endif rq = __task_rq_lock(p); activate_task(rq, p, 0); p->on_rq = 1; trace_sched_wakeup_new(p, true); check_preempt_curr(rq, p, WF_FORK); #ifdef CONFIG_SMP if (p->sched_class->task_woken) p->sched_class->task_woken(rq, p); #endif task_rq_unlock(rq, p, &flags); } #ifdef CONFIG_PREEMPT_NOTIFIERS /** * preempt_notifier_register - tell me when current is being preempted & rescheduled * @notifier: notifier struct to register */ void preempt_notifier_register(struct preempt_notifier *notifier) { hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); } EXPORT_SYMBOL_GPL(preempt_notifier_register); /** * preempt_notifier_unregister - no longer interested in preemption notifications * @notifier: notifier struct to unregister * * This is safe to call from within a preemption notifier. */ void preempt_notifier_unregister(struct preempt_notifier *notifier) { hlist_del(¬ifier->link); } EXPORT_SYMBOL_GPL(preempt_notifier_unregister); static void fire_sched_in_preempt_notifiers(struct task_struct *curr) { struct preempt_notifier *notifier; struct hlist_node *node; hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link) notifier->ops->sched_in(notifier, raw_smp_processor_id()); } static void fire_sched_out_preempt_notifiers(struct task_struct *curr, struct task_struct *next) { struct preempt_notifier *notifier; struct hlist_node *node; hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link) notifier->ops->sched_out(notifier, next); } #else /* !CONFIG_PREEMPT_NOTIFIERS */ static void fire_sched_in_preempt_notifiers(struct task_struct *curr) { } static void fire_sched_out_preempt_notifiers(struct task_struct *curr, struct task_struct *next) { } #endif /* CONFIG_PREEMPT_NOTIFIERS */ /** * prepare_task_switch - prepare to switch tasks * @rq: the runqueue preparing to switch * @prev: the current task that is being switched out * @next: the task we are going to switch to. * * This is called with the rq lock held and interrupts off. It must * be paired with a subsequent finish_task_switch after the context * switch. * * prepare_task_switch sets up locking and calls architecture specific * hooks. */ static inline void prepare_task_switch(struct rq *rq, struct task_struct *prev, struct task_struct *next) { sched_info_switch(prev, next); perf_event_task_sched_out(prev, next); fire_sched_out_preempt_notifiers(prev, next); prepare_lock_switch(rq, next); prepare_arch_switch(next); trace_sched_switch(prev, next); } /** * finish_task_switch - clean up after a task-switch * @rq: runqueue associated with task-switch * @prev: the thread we just switched away from. * * finish_task_switch must be called after the context switch, paired * with a prepare_task_switch call before the context switch. * finish_task_switch will reconcile locking set up by prepare_task_switch, * and do any other architecture-specific cleanup actions. * * Note that we may have delayed dropping an mm in context_switch(). If * so, we finish that here outside of the runqueue lock. (Doing it * with the lock held can cause deadlocks; see schedule() for * details.) */ static void finish_task_switch(struct rq *rq, struct task_struct *prev) __releases(rq->lock) { struct mm_struct *mm = rq->prev_mm; long prev_state; rq->prev_mm = NULL; /* * A task struct has one reference for the use as "current". * If a task dies, then it sets TASK_DEAD in tsk->state and calls * schedule one last time. The schedule call will never return, and * the scheduled task must drop that reference. * The test for TASK_DEAD must occur while the runqueue locks are * still held, otherwise prev could be scheduled on another cpu, die * there before we look at prev->state, and then the reference would * be dropped twice. * Manfred Spraul <manfred@colorfullife.com> */ prev_state = prev->state; finish_arch_switch(prev); #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW local_irq_disable(); #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */ perf_event_task_sched_in(prev, current); #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW local_irq_enable(); #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */ finish_lock_switch(rq, prev); fire_sched_in_preempt_notifiers(current); if (mm) mmdrop(mm); if (unlikely(prev_state == TASK_DEAD)) { /* * Remove function-return probe instances associated with this * task and put them back on the free list. */ kprobe_flush_task(prev); put_task_struct(prev); } } #ifdef CONFIG_SMP /* assumes rq->lock is held */ static inline void pre_schedule(struct rq *rq, struct task_struct *prev) { if (prev->sched_class->pre_schedule) prev->sched_class->pre_schedule(rq, prev); } /* rq->lock is NOT held, but preemption is disabled */ static inline void post_schedule(struct rq *rq) { if (rq->post_schedule) { unsigned long flags; raw_spin_lock_irqsave(&rq->lock, flags); if (rq->curr->sched_class->post_schedule) rq->curr->sched_class->post_schedule(rq); raw_spin_unlock_irqrestore(&rq->lock, flags); rq->post_schedule = 0; } } #else static inline void pre_schedule(struct rq *rq, struct task_struct *p) { } static inline void post_schedule(struct rq *rq) { } #endif /** * schedule_tail - first thing a freshly forked thread must call. * @prev: the thread we just switched away from. */ asmlinkage void schedule_tail(struct task_struct *prev) __releases(rq->lock) { struct rq *rq = this_rq(); finish_task_switch(rq, prev); /* * FIXME: do we need to worry about rq being invalidated by the * task_switch? */ post_schedule(rq); #ifdef __ARCH_WANT_UNLOCKED_CTXSW /* In this case, finish_task_switch does not reenable preemption */ preempt_enable(); #endif if (current->set_child_tid) put_user(task_pid_vnr(current), current->set_child_tid); } /* * context_switch - switch to the new MM and the new * thread's register state. */ static inline void context_switch(struct rq *rq, struct task_struct *prev, struct task_struct *next) { struct mm_struct *mm, *oldmm; prepare_task_switch(rq, prev, next); mm = next->mm; oldmm = prev->active_mm; /* * For paravirt, this is coupled with an exit in switch_to to * combine the page table reload and the switch backend into * one hypercall. */ arch_start_context_switch(prev); if (!mm) { next->active_mm = oldmm; atomic_inc(&oldmm->mm_count); enter_lazy_tlb(oldmm, next); } else switch_mm(oldmm, mm, next); if (!prev->mm) { prev->active_mm = NULL; rq->prev_mm = oldmm; } /* * Since the runqueue lock will be released by the next * task (which is an invalid locking op but in the case * of the scheduler it's an obvious special-case), so we * do an early lockdep release here: */ #ifndef __ARCH_WANT_UNLOCKED_CTXSW spin_release(&rq->lock.dep_map, 1, _THIS_IP_); #endif /* Here we just switch the register state and the stack. */ switch_to(prev, next, prev); barrier(); /* * this_rq must be evaluated again because prev may have moved * CPUs since it called schedule(), thus the 'rq' on its stack * frame will be invalid. */ finish_task_switch(this_rq(), prev); } /* * nr_running, nr_uninterruptible and nr_context_switches: * * externally visible scheduler statistics: current number of runnable * threads, current number of uninterruptible-sleeping threads, total * number of context switches performed since bootup. */ unsigned long nr_running(void) { unsigned long i, sum = 0; for_each_online_cpu(i) sum += cpu_rq(i)->nr_running; return sum; } unsigned long nr_uninterruptible(void) { unsigned long i, sum = 0; for_each_possible_cpu(i) sum += cpu_rq(i)->nr_uninterruptible; /* * Since we read the counters lockless, it might be slightly * inaccurate. Do not allow it to go below zero though: */ if (unlikely((long)sum < 0)) sum = 0; return sum; } unsigned long long nr_context_switches(void) { int i; unsigned long long sum = 0; for_each_possible_cpu(i) sum += cpu_rq(i)->nr_switches; return sum; } unsigned long nr_iowait(void) { unsigned long i, sum = 0; for_each_possible_cpu(i) sum += atomic_read(&cpu_rq(i)->nr_iowait); return sum; } unsigned long nr_iowait_cpu(int cpu) { struct rq *this = cpu_rq(cpu); return atomic_read(&this->nr_iowait); } unsigned long this_cpu_load(void) { struct rq *this = this_rq(); return this->cpu_load[0]; } /* Variables and functions for calc_load */ static atomic_long_t calc_load_tasks; static unsigned long calc_load_update; unsigned long avenrun[3]; EXPORT_SYMBOL(avenrun); static long calc_load_fold_active(struct rq *this_rq) { long nr_active, delta = 0; nr_active = this_rq->nr_running; nr_active += (long) this_rq->nr_uninterruptible; if (nr_active != this_rq->calc_load_active) { delta = nr_active - this_rq->calc_load_active; this_rq->calc_load_active = nr_active; } return delta; } static unsigned long calc_load(unsigned long load, unsigned long exp, unsigned long active) { load *= exp; load += active * (FIXED_1 - exp); load += 1UL << (FSHIFT - 1); return load >> FSHIFT; } #ifdef CONFIG_NO_HZ /* * For NO_HZ we delay the active fold to the next LOAD_FREQ update. * * When making the ILB scale, we should try to pull this in as well. */ static atomic_long_t calc_load_tasks_idle; static void calc_load_account_idle(struct rq *this_rq) { long delta; delta = calc_load_fold_active(this_rq); if (delta) atomic_long_add(delta, &calc_load_tasks_idle); } static long calc_load_fold_idle(void) { long delta = 0; /* * Its got a race, we don't care... */ if (atomic_long_read(&calc_load_tasks_idle)) delta = atomic_long_xchg(&calc_load_tasks_idle, 0); return delta; } /** * fixed_power_int - compute: x^n, in O(log n) time * * @x: base of the power * @frac_bits: fractional bits of @x * @n: power to raise @x to. * * By exploiting the relation between the definition of the natural power * function: x^n := x*x*...*x (x multiplied by itself for n times), and * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i, * (where: n_i \elem {0, 1}, the binary vector representing n), * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is * of course trivially computable in O(log_2 n), the length of our binary * vector. */ static unsigned long fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n) { unsigned long result = 1UL << frac_bits; if (n) for (;;) { if (n & 1) { result *= x; result += 1UL << (frac_bits - 1); result >>= frac_bits; } n >>= 1; if (!n) break; x *= x; x += 1UL << (frac_bits - 1); x >>= frac_bits; } return result; } /* * a1 = a0 * e + a * (1 - e) * * a2 = a1 * e + a * (1 - e) * = (a0 * e + a * (1 - e)) * e + a * (1 - e) * = a0 * e^2 + a * (1 - e) * (1 + e) * * a3 = a2 * e + a * (1 - e) * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e) * = a0 * e^3 + a * (1 - e) * (1 + e + e^2) * * ... * * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1] * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e) * = a0 * e^n + a * (1 - e^n) * * [1] application of the geometric series: * * n 1 - x^(n+1) * S_n := \Sum x^i = ------------- * i=0 1 - x */ static unsigned long calc_load_n(unsigned long load, unsigned long exp, unsigned long active, unsigned int n) { return calc_load(load, fixed_power_int(exp, FSHIFT, n), active); } /* * NO_HZ can leave us missing all per-cpu ticks calling * calc_load_account_active(), but since an idle CPU folds its delta into * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold * in the pending idle delta if our idle period crossed a load cycle boundary. * * Once we've updated the global active value, we need to apply the exponential * weights adjusted to the number of cycles missed. */ static void calc_global_nohz(unsigned long ticks) { long delta, active, n; if (time_before(jiffies, calc_load_update)) return; /* * If we crossed a calc_load_update boundary, make sure to fold * any pending idle changes, the respective CPUs might have * missed the tick driven calc_load_account_active() update * due to NO_HZ. */ delta = calc_load_fold_idle(); if (delta) atomic_long_add(delta, &calc_load_tasks); /* * If we were idle for multiple load cycles, apply them. */ if (ticks >= LOAD_FREQ) { n = ticks / LOAD_FREQ; active = atomic_long_read(&calc_load_tasks); active = active > 0 ? active * FIXED_1 : 0; avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n); avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n); avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n); calc_load_update += n * LOAD_FREQ; } /* * Its possible the remainder of the above division also crosses * a LOAD_FREQ period, the regular check in calc_global_load() * which comes after this will take care of that. * * Consider us being 11 ticks before a cycle completion, and us * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will * age us 4 cycles, and the test in calc_global_load() will * pick up the final one. */ } #else static void calc_load_account_idle(struct rq *this_rq) { } static inline long calc_load_fold_idle(void) { return 0; } static void calc_global_nohz(unsigned long ticks) { } #endif /** * get_avenrun - get the load average array * @loads: pointer to dest load array * @offset: offset to add * @shift: shift count to shift the result left * * These values are estimates at best, so no need for locking. */ void get_avenrun(unsigned long *loads, unsigned long offset, int shift) { loads[0] = (avenrun[0] + offset) << shift; loads[1] = (avenrun[1] + offset) << shift; loads[2] = (avenrun[2] + offset) << shift; } /* * calc_load - update the avenrun load estimates 10 ticks after the * CPUs have updated calc_load_tasks. */ void calc_global_load(unsigned long ticks) { long active; calc_global_nohz(ticks); if (time_before(jiffies, calc_load_update + 10)) return; active = atomic_long_read(&calc_load_tasks); active = active > 0 ? active * FIXED_1 : 0; avenrun[0] = calc_load(avenrun[0], EXP_1, active); avenrun[1] = calc_load(avenrun[1], EXP_5, active); avenrun[2] = calc_load(avenrun[2], EXP_15, active); calc_load_update += LOAD_FREQ; } /* * Called from update_cpu_load() to periodically update this CPU's * active count. */ static void calc_load_account_active(struct rq *this_rq) { long delta; if (time_before(jiffies, this_rq->calc_load_update)) return; delta = calc_load_fold_active(this_rq); delta += calc_load_fold_idle(); if (delta) atomic_long_add(delta, &calc_load_tasks); this_rq->calc_load_update += LOAD_FREQ; } /* * The exact cpuload at various idx values, calculated at every tick would be * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load * * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called * on nth tick when cpu may be busy, then we have: * load = ((2^idx - 1) / 2^idx)^(n-1) * load * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load * * decay_load_missed() below does efficient calculation of * load = ((2^idx - 1) / 2^idx)^(n-1) * load * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load * * The calculation is approximated on a 128 point scale. * degrade_zero_ticks is the number of ticks after which load at any * particular idx is approximated to be zero. * degrade_factor is a precomputed table, a row for each load idx. * Each column corresponds to degradation factor for a power of two ticks, * based on 128 point scale. * Example: * row 2, col 3 (=12) says that the degradation at load idx 2 after * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8). * * With this power of 2 load factors, we can degrade the load n times * by looking at 1 bits in n and doing as many mult/shift instead of * n mult/shifts needed by the exact degradation. */ #define DEGRADE_SHIFT 7 static const unsigned char degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128}; static const unsigned char degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = { {0, 0, 0, 0, 0, 0, 0, 0}, {64, 32, 8, 0, 0, 0, 0, 0}, {96, 72, 40, 12, 1, 0, 0}, {112, 98, 75, 43, 15, 1, 0}, {120, 112, 98, 76, 45, 16, 2} }; /* * Update cpu_load for any missed ticks, due to tickless idle. The backlog * would be when CPU is idle and so we just decay the old load without * adding any new load. */ static unsigned long decay_load_missed(unsigned long load, unsigned long missed_updates, int idx) { int j = 0; if (!missed_updates) return load; if (missed_updates >= degrade_zero_ticks[idx]) return 0; if (idx == 1) return load >> missed_updates; while (missed_updates) { if (missed_updates % 2) load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT; missed_updates >>= 1; j++; } return load; } /* * Update rq->cpu_load[] statistics. This function is usually called every * scheduler tick (TICK_NSEC). With tickless idle this will not be called * every tick. We fix it up based on jiffies. */ static void update_cpu_load(struct rq *this_rq) { unsigned long this_load = this_rq->load.weight; unsigned long curr_jiffies = jiffies; unsigned long pending_updates; int i, scale; this_rq->nr_load_updates++; /* Avoid repeated calls on same jiffy, when moving in and out of idle */ if (curr_jiffies == this_rq->last_load_update_tick) return; pending_updates = curr_jiffies - this_rq->last_load_update_tick; this_rq->last_load_update_tick = curr_jiffies; /* Update our load: */ this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */ for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) { unsigned long old_load, new_load; /* scale is effectively 1 << i now, and >> i divides by scale */ old_load = this_rq->cpu_load[i]; old_load = decay_load_missed(old_load, pending_updates - 1, i); new_load = this_load; /* * Round up the averaging division if load is increasing. This * prevents us from getting stuck on 9 if the load is 10, for * example. */ if (new_load > old_load) new_load += scale - 1; this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i; } sched_avg_update(this_rq); } static void update_cpu_load_active(struct rq *this_rq) { update_cpu_load(this_rq); calc_load_account_active(this_rq); } #ifdef CONFIG_SMP /* * sched_exec - execve() is a valuable balancing opportunity, because at * this point the task has the smallest effective memory and cache footprint. */ void sched_exec(void) { struct task_struct *p = current; unsigned long flags; int dest_cpu; raw_spin_lock_irqsave(&p->pi_lock, flags); dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0); if (dest_cpu == smp_processor_id()) goto unlock; if (likely(cpu_active(dest_cpu))) { struct migration_arg arg = { p, dest_cpu }; raw_spin_unlock_irqrestore(&p->pi_lock, flags); stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); return; } unlock: raw_spin_unlock_irqrestore(&p->pi_lock, flags); } #endif DEFINE_PER_CPU(struct kernel_stat, kstat); EXPORT_PER_CPU_SYMBOL(kstat); /* * Return any ns on the sched_clock that have not yet been accounted in * @p in case that task is currently running. * * Called with task_rq_lock() held on @rq. */ static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq) { u64 ns = 0; if (task_current(rq, p)) { update_rq_clock(rq); ns = rq->clock_task - p->se.exec_start; if ((s64)ns < 0) ns = 0; } return ns; } unsigned long long task_delta_exec(struct task_struct *p) { unsigned long flags; struct rq *rq; u64 ns = 0; rq = task_rq_lock(p, &flags); ns = do_task_delta_exec(p, rq); task_rq_unlock(rq, p, &flags); return ns; } /* * Return accounted runtime for the task. * In case the task is currently running, return the runtime plus current's * pending runtime that have not been accounted yet. */ unsigned long long task_sched_runtime(struct task_struct *p) { unsigned long flags; struct rq *rq; u64 ns = 0; rq = task_rq_lock(p, &flags); ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq); task_rq_unlock(rq, p, &flags); return ns; } /* * Account user cpu time to a process. * @p: the process that the cpu time gets accounted to * @cputime: the cpu time spent in user space since the last update * @cputime_scaled: cputime scaled by cpu frequency */ void account_user_time(struct task_struct *p, cputime_t cputime, cputime_t cputime_scaled) { struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; cputime64_t tmp; /* Add user time to process. */ p->utime = cputime_add(p->utime, cputime); p->utimescaled = cputime_add(p->utimescaled, cputime_scaled); account_group_user_time(p, cputime); /* Add user time to cpustat. */ tmp = cputime_to_cputime64(cputime); if (TASK_NICE(p) > 0) cpustat->nice = cputime64_add(cpustat->nice, tmp); else cpustat->user = cputime64_add(cpustat->user, tmp); cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime); /* Account for user time used */ acct_update_integrals(p); } /* * Account guest cpu time to a process. * @p: the process that the cpu time gets accounted to * @cputime: the cpu time spent in virtual machine since the last update * @cputime_scaled: cputime scaled by cpu frequency */ static void account_guest_time(struct task_struct *p, cputime_t cputime, cputime_t cputime_scaled) { cputime64_t tmp; struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; tmp = cputime_to_cputime64(cputime); /* Add guest time to process. */ p->utime = cputime_add(p->utime, cputime); p->utimescaled = cputime_add(p->utimescaled, cputime_scaled); account_group_user_time(p, cputime); p->gtime = cputime_add(p->gtime, cputime); /* Add guest time to cpustat. */ if (TASK_NICE(p) > 0) { cpustat->nice = cputime64_add(cpustat->nice, tmp); cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp); } else { cpustat->user = cputime64_add(cpustat->user, tmp); cpustat->guest = cputime64_add(cpustat->guest, tmp); } } /* * Account system cpu time to a process and desired cpustat field * @p: the process that the cpu time gets accounted to * @cputime: the cpu time spent in kernel space since the last update * @cputime_scaled: cputime scaled by cpu frequency * @target_cputime64: pointer to cpustat field that has to be updated */ static inline void __account_system_time(struct task_struct *p, cputime_t cputime, cputime_t cputime_scaled, cputime64_t *target_cputime64) { cputime64_t tmp = cputime_to_cputime64(cputime); /* Add system time to process. */ p->stime = cputime_add(p->stime, cputime); p->stimescaled = cputime_add(p->stimescaled, cputime_scaled); account_group_system_time(p, cputime); /* Add system time to cpustat. */ *target_cputime64 = cputime64_add(*target_cputime64, tmp); cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime); /* Account for system time used */ acct_update_integrals(p); } /* * Account system cpu time to a process. * @p: the process that the cpu time gets accounted to * @hardirq_offset: the offset to subtract from hardirq_count() * @cputime: the cpu time spent in kernel space since the last update * @cputime_scaled: cputime scaled by cpu frequency */ void account_system_time(struct task_struct *p, int hardirq_offset, cputime_t cputime, cputime_t cputime_scaled) { struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; cputime64_t *target_cputime64; if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) { account_guest_time(p, cputime, cputime_scaled); return; } if (hardirq_count() - hardirq_offset) target_cputime64 = &cpustat->irq; else if (in_serving_softirq()) target_cputime64 = &cpustat->softirq; else target_cputime64 = &cpustat->system; __account_system_time(p, cputime, cputime_scaled, target_cputime64); } /* * Account for involuntary wait time. * @cputime: the cpu time spent in involuntary wait */ void account_steal_time(cputime_t cputime) { struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; cputime64_t cputime64 = cputime_to_cputime64(cputime); cpustat->steal = cputime64_add(cpustat->steal, cputime64); } /* * Account for idle time. * @cputime: the cpu time spent in idle wait */ void account_idle_time(cputime_t cputime) { struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; cputime64_t cputime64 = cputime_to_cputime64(cputime); struct rq *rq = this_rq(); if (atomic_read(&rq->nr_iowait) > 0) cpustat->iowait = cputime64_add(cpustat->iowait, cputime64); else cpustat->idle = cputime64_add(cpustat->idle, cputime64); } static __always_inline bool steal_account_process_tick(void) { #ifdef CONFIG_PARAVIRT if (static_branch(¶virt_steal_enabled)) { u64 steal, st = 0; steal = paravirt_steal_clock(smp_processor_id()); steal -= this_rq()->prev_steal_time; st = steal_ticks(steal); this_rq()->prev_steal_time += st * TICK_NSEC; account_steal_time(st); return st; } #endif return false; } #ifndef CONFIG_VIRT_CPU_ACCOUNTING #ifdef CONFIG_IRQ_TIME_ACCOUNTING /* * Account a tick to a process and cpustat * @p: the process that the cpu time gets accounted to * @user_tick: is the tick from userspace * @rq: the pointer to rq * * Tick demultiplexing follows the order * - pending hardirq update * - pending softirq update * - user_time * - idle_time * - system time * - check for guest_time * - else account as system_time * * Check for hardirq is done both for system and user time as there is * no timer going off while we are on hardirq and hence we may never get an * opportunity to update it solely in system time. * p->stime and friends are only updated on system time and not on irq * softirq as those do not count in task exec_runtime any more. */ static void irqtime_account_process_tick(struct task_struct *p, int user_tick, struct rq *rq) { cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy); cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy); struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; if (steal_account_process_tick()) return; if (irqtime_account_hi_update()) { cpustat->irq = cputime64_add(cpustat->irq, tmp); } else if (irqtime_account_si_update()) { cpustat->softirq = cputime64_add(cpustat->softirq, tmp); } else if (this_cpu_ksoftirqd() == p) { /* * ksoftirqd time do not get accounted in cpu_softirq_time. * So, we have to handle it separately here. * Also, p->stime needs to be updated for ksoftirqd. */ __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled, &cpustat->softirq); } else if (user_tick) { account_user_time(p, cputime_one_jiffy, one_jiffy_scaled); } else if (p == rq->idle) { account_idle_time(cputime_one_jiffy); } else if (p->flags & PF_VCPU) { /* System time or guest time */ account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled); } else { __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled, &cpustat->system); } } static void irqtime_account_idle_ticks(int ticks) { int i; struct rq *rq = this_rq(); for (i = 0; i < ticks; i++) irqtime_account_process_tick(current, 0, rq); } #else /* CONFIG_IRQ_TIME_ACCOUNTING */ static void irqtime_account_idle_ticks(int ticks) {} static void irqtime_account_process_tick(struct task_struct *p, int user_tick, struct rq *rq) {} #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ /* * Account a single tick of cpu time. * @p: the process that the cpu time gets accounted to * @user_tick: indicates if the tick is a user or a system tick */ void account_process_tick(struct task_struct *p, int user_tick) { cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy); struct rq *rq = this_rq(); if (sched_clock_irqtime) { irqtime_account_process_tick(p, user_tick, rq); return; } if (steal_account_process_tick()) return; if (user_tick) account_user_time(p, cputime_one_jiffy, one_jiffy_scaled); else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET)) account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy, one_jiffy_scaled); else account_idle_time(cputime_one_jiffy); } /* * Account multiple ticks of steal time. * @p: the process from which the cpu time has been stolen * @ticks: number of stolen ticks */ void account_steal_ticks(unsigned long ticks) { account_steal_time(jiffies_to_cputime(ticks)); } /* * Account multiple ticks of idle time. * @ticks: number of stolen ticks */ void account_idle_ticks(unsigned long ticks) { if (sched_clock_irqtime) { irqtime_account_idle_ticks(ticks); return; } account_idle_time(jiffies_to_cputime(ticks)); } #endif /* * Use precise platform statistics if available: */ #ifdef CONFIG_VIRT_CPU_ACCOUNTING void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st) { *ut = p->utime; *st = p->stime; } void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st) { struct task_cputime cputime; thread_group_cputime(p, &cputime); *ut = cputime.utime; *st = cputime.stime; } #else #ifndef nsecs_to_cputime # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs) #endif void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st) { cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime); /* * Use CFS's precise accounting: */ rtime = nsecs_to_cputime(p->se.sum_exec_runtime); if (total) { u64 temp = rtime; temp *= utime; do_div(temp, total); utime = (cputime_t)temp; } else utime = rtime; /* * Compare with previous values, to keep monotonicity: */ p->prev_utime = max(p->prev_utime, utime); p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime)); *ut = p->prev_utime; *st = p->prev_stime; } /* * Must be called with siglock held. */ void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st) { struct signal_struct *sig = p->signal; struct task_cputime cputime; cputime_t rtime, utime, total; thread_group_cputime(p, &cputime); total = cputime_add(cputime.utime, cputime.stime); rtime = nsecs_to_cputime(cputime.sum_exec_runtime); if (total) { u64 temp = rtime; temp *= cputime.utime; do_div(temp, total); utime = (cputime_t)temp; } else utime = rtime; sig->prev_utime = max(sig->prev_utime, utime); sig->prev_stime = max(sig->prev_stime, cputime_sub(rtime, sig->prev_utime)); *ut = sig->prev_utime; *st = sig->prev_stime; } #endif /* * This function gets called by the timer code, with HZ frequency. * We call it with interrupts disabled. */ void scheduler_tick(void) { int cpu = smp_processor_id(); struct rq *rq = cpu_rq(cpu); struct task_struct *curr = rq->curr; sched_clock_tick(); raw_spin_lock(&rq->lock); update_rq_clock(rq); update_cpu_load_active(rq); curr->sched_class->task_tick(rq, curr, 0); raw_spin_unlock(&rq->lock); perf_event_task_tick(); #ifdef CONFIG_SMP rq->idle_balance = idle_cpu(cpu); trigger_load_balance(rq, cpu); #endif } notrace unsigned long get_parent_ip(unsigned long addr) { if (in_lock_functions(addr)) { addr = CALLER_ADDR2; if (in_lock_functions(addr)) addr = CALLER_ADDR3; } return addr; } #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ defined(CONFIG_PREEMPT_TRACER)) void __kprobes add_preempt_count(int val) { #ifdef CONFIG_DEBUG_PREEMPT /* * Underflow? */ if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) return; #endif preempt_count() += val; #ifdef CONFIG_DEBUG_PREEMPT /* * Spinlock count overflowing soon? */ DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK - 10); #endif if (preempt_count() == val) trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); } EXPORT_SYMBOL(add_preempt_count); void __kprobes sub_preempt_count(int val) { #ifdef CONFIG_DEBUG_PREEMPT /* * Underflow? */ if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) return; /* * Is the spinlock portion underflowing? */ if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK))) return; #endif if (preempt_count() == val) trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); preempt_count() -= val; } EXPORT_SYMBOL(sub_preempt_count); #endif /* * Print scheduling while atomic bug: */ static noinline void __schedule_bug(struct task_struct *prev) { struct pt_regs *regs = get_irq_regs(); printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", prev->comm, prev->pid, preempt_count()); debug_show_held_locks(prev); print_modules(); if (irqs_disabled()) print_irqtrace_events(prev); if (regs) show_regs(regs); else dump_stack(); } /* * Various schedule()-time debugging checks and statistics: */ static inline void schedule_debug(struct task_struct *prev) { /* * Test if we are atomic. Since do_exit() needs to call into * schedule() atomically, we ignore that path for now. * Otherwise, whine if we are scheduling when we should not be. */ if (unlikely(in_atomic_preempt_off() && !prev->exit_state)) __schedule_bug(prev); rcu_sleep_check(); profile_hit(SCHED_PROFILING, __builtin_return_address(0)); schedstat_inc(this_rq(), sched_count); } static void put_prev_task(struct rq *rq, struct task_struct *prev) { if (prev->on_rq || rq->skip_clock_update < 0) update_rq_clock(rq); prev->sched_class->put_prev_task(rq, prev); } /* * Pick up the highest-prio task: */ static inline struct task_struct * pick_next_task(struct rq *rq) { const struct sched_class *class; struct task_struct *p; /* * Optimization: we know that if all tasks are in * the fair class we can call that function directly: */ if (likely(rq->nr_running == rq->cfs.h_nr_running)) { p = fair_sched_class.pick_next_task(rq); if (likely(p)) return p; } for_each_class(class) { p = class->pick_next_task(rq); if (p) return p; } BUG(); /* the idle class will always have a runnable task */ } /* * __schedule() is the main scheduler function. */ static void __sched __schedule(void) { struct task_struct *prev, *next; unsigned long *switch_count; struct rq *rq; int cpu; need_resched: preempt_disable(); cpu = smp_processor_id(); rq = cpu_rq(cpu); rcu_note_context_switch(cpu); prev = rq->curr; schedule_debug(prev); if (sched_feat(HRTICK)) hrtick_clear(rq); raw_spin_lock_irq(&rq->lock); switch_count = &prev->nivcsw; if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { if (unlikely(signal_pending_state(prev->state, prev))) { prev->state = TASK_RUNNING; } else { deactivate_task(rq, prev, DEQUEUE_SLEEP); prev->on_rq = 0; /* * If a worker went to sleep, notify and ask workqueue * whether it wants to wake up a task to maintain * concurrency. */ if (prev->flags & PF_WQ_WORKER) { struct task_struct *to_wakeup; to_wakeup = wq_worker_sleeping(prev, cpu); if (to_wakeup) try_to_wake_up_local(to_wakeup); } } switch_count = &prev->nvcsw; } pre_schedule(rq, prev); if (unlikely(!rq->nr_running)) idle_balance(cpu, rq); put_prev_task(rq, prev); next = pick_next_task(rq); clear_tsk_need_resched(prev); rq->skip_clock_update = 0; if (likely(prev != next)) { rq->nr_switches++; rq->curr = next; ++*switch_count; context_switch(rq, prev, next); /* unlocks the rq */ /* * The context switch have flipped the stack from under us * and restored the local variables which were saved when * this task called schedule() in the past. prev == current * is still correct, but it can be moved to another cpu/rq. */ cpu = smp_processor_id(); rq = cpu_rq(cpu); } else raw_spin_unlock_irq(&rq->lock); post_schedule(rq); preempt_enable_no_resched(); if (need_resched()) goto need_resched; } static inline void sched_submit_work(struct task_struct *tsk) { if (!tsk->state) return; /* * If we are going to sleep and we have plugged IO queued, * make sure to submit it to avoid deadlocks. */ if (blk_needs_flush_plug(tsk)) blk_schedule_flush_plug(tsk); } asmlinkage void __sched schedule(void) { struct task_struct *tsk = current; sched_submit_work(tsk); __schedule(); } EXPORT_SYMBOL(schedule); #ifdef CONFIG_MUTEX_SPIN_ON_OWNER static inline bool owner_running(struct mutex *lock, struct task_struct *owner) { if (lock->owner != owner) return false; /* * Ensure we emit the owner->on_cpu, dereference _after_ checking * lock->owner still matches owner, if that fails, owner might * point to free()d memory, if it still matches, the rcu_read_lock() * ensures the memory stays valid. */ barrier(); return owner->on_cpu; } /* * Look out! "owner" is an entirely speculative pointer * access and not reliable. */ int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner) { if (!sched_feat(OWNER_SPIN)) return 0; rcu_read_lock(); while (owner_running(lock, owner)) { if (need_resched()) break; arch_mutex_cpu_relax(); } rcu_read_unlock(); /* * We break out the loop above on need_resched() and when the * owner changed, which is a sign for heavy contention. Return * success only when lock->owner is NULL. */ return lock->owner == NULL; } #endif #ifdef CONFIG_PREEMPT /* * this is the entry point to schedule() from in-kernel preemption * off of preempt_enable. Kernel preemptions off return from interrupt * occur there and call schedule directly. */ asmlinkage void __sched notrace preempt_schedule(void) { struct thread_info *ti = current_thread_info(); /* * If there is a non-zero preempt_count or interrupts are disabled, * we do not want to preempt the current task. Just return.. */ if (likely(ti->preempt_count || irqs_disabled())) return; do { add_preempt_count_notrace(PREEMPT_ACTIVE); __schedule(); sub_preempt_count_notrace(PREEMPT_ACTIVE); /* * Check again in case we missed a preemption opportunity * between schedule and now. */ barrier(); } while (need_resched()); } EXPORT_SYMBOL(preempt_schedule); /* * this is the entry point to schedule() from kernel preemption * off of irq context. * Note, that this is called and return with irqs disabled. This will * protect us against recursive calling from irq. */ asmlinkage void __sched preempt_schedule_irq(void) { struct thread_info *ti = current_thread_info(); /* Catch callers which need to be fixed */ BUG_ON(ti->preempt_count || !irqs_disabled()); do { add_preempt_count(PREEMPT_ACTIVE); local_irq_enable(); __schedule(); local_irq_disable(); sub_preempt_count(PREEMPT_ACTIVE); /* * Check again in case we missed a preemption opportunity * between schedule and now. */ barrier(); } while (need_resched()); } #endif /* CONFIG_PREEMPT */ int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags, void *key) { return try_to_wake_up(curr->private, mode, wake_flags); } EXPORT_SYMBOL(default_wake_function); /* * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve * number) then we wake all the non-exclusive tasks and one exclusive task. * * There are circumstances in which we can try to wake a task which has already * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns * zero in this (rare) case, and we handle it by continuing to scan the queue. */ static void __wake_up_common(wait_queue_head_t *q, unsigned int mode, int nr_exclusive, int wake_flags, void *key) { wait_queue_t *curr, *next; list_for_each_entry_safe(curr, next, &q->task_list, task_list) { unsigned flags = curr->flags; if (curr->func(curr, mode, wake_flags, key) && (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive) break; } } /** * __wake_up - wake up threads blocked on a waitqueue. * @q: the waitqueue * @mode: which threads * @nr_exclusive: how many wake-one or wake-many threads to wake up * @key: is directly passed to the wakeup function * * It may be assumed that this function implies a write memory barrier before * changing the task state if and only if any tasks are woken up. */ void __wake_up(wait_queue_head_t *q, unsigned int mode, int nr_exclusive, void *key) { unsigned long flags; spin_lock_irqsave(&q->lock, flags); __wake_up_common(q, mode, nr_exclusive, 0, key); spin_unlock_irqrestore(&q->lock, flags); } EXPORT_SYMBOL(__wake_up); /* * Same as __wake_up but called with the spinlock in wait_queue_head_t held. */ void __wake_up_locked(wait_queue_head_t *q, unsigned int mode) { __wake_up_common(q, mode, 1, 0, NULL); } EXPORT_SYMBOL_GPL(__wake_up_locked); void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key) { __wake_up_common(q, mode, 1, 0, key); } EXPORT_SYMBOL_GPL(__wake_up_locked_key); /** * __wake_up_sync_key - wake up threads blocked on a waitqueue. * @q: the waitqueue * @mode: which threads * @nr_exclusive: how many wake-one or wake-many threads to wake up * @key: opaque value to be passed to wakeup targets * * The sync wakeup differs that the waker knows that it will schedule * away soon, so while the target thread will be woken up, it will not * be migrated to another CPU - ie. the two threads are 'synchronized' * with each other. This can prevent needless bouncing between CPUs. * * On UP it can prevent extra preemption. * * It may be assumed that this function implies a write memory barrier before * changing the task state if and only if any tasks are woken up. */ void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode, int nr_exclusive, void *key) { unsigned long flags; int wake_flags = WF_SYNC; if (unlikely(!q)) return; if (unlikely(!nr_exclusive)) wake_flags = 0; spin_lock_irqsave(&q->lock, flags); __wake_up_common(q, mode, nr_exclusive, wake_flags, key); spin_unlock_irqrestore(&q->lock, flags); } EXPORT_SYMBOL_GPL(__wake_up_sync_key); /* * __wake_up_sync - see __wake_up_sync_key() */ void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive) { __wake_up_sync_key(q, mode, nr_exclusive, NULL); } EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */ /** * complete: - signals a single thread waiting on this completion * @x: holds the state of this particular completion * * This will wake up a single thread waiting on this completion. Threads will be * awakened in the same order in which they were queued. * * See also complete_all(), wait_for_completion() and related routines. * * It may be assumed that this function implies a write memory barrier before * changing the task state if and only if any tasks are woken up. */ void complete(struct completion *x) { unsigned long flags; spin_lock_irqsave(&x->wait.lock, flags); x->done++; __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL); spin_unlock_irqrestore(&x->wait.lock, flags); } EXPORT_SYMBOL(complete); /** * complete_all: - signals all threads waiting on this completion * @x: holds the state of this particular completion * * This will wake up all threads waiting on this particular completion event. * * It may be assumed that this function implies a write memory barrier before * changing the task state if and only if any tasks are woken up. */ void complete_all(struct completion *x) { unsigned long flags; spin_lock_irqsave(&x->wait.lock, flags); x->done += UINT_MAX/2; __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL); spin_unlock_irqrestore(&x->wait.lock, flags); } EXPORT_SYMBOL(complete_all); static inline long __sched do_wait_for_common(struct completion *x, long timeout, int state) { if (!x->done) { DECLARE_WAITQUEUE(wait, current); __add_wait_queue_tail_exclusive(&x->wait, &wait); do { if (signal_pending_state(state, current)) { timeout = -ERESTARTSYS; break; } __set_current_state(state); spin_unlock_irq(&x->wait.lock); timeout = schedule_timeout(timeout); spin_lock_irq(&x->wait.lock); } while (!x->done && timeout); __remove_wait_queue(&x->wait, &wait); if (!x->done) return timeout; } x->done--; return timeout ?: 1; } static long __sched wait_for_common(struct completion *x, long timeout, int state) { might_sleep(); spin_lock_irq(&x->wait.lock); timeout = do_wait_for_common(x, timeout, state); spin_unlock_irq(&x->wait.lock); return timeout; } /** * wait_for_completion: - waits for completion of a task * @x: holds the state of this particular completion * * This waits to be signaled for completion of a specific task. It is NOT * interruptible and there is no timeout. * * See also similar routines (i.e. wait_for_completion_timeout()) with timeout * and interrupt capability. Also see complete(). */ void __sched wait_for_completion(struct completion *x) { wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE); } EXPORT_SYMBOL(wait_for_completion); /** * wait_for_completion_timeout: - waits for completion of a task (w/timeout) * @x: holds the state of this particular completion * @timeout: timeout value in jiffies * * This waits for either a completion of a specific task to be signaled or for a * specified timeout to expire. The timeout is in jiffies. It is not * interruptible. * * The return value is 0 if timed out, and positive (at least 1, or number of * jiffies left till timeout) if completed. */ unsigned long __sched wait_for_completion_timeout(struct completion *x, unsigned long timeout) { return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE); } EXPORT_SYMBOL(wait_for_completion_timeout); /** * wait_for_completion_interruptible: - waits for completion of a task (w/intr) * @x: holds the state of this particular completion * * This waits for completion of a specific task to be signaled. It is * interruptible. * * The return value is -ERESTARTSYS if interrupted, 0 if completed. */ int __sched wait_for_completion_interruptible(struct completion *x) { long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE); if (t == -ERESTARTSYS) return t; return 0; } EXPORT_SYMBOL(wait_for_completion_interruptible); /** * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr)) * @x: holds the state of this particular completion * @timeout: timeout value in jiffies * * This waits for either a completion of a specific task to be signaled or for a * specified timeout to expire. It is interruptible. The timeout is in jiffies. * * The return value is -ERESTARTSYS if interrupted, 0 if timed out, * positive (at least 1, or number of jiffies left till timeout) if completed. */ long __sched wait_for_completion_interruptible_timeout(struct completion *x, unsigned long timeout) { return wait_for_common(x, timeout, TASK_INTERRUPTIBLE); } EXPORT_SYMBOL(wait_for_completion_interruptible_timeout); /** * wait_for_completion_killable: - waits for completion of a task (killable) * @x: holds the state of this particular completion * * This waits to be signaled for completion of a specific task. It can be * interrupted by a kill signal. * * The return value is -ERESTARTSYS if interrupted, 0 if completed. */ int __sched wait_for_completion_killable(struct completion *x) { long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE); if (t == -ERESTARTSYS) return t; return 0; } EXPORT_SYMBOL(wait_for_completion_killable); /** * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable)) * @x: holds the state of this particular completion * @timeout: timeout value in jiffies * * This waits for either a completion of a specific task to be * signaled or for a specified timeout to expire. It can be * interrupted by a kill signal. The timeout is in jiffies. * * The return value is -ERESTARTSYS if interrupted, 0 if timed out, * positive (at least 1, or number of jiffies left till timeout) if completed. */ long __sched wait_for_completion_killable_timeout(struct completion *x, unsigned long timeout) { return wait_for_common(x, timeout, TASK_KILLABLE); } EXPORT_SYMBOL(wait_for_completion_killable_timeout); /** * try_wait_for_completion - try to decrement a completion without blocking * @x: completion structure * * Returns: 0 if a decrement cannot be done without blocking * 1 if a decrement succeeded. * * If a completion is being used as a counting completion, * attempt to decrement the counter without blocking. This * enables us to avoid waiting if the resource the completion * is protecting is not available. */ bool try_wait_for_completion(struct completion *x) { unsigned long flags; int ret = 1; spin_lock_irqsave(&x->wait.lock, flags); if (!x->done) ret = 0; else x->done--; spin_unlock_irqrestore(&x->wait.lock, flags); return ret; } EXPORT_SYMBOL(try_wait_for_completion); /** * completion_done - Test to see if a completion has any waiters * @x: completion structure * * Returns: 0 if there are waiters (wait_for_completion() in progress) * 1 if there are no waiters. * */ bool completion_done(struct completion *x) { unsigned long flags; int ret = 1; spin_lock_irqsave(&x->wait.lock, flags); if (!x->done) ret = 0; spin_unlock_irqrestore(&x->wait.lock, flags); return ret; } EXPORT_SYMBOL(completion_done); static long __sched sleep_on_common(wait_queue_head_t *q, int state, long timeout) { unsigned long flags; wait_queue_t wait; init_waitqueue_entry(&wait, current); __set_current_state(state); spin_lock_irqsave(&q->lock, flags); __add_wait_queue(q, &wait); spin_unlock(&q->lock); timeout = schedule_timeout(timeout); spin_lock_irq(&q->lock); __remove_wait_queue(q, &wait); spin_unlock_irqrestore(&q->lock, flags); return timeout; } void __sched interruptible_sleep_on(wait_queue_head_t *q) { sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); } EXPORT_SYMBOL(interruptible_sleep_on); long __sched interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout) { return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout); } EXPORT_SYMBOL(interruptible_sleep_on_timeout); void __sched sleep_on(wait_queue_head_t *q) { sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); } EXPORT_SYMBOL(sleep_on); long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout) { return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout); } EXPORT_SYMBOL(sleep_on_timeout); #ifdef CONFIG_RT_MUTEXES /* * rt_mutex_setprio - set the current priority of a task * @p: task * @prio: prio value (kernel-internal form) * * This function changes the 'effective' priority of a task. It does * not touch ->normal_prio like __setscheduler(). * * Used by the rt_mutex code to implement priority inheritance logic. */ void rt_mutex_setprio(struct task_struct *p, int prio) { int oldprio, on_rq, running; struct rq *rq; const struct sched_class *prev_class; BUG_ON(prio < 0 || prio > MAX_PRIO); rq = __task_rq_lock(p); trace_sched_pi_setprio(p, prio); oldprio = p->prio; prev_class = p->sched_class; on_rq = p->on_rq; running = task_current(rq, p); if (on_rq) dequeue_task(rq, p, 0); if (running) p->sched_class->put_prev_task(rq, p); if (rt_prio(prio)) p->sched_class = &rt_sched_class; else p->sched_class = &fair_sched_class; p->prio = prio; if (running) p->sched_class->set_curr_task(rq); if (on_rq) enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0); check_class_changed(rq, p, prev_class, oldprio); __task_rq_unlock(rq); } #endif void set_user_nice(struct task_struct *p, long nice) { int old_prio, delta, on_rq; unsigned long flags; struct rq *rq; if (TASK_NICE(p) == nice || nice < -20 || nice > 19) return; /* * We have to be careful, if called from sys_setpriority(), * the task might be in the middle of scheduling on another CPU. */ rq = task_rq_lock(p, &flags); /* * The RT priorities are set via sched_setscheduler(), but we still * allow the 'normal' nice value to be set - but as expected * it wont have any effect on scheduling until the task is * SCHED_FIFO/SCHED_RR: */ if (task_has_rt_policy(p)) { p->static_prio = NICE_TO_PRIO(nice); goto out_unlock; } on_rq = p->on_rq; if (on_rq) dequeue_task(rq, p, 0); p->static_prio = NICE_TO_PRIO(nice); set_load_weight(p); old_prio = p->prio; p->prio = effective_prio(p); delta = p->prio - old_prio; if (on_rq) { enqueue_task(rq, p, 0); /* * If the task increased its priority or is running and * lowered its priority, then reschedule its CPU: */ if (delta < 0 || (delta > 0 && task_running(rq, p))) resched_task(rq->curr); } out_unlock: task_rq_unlock(rq, p, &flags); } EXPORT_SYMBOL(set_user_nice); /* * can_nice - check if a task can reduce its nice value * @p: task * @nice: nice value */ int can_nice(const struct task_struct *p, const int nice) { /* convert nice value [19,-20] to rlimit style value [1,40] */ int nice_rlim = 20 - nice; return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || capable(CAP_SYS_NICE)); } #ifdef __ARCH_WANT_SYS_NICE /* * sys_nice - change the priority of the current process. * @increment: priority increment * * sys_setpriority is a more generic, but much slower function that * does similar things. */ SYSCALL_DEFINE1(nice, int, increment) { long nice, retval; /* * Setpriority might change our priority at the same moment. * We don't have to worry. Conceptually one call occurs first * and we have a single winner. */ if (increment < -40) increment = -40; if (increment > 40) increment = 40; nice = TASK_NICE(current) + increment; if (nice < -20) nice = -20; if (nice > 19) nice = 19; if (increment < 0 && !can_nice(current, nice)) return -EPERM; retval = security_task_setnice(current, nice); if (retval) return retval; set_user_nice(current, nice); return 0; } #endif /** * task_prio - return the priority value of a given task. * @p: the task in question. * * This is the priority value as seen by users in /proc. * RT tasks are offset by -200. Normal tasks are centered * around 0, value goes from -16 to +15. */ int task_prio(const struct task_struct *p) { return p->prio - MAX_RT_PRIO; } /** * task_nice - return the nice value of a given task. * @p: the task in question. */ int task_nice(const struct task_struct *p) { return TASK_NICE(p); } EXPORT_SYMBOL(task_nice); /** * idle_cpu - is a given cpu idle currently? * @cpu: the processor in question. */ int idle_cpu(int cpu) { struct rq *rq = cpu_rq(cpu); if (rq->curr != rq->idle) return 0; if (rq->nr_running) return 0; #ifdef CONFIG_SMP if (!llist_empty(&rq->wake_list)) return 0; #endif return 1; } /** * idle_task - return the idle task for a given cpu. * @cpu: the processor in question. */ struct task_struct *idle_task(int cpu) { return cpu_rq(cpu)->idle; } /** * find_process_by_pid - find a process with a matching PID value. * @pid: the pid in question. */ static struct task_struct *find_process_by_pid(pid_t pid) { return pid ? find_task_by_vpid(pid) : current; } /* Actually do priority change: must hold rq lock. */ static void __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio) { p->policy = policy; p->rt_priority = prio; p->normal_prio = normal_prio(p); /* we are holding p->pi_lock already */ p->prio = rt_mutex_getprio(p); if (rt_prio(p->prio)) p->sched_class = &rt_sched_class; else p->sched_class = &fair_sched_class; set_load_weight(p); } /* * check the target process has a UID that matches the current process's */ static bool check_same_owner(struct task_struct *p) { const struct cred *cred = current_cred(), *pcred; bool match; rcu_read_lock(); pcred = __task_cred(p); if (cred->user->user_ns == pcred->user->user_ns) match = (cred->euid == pcred->euid || cred->euid == pcred->uid); else match = false; rcu_read_unlock(); return match; } static int __sched_setscheduler(struct task_struct *p, int policy, const struct sched_param *param, bool user) { int retval, oldprio, oldpolicy = -1, on_rq, running; unsigned long flags; const struct sched_class *prev_class; struct rq *rq; int reset_on_fork; /* may grab non-irq protected spin_locks */ BUG_ON(in_interrupt()); recheck: /* double check policy once rq lock held */ if (policy < 0) { reset_on_fork = p->sched_reset_on_fork; policy = oldpolicy = p->policy; } else { reset_on_fork = !!(policy & SCHED_RESET_ON_FORK); policy &= ~SCHED_RESET_ON_FORK; if (policy != SCHED_FIFO && policy != SCHED_RR && policy != SCHED_NORMAL && policy != SCHED_BATCH && policy != SCHED_IDLE) return -EINVAL; } /* * Valid priorities for SCHED_FIFO and SCHED_RR are * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, * SCHED_BATCH and SCHED_IDLE is 0. */ if (param->sched_priority < 0 || (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) || (!p->mm && param->sched_priority > MAX_RT_PRIO-1)) return -EINVAL; if (rt_policy(policy) != (param->sched_priority != 0)) return -EINVAL; /* * Allow unprivileged RT tasks to decrease priority: */ if (user && !capable(CAP_SYS_NICE)) { if (rt_policy(policy)) { unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO); /* can't set/change the rt policy */ if (policy != p->policy && !rlim_rtprio) return -EPERM; /* can't increase priority */ if (param->sched_priority > p->rt_priority && param->sched_priority > rlim_rtprio) return -EPERM; } /* * Treat SCHED_IDLE as nice 20. Only allow a switch to * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. */ if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) { if (!can_nice(p, TASK_NICE(p))) return -EPERM; } /* can't change other user's priorities */ if (!check_same_owner(p)) return -EPERM; /* Normal users shall not reset the sched_reset_on_fork flag */ if (p->sched_reset_on_fork && !reset_on_fork) return -EPERM; } if (user) { retval = security_task_setscheduler(p); if (retval) return retval; } /* * make sure no PI-waiters arrive (or leave) while we are * changing the priority of the task: * * To be able to change p->policy safely, the appropriate * runqueue lock must be held. */ rq = task_rq_lock(p, &flags); /* * Changing the policy of the stop threads its a very bad idea */ if (p == rq->stop) { task_rq_unlock(rq, p, &flags); return -EINVAL; } /* * If not changing anything there's no need to proceed further: */ if (unlikely(policy == p->policy && (!rt_policy(policy) || param->sched_priority == p->rt_priority))) { __task_rq_unlock(rq); raw_spin_unlock_irqrestore(&p->pi_lock, flags); return 0; } #ifdef CONFIG_RT_GROUP_SCHED if (user) { /* * Do not allow realtime tasks into groups that have no runtime * assigned. */ if (rt_bandwidth_enabled() && rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0 && !task_group_is_autogroup(task_group(p))) { task_rq_unlock(rq, p, &flags); return -EPERM; } } #endif /* recheck policy now with rq lock held */ if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { policy = oldpolicy = -1; task_rq_unlock(rq, p, &flags); goto recheck; } on_rq = p->on_rq; running = task_current(rq, p); if (on_rq) deactivate_task(rq, p, 0); if (running) p->sched_class->put_prev_task(rq, p); p->sched_reset_on_fork = reset_on_fork; oldprio = p->prio; prev_class = p->sched_class; __setscheduler(rq, p, policy, param->sched_priority); if (running) p->sched_class->set_curr_task(rq); if (on_rq) activate_task(rq, p, 0); check_class_changed(rq, p, prev_class, oldprio); task_rq_unlock(rq, p, &flags); rt_mutex_adjust_pi(p); return 0; } /** * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. * @p: the task in question. * @policy: new policy. * @param: structure containing the new RT priority. * * NOTE that the task may be already dead. */ int sched_setscheduler(struct task_struct *p, int policy, const struct sched_param *param) { return __sched_setscheduler(p, policy, param, true); } EXPORT_SYMBOL_GPL(sched_setscheduler); /** * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. * @p: the task in question. * @policy: new policy. * @param: structure containing the new RT priority. * * Just like sched_setscheduler, only don't bother checking if the * current context has permission. For example, this is needed in * stop_machine(): we create temporary high priority worker threads, * but our caller might not have that capability. */ int sched_setscheduler_nocheck(struct task_struct *p, int policy, const struct sched_param *param) { return __sched_setscheduler(p, policy, param, false); } static int do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) { struct sched_param lparam; struct task_struct *p; int retval; if (!param || pid < 0) return -EINVAL; if (copy_from_user(&lparam, param, sizeof(struct sched_param))) return -EFAULT; rcu_read_lock(); retval = -ESRCH; p = find_process_by_pid(pid); if (p != NULL) retval = sched_setscheduler(p, policy, &lparam); rcu_read_unlock(); return retval; } /** * sys_sched_setscheduler - set/change the scheduler policy and RT priority * @pid: the pid in question. * @policy: new policy. * @param: structure containing the new RT priority. */ SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param) { /* negative values for policy are not valid */ if (policy < 0) return -EINVAL; return do_sched_setscheduler(pid, policy, param); } /** * sys_sched_setparam - set/change the RT priority of a thread * @pid: the pid in question. * @param: structure containing the new RT priority. */ SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) { return do_sched_setscheduler(pid, -1, param); } /** * sys_sched_getscheduler - get the policy (scheduling class) of a thread * @pid: the pid in question. */ SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) { struct task_struct *p; int retval; if (pid < 0) return -EINVAL; retval = -ESRCH; rcu_read_lock(); p = find_process_by_pid(pid); if (p) { retval = security_task_getscheduler(p); if (!retval) retval = p->policy | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); } rcu_read_unlock(); return retval; } /** * sys_sched_getparam - get the RT priority of a thread * @pid: the pid in question. * @param: structure containing the RT priority. */ SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) { struct sched_param lp; struct task_struct *p; int retval; if (!param || pid < 0) return -EINVAL; rcu_read_lock(); p = find_process_by_pid(pid); retval = -ESRCH; if (!p) goto out_unlock; retval = security_task_getscheduler(p); if (retval) goto out_unlock; lp.sched_priority = p->rt_priority; rcu_read_unlock(); /* * This one might sleep, we cannot do it with a spinlock held ... */ retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; return retval; out_unlock: rcu_read_unlock(); return retval; } long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) { cpumask_var_t cpus_allowed, new_mask; struct task_struct *p; int retval; get_online_cpus(); rcu_read_lock(); p = find_process_by_pid(pid); if (!p) { rcu_read_unlock(); put_online_cpus(); return -ESRCH; } /* Prevent p going away */ get_task_struct(p); rcu_read_unlock(); if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { retval = -ENOMEM; goto out_put_task; } if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { retval = -ENOMEM; goto out_free_cpus_allowed; } retval = -EPERM; if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE)) goto out_unlock; retval = security_task_setscheduler(p); if (retval) goto out_unlock; cpuset_cpus_allowed(p, cpus_allowed); cpumask_and(new_mask, in_mask, cpus_allowed); again: retval = set_cpus_allowed_ptr(p, new_mask); if (!retval) { cpuset_cpus_allowed(p, cpus_allowed); if (!cpumask_subset(new_mask, cpus_allowed)) { /* * We must have raced with a concurrent cpuset * update. Just reset the cpus_allowed to the * cpuset's cpus_allowed */ cpumask_copy(new_mask, cpus_allowed); goto again; } } out_unlock: free_cpumask_var(new_mask); out_free_cpus_allowed: free_cpumask_var(cpus_allowed); out_put_task: put_task_struct(p); put_online_cpus(); return retval; } static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, struct cpumask *new_mask) { if (len < cpumask_size()) cpumask_clear(new_mask); else if (len > cpumask_size()) len = cpumask_size(); return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; } /** * sys_sched_setaffinity - set the cpu affinity of a process * @pid: pid of the process * @len: length in bytes of the bitmask pointed to by user_mask_ptr * @user_mask_ptr: user-space pointer to the new cpu mask */ SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, unsigned long __user *, user_mask_ptr) { cpumask_var_t new_mask; int retval; if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) return -ENOMEM; retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); if (retval == 0) retval = sched_setaffinity(pid, new_mask); free_cpumask_var(new_mask); return retval; } long sched_getaffinity(pid_t pid, struct cpumask *mask) { struct task_struct *p; unsigned long flags; int retval; get_online_cpus(); rcu_read_lock(); retval = -ESRCH; p = find_process_by_pid(pid); if (!p) goto out_unlock; retval = security_task_getscheduler(p); if (retval) goto out_unlock; raw_spin_lock_irqsave(&p->pi_lock, flags); cpumask_and(mask, &p->cpus_allowed, cpu_online_mask); raw_spin_unlock_irqrestore(&p->pi_lock, flags); out_unlock: rcu_read_unlock(); put_online_cpus(); return retval; } /** * sys_sched_getaffinity - get the cpu affinity of a process * @pid: pid of the process * @len: length in bytes of the bitmask pointed to by user_mask_ptr * @user_mask_ptr: user-space pointer to hold the current cpu mask */ SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, unsigned long __user *, user_mask_ptr) { int ret; cpumask_var_t mask; if ((len * BITS_PER_BYTE) < nr_cpu_ids) return -EINVAL; if (len & (sizeof(unsigned long)-1)) return -EINVAL; if (!alloc_cpumask_var(&mask, GFP_KERNEL)) return -ENOMEM; ret = sched_getaffinity(pid, mask); if (ret == 0) { size_t retlen = min_t(size_t, len, cpumask_size()); if (copy_to_user(user_mask_ptr, mask, retlen)) ret = -EFAULT; else ret = retlen; } free_cpumask_var(mask); return ret; } /** * sys_sched_yield - yield the current processor to other threads. * * This function yields the current CPU to other tasks. If there are no * other threads running on this CPU then this function will return. */ SYSCALL_DEFINE0(sched_yield) { struct rq *rq = this_rq_lock(); schedstat_inc(rq, yld_count); current->sched_class->yield_task(rq); /* * Since we are going to call schedule() anyway, there's * no need to preempt or enable interrupts: */ __release(rq->lock); spin_release(&rq->lock.dep_map, 1, _THIS_IP_); do_raw_spin_unlock(&rq->lock); preempt_enable_no_resched(); schedule(); return 0; } static inline int should_resched(void) { return need_resched() && !(preempt_count() & PREEMPT_ACTIVE); } static void __cond_resched(void) { add_preempt_count(PREEMPT_ACTIVE); __schedule(); sub_preempt_count(PREEMPT_ACTIVE); } int __sched _cond_resched(void) { if (should_resched()) { __cond_resched(); return 1; } return 0; } EXPORT_SYMBOL(_cond_resched); /* * __cond_resched_lock() - if a reschedule is pending, drop the given lock, * call schedule, and on return reacquire the lock. * * This works OK both with and without CONFIG_PREEMPT. We do strange low-level * operations here to prevent schedule() from being called twice (once via * spin_unlock(), once by hand). */ int __cond_resched_lock(spinlock_t *lock) { int resched = should_resched(); int ret = 0; lockdep_assert_held(lock); if (spin_needbreak(lock) || resched) { spin_unlock(lock); if (resched) __cond_resched(); else cpu_relax(); ret = 1; spin_lock(lock); } return ret; } EXPORT_SYMBOL(__cond_resched_lock); int __sched __cond_resched_softirq(void) { BUG_ON(!in_softirq()); if (should_resched()) { local_bh_enable(); __cond_resched(); local_bh_disable(); return 1; } return 0; } EXPORT_SYMBOL(__cond_resched_softirq); /** * yield - yield the current processor to other threads. * * This is a shortcut for kernel-space yielding - it marks the * thread runnable and calls sys_sched_yield(). */ void __sched yield(void) { set_current_state(TASK_RUNNING); sys_sched_yield(); } EXPORT_SYMBOL(yield); /** * yield_to - yield the current processor to another thread in * your thread group, or accelerate that thread toward the * processor it's on. * @p: target task * @preempt: whether task preemption is allowed or not * * It's the caller's job to ensure that the target task struct * can't go away on us before we can do any checks. * * Returns true if we indeed boosted the target task. */ bool __sched yield_to(struct task_struct *p, bool preempt) { struct task_struct *curr = current; struct rq *rq, *p_rq; unsigned long flags; bool yielded = 0; local_irq_save(flags); rq = this_rq(); again: p_rq = task_rq(p); double_rq_lock(rq, p_rq); while (task_rq(p) != p_rq) { double_rq_unlock(rq, p_rq); goto again; } if (!curr->sched_class->yield_to_task) goto out; if (curr->sched_class != p->sched_class) goto out; if (task_running(p_rq, p) || p->state) goto out; yielded = curr->sched_class->yield_to_task(rq, p, preempt); if (yielded) { schedstat_inc(rq, yld_count); /* * Make p's CPU reschedule; pick_next_entity takes care of * fairness. */ if (preempt && rq != p_rq) resched_task(p_rq->curr); } out: double_rq_unlock(rq, p_rq); local_irq_restore(flags); if (yielded) schedule(); return yielded; } EXPORT_SYMBOL_GPL(yield_to); /* * This task is about to go to sleep on IO. Increment rq->nr_iowait so * that process accounting knows that this is a task in IO wait state. */ void __sched io_schedule(void) { struct rq *rq = raw_rq(); delayacct_blkio_start(); atomic_inc(&rq->nr_iowait); blk_flush_plug(current); current->in_iowait = 1; schedule(); current->in_iowait = 0; atomic_dec(&rq->nr_iowait); delayacct_blkio_end(); } EXPORT_SYMBOL(io_schedule); long __sched io_schedule_timeout(long timeout) { struct rq *rq = raw_rq(); long ret; delayacct_blkio_start(); atomic_inc(&rq->nr_iowait); blk_flush_plug(current); current->in_iowait = 1; ret = schedule_timeout(timeout); current->in_iowait = 0; atomic_dec(&rq->nr_iowait); delayacct_blkio_end(); return ret; } /** * sys_sched_get_priority_max - return maximum RT priority. * @policy: scheduling class. * * this syscall returns the maximum rt_priority that can be used * by a given scheduling class. */ SYSCALL_DEFINE1(sched_get_priority_max, int, policy) { int ret = -EINVAL; switch (policy) { case SCHED_FIFO: case SCHED_RR: ret = MAX_USER_RT_PRIO-1; break; case SCHED_NORMAL: case SCHED_BATCH: case SCHED_IDLE: ret = 0; break; } return ret; } /** * sys_sched_get_priority_min - return minimum RT priority. * @policy: scheduling class. * * this syscall returns the minimum rt_priority that can be used * by a given scheduling class. */ SYSCALL_DEFINE1(sched_get_priority_min, int, policy) { int ret = -EINVAL; switch (policy) { case SCHED_FIFO: case SCHED_RR: ret = 1; break; case SCHED_NORMAL: case SCHED_BATCH: case SCHED_IDLE: ret = 0; } return ret; } /** * sys_sched_rr_get_interval - return the default timeslice of a process. * @pid: pid of the process. * @interval: userspace pointer to the timeslice value. * * this syscall writes the default timeslice value of a given process * into the user-space timespec buffer. A value of '0' means infinity. */ SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, struct timespec __user *, interval) { struct task_struct *p; unsigned int time_slice; unsigned long flags; struct rq *rq; int retval; struct timespec t; if (pid < 0) return -EINVAL; retval = -ESRCH; rcu_read_lock(); p = find_process_by_pid(pid); if (!p) goto out_unlock; retval = security_task_getscheduler(p); if (retval) goto out_unlock; rq = task_rq_lock(p, &flags); time_slice = p->sched_class->get_rr_interval(rq, p); task_rq_unlock(rq, p, &flags); rcu_read_unlock(); jiffies_to_timespec(time_slice, &t); retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; return retval; out_unlock: rcu_read_unlock(); return retval; } static const char stat_nam[] = TASK_STATE_TO_CHAR_STR; void sched_show_task(struct task_struct *p) { unsigned long free = 0; unsigned state; state = p->state ? __ffs(p->state) + 1 : 0; printk(KERN_INFO "%-15.15s %c", p->comm, state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); #if BITS_PER_LONG == 32 if (state == TASK_RUNNING) printk(KERN_CONT " running "); else printk(KERN_CONT " %08lx ", thread_saved_pc(p)); #else if (state == TASK_RUNNING) printk(KERN_CONT " running task "); else printk(KERN_CONT " %016lx ", thread_saved_pc(p)); #endif #ifdef CONFIG_DEBUG_STACK_USAGE free = stack_not_used(p); #endif printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, task_pid_nr(p), task_pid_nr(p->real_parent), (unsigned long)task_thread_info(p)->flags); show_stack(p, NULL); } void show_state_filter(unsigned long state_filter) { struct task_struct *g, *p; #if BITS_PER_LONG == 32 printk(KERN_INFO " task PC stack pid father\n"); #else printk(KERN_INFO " task PC stack pid father\n"); #endif rcu_read_lock(); do_each_thread(g, p) { /* * reset the NMI-timeout, listing all files on a slow * console might take a lot of time: */ touch_nmi_watchdog(); if (!state_filter || (p->state & state_filter)) sched_show_task(p); } while_each_thread(g, p); touch_all_softlockup_watchdogs(); #ifdef CONFIG_SCHED_DEBUG sysrq_sched_debug_show(); #endif rcu_read_unlock(); /* * Only show locks if all tasks are dumped: */ if (!state_filter) debug_show_all_locks(); } void __cpuinit init_idle_bootup_task(struct task_struct *idle) { idle->sched_class = &idle_sched_class; } /** * init_idle - set up an idle thread for a given CPU * @idle: task in question * @cpu: cpu the idle task belongs to * * NOTE: this function does not set the idle thread's NEED_RESCHED * flag, to make booting more robust. */ void __cpuinit init_idle(struct task_struct *idle, int cpu) { struct rq *rq = cpu_rq(cpu); unsigned long flags; raw_spin_lock_irqsave(&rq->lock, flags); __sched_fork(idle); idle->state = TASK_RUNNING; idle->se.exec_start = sched_clock(); do_set_cpus_allowed(idle, cpumask_of(cpu)); /* * We're having a chicken and egg problem, even though we are * holding rq->lock, the cpu isn't yet set to this cpu so the * lockdep check in task_group() will fail. * * Similar case to sched_fork(). / Alternatively we could * use task_rq_lock() here and obtain the other rq->lock. * * Silence PROVE_RCU */ rcu_read_lock(); __set_task_cpu(idle, cpu); rcu_read_unlock(); rq->curr = rq->idle = idle; #if defined(CONFIG_SMP) idle->on_cpu = 1; #endif raw_spin_unlock_irqrestore(&rq->lock, flags); /* Set the preempt count _outside_ the spinlocks! */ task_thread_info(idle)->preempt_count = 0; /* * The idle tasks have their own, simple scheduling class: */ idle->sched_class = &idle_sched_class; ftrace_graph_init_idle_task(idle, cpu); #if defined(CONFIG_SMP) sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); #endif } /* * Increase the granularity value when there are more CPUs, * because with more CPUs the 'effective latency' as visible * to users decreases. But the relationship is not linear, * so pick a second-best guess by going with the log2 of the * number of CPUs. * * This idea comes from the SD scheduler of Con Kolivas: */ static int get_update_sysctl_factor(void) { unsigned int cpus = min_t(int, num_online_cpus(), 8); unsigned int factor; switch (sysctl_sched_tunable_scaling) { case SCHED_TUNABLESCALING_NONE: factor = 1; break; case SCHED_TUNABLESCALING_LINEAR: factor = cpus; break; case SCHED_TUNABLESCALING_LOG: default: factor = 1 + ilog2(cpus); break; } return factor; } static void update_sysctl(void) { unsigned int factor = get_update_sysctl_factor(); #define SET_SYSCTL(name) \ (sysctl_##name = (factor) * normalized_sysctl_##name) SET_SYSCTL(sched_min_granularity); SET_SYSCTL(sched_latency); SET_SYSCTL(sched_wakeup_granularity); #undef SET_SYSCTL } static inline void sched_init_granularity(void) { update_sysctl(); } #ifdef CONFIG_SMP void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) { if (p->sched_class && p->sched_class->set_cpus_allowed) p->sched_class->set_cpus_allowed(p, new_mask); cpumask_copy(&p->cpus_allowed, new_mask); p->rt.nr_cpus_allowed = cpumask_weight(new_mask); } /* * This is how migration works: * * 1) we invoke migration_cpu_stop() on the target CPU using * stop_one_cpu(). * 2) stopper starts to run (implicitly forcing the migrated thread * off the CPU) * 3) it checks whether the migrated task is still in the wrong runqueue. * 4) if it's in the wrong runqueue then the migration thread removes * it and puts it into the right queue. * 5) stopper completes and stop_one_cpu() returns and the migration * is done. */ /* * Change a given task's CPU affinity. Migrate the thread to a * proper CPU and schedule it away if the CPU it's executing on * is removed from the allowed bitmask. * * NOTE: the caller must have a valid reference to the task, the * task must not exit() & deallocate itself prematurely. The * call is not atomic; no spinlocks may be held. */ int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) { unsigned long flags; struct rq *rq; unsigned int dest_cpu; int ret = 0; rq = task_rq_lock(p, &flags); if (cpumask_equal(&p->cpus_allowed, new_mask)) goto out; if (!cpumask_intersects(new_mask, cpu_active_mask)) { ret = -EINVAL; goto out; } if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) { ret = -EINVAL; goto out; } do_set_cpus_allowed(p, new_mask); /* Can the task run on the task's current CPU? If so, we're done */ if (cpumask_test_cpu(task_cpu(p), new_mask)) goto out; dest_cpu = cpumask_any_and(cpu_active_mask, new_mask); if (p->on_rq) { struct migration_arg arg = { p, dest_cpu }; /* Need help from migration thread: drop lock and wait. */ task_rq_unlock(rq, p, &flags); stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); tlb_migrate_finish(p->mm); return 0; } out: task_rq_unlock(rq, p, &flags); return ret; } EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); /* * Move (not current) task off this cpu, onto dest cpu. We're doing * this because either it can't run here any more (set_cpus_allowed() * away from this CPU, or CPU going down), or because we're * attempting to rebalance this task on exec (sched_exec). * * So we race with normal scheduler movements, but that's OK, as long * as the task is no longer on this CPU. * * Returns non-zero if task was successfully migrated. */ static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu) { struct rq *rq_dest, *rq_src; int ret = 0; if (unlikely(!cpu_active(dest_cpu))) return ret; rq_src = cpu_rq(src_cpu); rq_dest = cpu_rq(dest_cpu); raw_spin_lock(&p->pi_lock); double_rq_lock(rq_src, rq_dest); /* Already moved. */ if (task_cpu(p) != src_cpu) goto done; /* Affinity changed (again). */ if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) goto fail; /* * If we're not on a rq, the next wake-up will ensure we're * placed properly. */ if (p->on_rq) { deactivate_task(rq_src, p, 0); set_task_cpu(p, dest_cpu); activate_task(rq_dest, p, 0); check_preempt_curr(rq_dest, p, 0); } done: ret = 1; fail: double_rq_unlock(rq_src, rq_dest); raw_spin_unlock(&p->pi_lock); return ret; } /* * migration_cpu_stop - this will be executed by a highprio stopper thread * and performs thread migration by bumping thread off CPU then * 'pushing' onto another runqueue. */ static int migration_cpu_stop(void *data) { struct migration_arg *arg = data; /* * The original target cpu might have gone down and we might * be on another cpu but it doesn't matter. */ local_irq_disable(); __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu); local_irq_enable(); return 0; } #ifdef CONFIG_HOTPLUG_CPU /* * Ensures that the idle task is using init_mm right before its cpu goes * offline. */ void idle_task_exit(void) { struct mm_struct *mm = current->active_mm; BUG_ON(cpu_online(smp_processor_id())); if (mm != &init_mm) switch_mm(mm, &init_mm, current); mmdrop(mm); } /* * While a dead CPU has no uninterruptible tasks queued at this point, * it might still have a nonzero ->nr_uninterruptible counter, because * for performance reasons the counter is not stricly tracking tasks to * their home CPUs. So we just add the counter to another CPU's counter, * to keep the global sum constant after CPU-down: */ static void migrate_nr_uninterruptible(struct rq *rq_src) { struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask)); rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible; rq_src->nr_uninterruptible = 0; } /* * remove the tasks which were accounted by rq from calc_load_tasks. */ static void calc_global_load_remove(struct rq *rq) { atomic_long_sub(rq->calc_load_active, &calc_load_tasks); rq->calc_load_active = 0; } #ifdef CONFIG_CFS_BANDWIDTH static void unthrottle_offline_cfs_rqs(struct rq *rq) { struct cfs_rq *cfs_rq; for_each_leaf_cfs_rq(rq, cfs_rq) { struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); if (!cfs_rq->runtime_enabled) continue; /* * clock_task is not advancing so we just need to make sure * there's some valid quota amount */ cfs_rq->runtime_remaining = cfs_b->quota; if (cfs_rq_throttled(cfs_rq)) unthrottle_cfs_rq(cfs_rq); } } #else static void unthrottle_offline_cfs_rqs(struct rq *rq) {} #endif /* * Migrate all tasks from the rq, sleeping tasks will be migrated by * try_to_wake_up()->select_task_rq(). * * Called with rq->lock held even though we'er in stop_machine() and * there's no concurrency possible, we hold the required locks anyway * because of lock validation efforts. */ static void migrate_tasks(unsigned int dead_cpu) { struct rq *rq = cpu_rq(dead_cpu); struct task_struct *next, *stop = rq->stop; int dest_cpu; /* * Fudge the rq selection such that the below task selection loop * doesn't get stuck on the currently eligible stop task. * * We're currently inside stop_machine() and the rq is either stuck * in the stop_machine_cpu_stop() loop, or we're executing this code, * either way we should never end up calling schedule() until we're * done here. */ rq->stop = NULL; /* Ensure any throttled groups are reachable by pick_next_task */ unthrottle_offline_cfs_rqs(rq); for ( ; ; ) { /* * There's this thread running, bail when that's the only * remaining thread. */ if (rq->nr_running == 1) break; next = pick_next_task(rq); BUG_ON(!next); next->sched_class->put_prev_task(rq, next); /* Find suitable destination for @next, with force if needed. */ dest_cpu = select_fallback_rq(dead_cpu, next); raw_spin_unlock(&rq->lock); __migrate_task(next, dead_cpu, dest_cpu); raw_spin_lock(&rq->lock); } rq->stop = stop; } #endif /* CONFIG_HOTPLUG_CPU */ #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL) static struct ctl_table sd_ctl_dir[] = { { .procname = "sched_domain", .mode = 0555, }, {} }; static struct ctl_table sd_ctl_root[] = { { .procname = "kernel", .mode = 0555, .child = sd_ctl_dir, }, {} }; static struct ctl_table *sd_alloc_ctl_entry(int n) { struct ctl_table *entry = kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL); return entry; } static void sd_free_ctl_entry(struct ctl_table **tablep) { struct ctl_table *entry; /* * In the intermediate directories, both the child directory and * procname are dynamically allocated and could fail but the mode * will always be set. In the lowest directory the names are * static strings and all have proc handlers. */ for (entry = *tablep; entry->mode; entry++) { if (entry->child) sd_free_ctl_entry(&entry->child); if (entry->proc_handler == NULL) kfree(entry->procname); } kfree(*tablep); *tablep = NULL; } static void set_table_entry(struct ctl_table *entry, const char *procname, void *data, int maxlen, mode_t mode, proc_handler *proc_handler) { entry->procname = procname; entry->data = data; entry->maxlen = maxlen; entry->mode = mode; entry->proc_handler = proc_handler; } static struct ctl_table * sd_alloc_ctl_domain_table(struct sched_domain *sd) { struct ctl_table *table = sd_alloc_ctl_entry(13); if (table == NULL) return NULL; set_table_entry(&table[0], "min_interval", &sd->min_interval, sizeof(long), 0644, proc_doulongvec_minmax); set_table_entry(&table[1], "max_interval", &sd->max_interval, sizeof(long), 0644, proc_doulongvec_minmax); set_table_entry(&table[2], "busy_idx", &sd->busy_idx, sizeof(int), 0644, proc_dointvec_minmax); set_table_entry(&table[3], "idle_idx", &sd->idle_idx, sizeof(int), 0644, proc_dointvec_minmax); set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx, sizeof(int), 0644, proc_dointvec_minmax); set_table_entry(&table[5], "wake_idx", &sd->wake_idx, sizeof(int), 0644, proc_dointvec_minmax); set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx, sizeof(int), 0644, proc_dointvec_minmax); set_table_entry(&table[7], "busy_factor", &sd->busy_factor, sizeof(int), 0644, proc_dointvec_minmax); set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct, sizeof(int), 0644, proc_dointvec_minmax); set_table_entry(&table[9], "cache_nice_tries", &sd->cache_nice_tries, sizeof(int), 0644, proc_dointvec_minmax); set_table_entry(&table[10], "flags", &sd->flags, sizeof(int), 0644, proc_dointvec_minmax); set_table_entry(&table[11], "name", sd->name, CORENAME_MAX_SIZE, 0444, proc_dostring); /* &table[12] is terminator */ return table; } static ctl_table *sd_alloc_ctl_cpu_table(int cpu) { struct ctl_table *entry, *table; struct sched_domain *sd; int domain_num = 0, i; char buf[32]; for_each_domain(cpu, sd) domain_num++; entry = table = sd_alloc_ctl_entry(domain_num + 1); if (table == NULL) return NULL; i = 0; for_each_domain(cpu, sd) { snprintf(buf, 32, "domain%d", i); entry->procname = kstrdup(buf, GFP_KERNEL); entry->mode = 0555; entry->child = sd_alloc_ctl_domain_table(sd); entry++; i++; } return table; } static struct ctl_table_header *sd_sysctl_header; static void register_sched_domain_sysctl(void) { int i, cpu_num = num_possible_cpus(); struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); char buf[32]; WARN_ON(sd_ctl_dir[0].child); sd_ctl_dir[0].child = entry; if (entry == NULL) return; for_each_possible_cpu(i) { snprintf(buf, 32, "cpu%d", i); entry->procname = kstrdup(buf, GFP_KERNEL); entry->mode = 0555; entry->child = sd_alloc_ctl_cpu_table(i); entry++; } WARN_ON(sd_sysctl_header); sd_sysctl_header = register_sysctl_table(sd_ctl_root); } /* may be called multiple times per register */ static void unregister_sched_domain_sysctl(void) { if (sd_sysctl_header) unregister_sysctl_table(sd_sysctl_header); sd_sysctl_header = NULL; if (sd_ctl_dir[0].child) sd_free_ctl_entry(&sd_ctl_dir[0].child); } #else static void register_sched_domain_sysctl(void) { } static void unregister_sched_domain_sysctl(void) { } #endif static void set_rq_online(struct rq *rq) { if (!rq->online) { const struct sched_class *class; cpumask_set_cpu(rq->cpu, rq->rd->online); rq->online = 1; for_each_class(class) { if (class->rq_online) class->rq_online(rq); } } } static void set_rq_offline(struct rq *rq) { if (rq->online) { const struct sched_class *class; for_each_class(class) { if (class->rq_offline) class->rq_offline(rq); } cpumask_clear_cpu(rq->cpu, rq->rd->online); rq->online = 0; } } /* * migration_call - callback that gets triggered when a CPU is added. * Here we can start up the necessary migration thread for the new CPU. */ static int __cpuinit migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) { int cpu = (long)hcpu; unsigned long flags; struct rq *rq = cpu_rq(cpu); switch (action & ~CPU_TASKS_FROZEN) { case CPU_UP_PREPARE: rq->calc_load_update = calc_load_update; break; case CPU_ONLINE: /* Update our root-domain */ raw_spin_lock_irqsave(&rq->lock, flags); if (rq->rd) { BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); set_rq_online(rq); } raw_spin_unlock_irqrestore(&rq->lock, flags); break; #ifdef CONFIG_HOTPLUG_CPU case CPU_DYING: sched_ttwu_pending(); /* Update our root-domain */ raw_spin_lock_irqsave(&rq->lock, flags); if (rq->rd) { BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); set_rq_offline(rq); } migrate_tasks(cpu); BUG_ON(rq->nr_running != 1); /* the migration thread */ raw_spin_unlock_irqrestore(&rq->lock, flags); migrate_nr_uninterruptible(rq); calc_global_load_remove(rq); break; #endif } update_max_interval(); return NOTIFY_OK; } /* * Register at high priority so that task migration (migrate_all_tasks) * happens before everything else. This has to be lower priority than * the notifier in the perf_event subsystem, though. */ static struct notifier_block __cpuinitdata migration_notifier = { .notifier_call = migration_call, .priority = CPU_PRI_MIGRATION, }; static int __cpuinit sched_cpu_active(struct notifier_block *nfb, unsigned long action, void *hcpu) { switch (action & ~CPU_TASKS_FROZEN) { case CPU_ONLINE: case CPU_DOWN_FAILED: set_cpu_active((long)hcpu, true); return NOTIFY_OK; default: return NOTIFY_DONE; } } static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb, unsigned long action, void *hcpu) { switch (action & ~CPU_TASKS_FROZEN) { case CPU_DOWN_PREPARE: set_cpu_active((long)hcpu, false); return NOTIFY_OK; default: return NOTIFY_DONE; } } static int __init migration_init(void) { void *cpu = (void *)(long)smp_processor_id(); int err; /* Initialize migration for the boot CPU */ err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu); BUG_ON(err == NOTIFY_BAD); migration_call(&migration_notifier, CPU_ONLINE, cpu); register_cpu_notifier(&migration_notifier); /* Register cpu active notifiers */ cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE); cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE); return 0; } early_initcall(migration_init); #endif #ifdef CONFIG_SMP static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */ #ifdef CONFIG_SCHED_DEBUG static __read_mostly int sched_domain_debug_enabled; static int __init sched_domain_debug_setup(char *str) { sched_domain_debug_enabled = 1; return 0; } early_param("sched_debug", sched_domain_debug_setup); static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, struct cpumask *groupmask) { struct sched_group *group = sd->groups; char str[256]; cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd)); cpumask_clear(groupmask); printk(KERN_DEBUG "%*s domain %d: ", level, "", level); if (!(sd->flags & SD_LOAD_BALANCE)) { printk("does not load-balance\n"); if (sd->parent) printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" " has parent"); return -1; } printk(KERN_CONT "span %s level %s\n", str, sd->name); if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { printk(KERN_ERR "ERROR: domain->span does not contain " "CPU%d\n", cpu); } if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) { printk(KERN_ERR "ERROR: domain->groups does not contain" " CPU%d\n", cpu); } printk(KERN_DEBUG "%*s groups:", level + 1, ""); do { if (!group) { printk("\n"); printk(KERN_ERR "ERROR: group is NULL\n"); break; } if (!group->sgp->power) { printk(KERN_CONT "\n"); printk(KERN_ERR "ERROR: domain->cpu_power not " "set\n"); break; } if (!cpumask_weight(sched_group_cpus(group))) { printk(KERN_CONT "\n"); printk(KERN_ERR "ERROR: empty group\n"); break; } if (cpumask_intersects(groupmask, sched_group_cpus(group))) { printk(KERN_CONT "\n"); printk(KERN_ERR "ERROR: repeated CPUs\n"); break; } cpumask_or(groupmask, groupmask, sched_group_cpus(group)); cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group)); printk(KERN_CONT " %s", str); if (group->sgp->power != SCHED_POWER_SCALE) { printk(KERN_CONT " (cpu_power = %d)", group->sgp->power); } group = group->next; } while (group != sd->groups); printk(KERN_CONT "\n"); if (!cpumask_equal(sched_domain_span(sd), groupmask)) printk(KERN_ERR "ERROR: groups don't span domain->span\n"); if (sd->parent && !cpumask_subset(groupmask, sched_domain_span(sd->parent))) printk(KERN_ERR "ERROR: parent span is not a superset " "of domain->span\n"); return 0; } static void sched_domain_debug(struct sched_domain *sd, int cpu) { int level = 0; if (!sched_domain_debug_enabled) return; if (!sd) { printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); return; } printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); for (;;) { if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) break; level++; sd = sd->parent; if (!sd) break; } } #else /* !CONFIG_SCHED_DEBUG */ # define sched_domain_debug(sd, cpu) do { } while (0) #endif /* CONFIG_SCHED_DEBUG */ static int sd_degenerate(struct sched_domain *sd) { if (cpumask_weight(sched_domain_span(sd)) == 1) return 1; /* Following flags need at least 2 groups */ if (sd->flags & (SD_LOAD_BALANCE | SD_BALANCE_NEWIDLE | SD_BALANCE_FORK | SD_BALANCE_EXEC | SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)) { if (sd->groups != sd->groups->next) return 0; } /* Following flags don't use groups */ if (sd->flags & (SD_WAKE_AFFINE)) return 0; return 1; } static int sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) { unsigned long cflags = sd->flags, pflags = parent->flags; if (sd_degenerate(parent)) return 1; if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) return 0; /* Flags needing groups don't count if only 1 group in parent */ if (parent->groups == parent->groups->next) { pflags &= ~(SD_LOAD_BALANCE | SD_BALANCE_NEWIDLE | SD_BALANCE_FORK | SD_BALANCE_EXEC | SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES); if (nr_node_ids == 1) pflags &= ~SD_SERIALIZE; } if (~cflags & pflags) return 0; return 1; } static void free_rootdomain(struct rcu_head *rcu) { struct root_domain *rd = container_of(rcu, struct root_domain, rcu); cpupri_cleanup(&rd->cpupri); free_cpumask_var(rd->rto_mask); free_cpumask_var(rd->online); free_cpumask_var(rd->span); kfree(rd); } static void rq_attach_root(struct rq *rq, struct root_domain *rd) { struct root_domain *old_rd = NULL; unsigned long flags; raw_spin_lock_irqsave(&rq->lock, flags); if (rq->rd) { old_rd = rq->rd; if (cpumask_test_cpu(rq->cpu, old_rd->online)) set_rq_offline(rq); cpumask_clear_cpu(rq->cpu, old_rd->span); /* * If we dont want to free the old_rt yet then * set old_rd to NULL to skip the freeing later * in this function: */ if (!atomic_dec_and_test(&old_rd->refcount)) old_rd = NULL; } atomic_inc(&rd->refcount); rq->rd = rd; cpumask_set_cpu(rq->cpu, rd->span); if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) set_rq_online(rq); raw_spin_unlock_irqrestore(&rq->lock, flags); if (old_rd) call_rcu_sched(&old_rd->rcu, free_rootdomain); } static int init_rootdomain(struct root_domain *rd) { memset(rd, 0, sizeof(*rd)); if (!alloc_cpumask_var(&rd->span, GFP_KERNEL)) goto out; if (!alloc_cpumask_var(&rd->online, GFP_KERNEL)) goto free_span; if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) goto free_online; if (cpupri_init(&rd->cpupri) != 0) goto free_rto_mask; return 0; free_rto_mask: free_cpumask_var(rd->rto_mask); free_online: free_cpumask_var(rd->online); free_span: free_cpumask_var(rd->span); out: return -ENOMEM; } static void init_defrootdomain(void) { init_rootdomain(&def_root_domain); atomic_set(&def_root_domain.refcount, 1); } static struct root_domain *alloc_rootdomain(void) { struct root_domain *rd; rd = kmalloc(sizeof(*rd), GFP_KERNEL); if (!rd) return NULL; if (init_rootdomain(rd) != 0) { kfree(rd); return NULL; } return rd; } static void free_sched_groups(struct sched_group *sg, int free_sgp) { struct sched_group *tmp, *first; if (!sg) return; first = sg; do { tmp = sg->next; if (free_sgp && atomic_dec_and_test(&sg->sgp->ref)) kfree(sg->sgp); kfree(sg); sg = tmp; } while (sg != first); } static void free_sched_domain(struct rcu_head *rcu) { struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); /* * If its an overlapping domain it has private groups, iterate and * nuke them all. */ if (sd->flags & SD_OVERLAP) { free_sched_groups(sd->groups, 1); } else if (atomic_dec_and_test(&sd->groups->ref)) { kfree(sd->groups->sgp); kfree(sd->groups); } kfree(sd); } static void destroy_sched_domain(struct sched_domain *sd, int cpu) { call_rcu(&sd->rcu, free_sched_domain); } static void destroy_sched_domains(struct sched_domain *sd, int cpu) { for (; sd; sd = sd->parent) destroy_sched_domain(sd, cpu); } /* * Attach the domain 'sd' to 'cpu' as its base domain. Callers must * hold the hotplug lock. */ static void cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) { struct rq *rq = cpu_rq(cpu); struct sched_domain *tmp; /* Remove the sched domains which do not contribute to scheduling. */ for (tmp = sd; tmp; ) { struct sched_domain *parent = tmp->parent; if (!parent) break; if (sd_parent_degenerate(tmp, parent)) { tmp->parent = parent->parent; if (parent->parent) parent->parent->child = tmp; destroy_sched_domain(parent, cpu); } else tmp = tmp->parent; } if (sd && sd_degenerate(sd)) { tmp = sd; sd = sd->parent; destroy_sched_domain(tmp, cpu); if (sd) sd->child = NULL; } sched_domain_debug(sd, cpu); rq_attach_root(rq, rd); tmp = rq->sd; rcu_assign_pointer(rq->sd, sd); destroy_sched_domains(tmp, cpu); } /* cpus with isolated domains */ static cpumask_var_t cpu_isolated_map; /* Setup the mask of cpus configured for isolated domains */ static int __init isolated_cpu_setup(char *str) { alloc_bootmem_cpumask_var(&cpu_isolated_map); cpulist_parse(str, cpu_isolated_map); return 1; } __setup("isolcpus=", isolated_cpu_setup); #ifdef CONFIG_NUMA /** * find_next_best_node - find the next node to include in a sched_domain * @node: node whose sched_domain we're building * @used_nodes: nodes already in the sched_domain * * Find the next node to include in a given scheduling domain. Simply * finds the closest node not already in the @used_nodes map. * * Should use nodemask_t. */ static int find_next_best_node(int node, nodemask_t *used_nodes) { int i, n, val, min_val, best_node = -1; min_val = INT_MAX; for (i = 0; i < nr_node_ids; i++) { /* Start at @node */ n = (node + i) % nr_node_ids; if (!nr_cpus_node(n)) continue; /* Skip already used nodes */ if (node_isset(n, *used_nodes)) continue; /* Simple min distance search */ val = node_distance(node, n); if (val < min_val) { min_val = val; best_node = n; } } if (best_node != -1) node_set(best_node, *used_nodes); return best_node; } /** * sched_domain_node_span - get a cpumask for a node's sched_domain * @node: node whose cpumask we're constructing * @span: resulting cpumask * * Given a node, construct a good cpumask for its sched_domain to span. It * should be one that prevents unnecessary balancing, but also spreads tasks * out optimally. */ static void sched_domain_node_span(int node, struct cpumask *span) { nodemask_t used_nodes; int i; cpumask_clear(span); nodes_clear(used_nodes); cpumask_or(span, span, cpumask_of_node(node)); node_set(node, used_nodes); for (i = 1; i < SD_NODES_PER_DOMAIN; i++) { int next_node = find_next_best_node(node, &used_nodes); if (next_node < 0) break; cpumask_or(span, span, cpumask_of_node(next_node)); } } static const struct cpumask *cpu_node_mask(int cpu) { lockdep_assert_held(&sched_domains_mutex); sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask); return sched_domains_tmpmask; } static const struct cpumask *cpu_allnodes_mask(int cpu) { return cpu_possible_mask; } #endif /* CONFIG_NUMA */ static const struct cpumask *cpu_cpu_mask(int cpu) { return cpumask_of_node(cpu_to_node(cpu)); } int sched_smt_power_savings = 0, sched_mc_power_savings = 0; struct sd_data { struct sched_domain **__percpu sd; struct sched_group **__percpu sg; struct sched_group_power **__percpu sgp; }; struct s_data { struct sched_domain ** __percpu sd; struct root_domain *rd; }; enum s_alloc { sa_rootdomain, sa_sd, sa_sd_storage, sa_none, }; struct sched_domain_topology_level; typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu); typedef const struct cpumask *(*sched_domain_mask_f)(int cpu); #define SDTL_OVERLAP 0x01 struct sched_domain_topology_level { sched_domain_init_f init; sched_domain_mask_f mask; int flags; struct sd_data data; }; static int build_overlap_sched_groups(struct sched_domain *sd, int cpu) { struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg; const struct cpumask *span = sched_domain_span(sd); struct cpumask *covered = sched_domains_tmpmask; struct sd_data *sdd = sd->private; struct sched_domain *child; int i; cpumask_clear(covered); for_each_cpu(i, span) { struct cpumask *sg_span; if (cpumask_test_cpu(i, covered)) continue; sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), GFP_KERNEL, cpu_to_node(i)); if (!sg) goto fail; sg_span = sched_group_cpus(sg); child = *per_cpu_ptr(sdd->sd, i); if (child->child) { child = child->child; cpumask_copy(sg_span, sched_domain_span(child)); } else cpumask_set_cpu(i, sg_span); cpumask_or(covered, covered, sg_span); sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span)); atomic_inc(&sg->sgp->ref); if (cpumask_test_cpu(cpu, sg_span)) groups = sg; if (!first) first = sg; if (last) last->next = sg; last = sg; last->next = first; } sd->groups = groups; return 0; fail: free_sched_groups(first, 0); return -ENOMEM; } static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg) { struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); struct sched_domain *child = sd->child; if (child) cpu = cpumask_first(sched_domain_span(child)); if (sg) { *sg = *per_cpu_ptr(sdd->sg, cpu); (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu); atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */ } return cpu; } /* * build_sched_groups will build a circular linked list of the groups * covered by the given span, and will set each group's ->cpumask correctly, * and ->cpu_power to 0. * * Assumes the sched_domain tree is fully constructed */ static int build_sched_groups(struct sched_domain *sd, int cpu) { struct sched_group *first = NULL, *last = NULL; struct sd_data *sdd = sd->private; const struct cpumask *span = sched_domain_span(sd); struct cpumask *covered; int i; get_group(cpu, sdd, &sd->groups); atomic_inc(&sd->groups->ref); if (cpu != cpumask_first(sched_domain_span(sd))) return 0; lockdep_assert_held(&sched_domains_mutex); covered = sched_domains_tmpmask; cpumask_clear(covered); for_each_cpu(i, span) { struct sched_group *sg; int group = get_group(i, sdd, &sg); int j; if (cpumask_test_cpu(i, covered)) continue; cpumask_clear(sched_group_cpus(sg)); sg->sgp->power = 0; for_each_cpu(j, span) { if (get_group(j, sdd, NULL) != group) continue; cpumask_set_cpu(j, covered); cpumask_set_cpu(j, sched_group_cpus(sg)); } if (!first) first = sg; if (last) last->next = sg; last = sg; } last->next = first; return 0; } /* * Initialize sched groups cpu_power. * * cpu_power indicates the capacity of sched group, which is used while * distributing the load between different sched groups in a sched domain. * Typically cpu_power for all the groups in a sched domain will be same unless * there are asymmetries in the topology. If there are asymmetries, group * having more cpu_power will pickup more load compared to the group having * less cpu_power. */ static void init_sched_groups_power(int cpu, struct sched_domain *sd) { struct sched_group *sg = sd->groups; WARN_ON(!sd || !sg); do { sg->group_weight = cpumask_weight(sched_group_cpus(sg)); sg = sg->next; } while (sg != sd->groups); if (cpu != group_first_cpu(sg)) return; update_group_power(sd, cpu); } /* * Initializers for schedule domains * Non-inlined to reduce accumulated stack pressure in build_sched_domains() */ #ifdef CONFIG_SCHED_DEBUG # define SD_INIT_NAME(sd, type) sd->name = #type #else # define SD_INIT_NAME(sd, type) do { } while (0) #endif #define SD_INIT_FUNC(type) \ static noinline struct sched_domain * \ sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \ { \ struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \ *sd = SD_##type##_INIT; \ SD_INIT_NAME(sd, type); \ sd->private = &tl->data; \ return sd; \ } SD_INIT_FUNC(CPU) #ifdef CONFIG_NUMA SD_INIT_FUNC(ALLNODES) SD_INIT_FUNC(NODE) #endif #ifdef CONFIG_SCHED_SMT SD_INIT_FUNC(SIBLING) #endif #ifdef CONFIG_SCHED_MC SD_INIT_FUNC(MC) #endif #ifdef CONFIG_SCHED_BOOK SD_INIT_FUNC(BOOK) #endif static int default_relax_domain_level = -1; int sched_domain_level_max; static int __init setup_relax_domain_level(char *str) { unsigned long val; val = simple_strtoul(str, NULL, 0); if (val < sched_domain_level_max) default_relax_domain_level = val; return 1; } __setup("relax_domain_level=", setup_relax_domain_level); static void set_domain_attribute(struct sched_domain *sd, struct sched_domain_attr *attr) { int request; if (!attr || attr->relax_domain_level < 0) { if (default_relax_domain_level < 0) return; else request = default_relax_domain_level; } else request = attr->relax_domain_level; if (request < sd->level) { /* turn off idle balance on this domain */ sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); } else { /* turn on idle balance on this domain */ sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); } } static void __sdt_free(const struct cpumask *cpu_map); static int __sdt_alloc(const struct cpumask *cpu_map); static void __free_domain_allocs(struct s_data *d, enum s_alloc what, const struct cpumask *cpu_map) { switch (what) { case sa_rootdomain: if (!atomic_read(&d->rd->refcount)) free_rootdomain(&d->rd->rcu); /* fall through */ case sa_sd: free_percpu(d->sd); /* fall through */ case sa_sd_storage: __sdt_free(cpu_map); /* fall through */ case sa_none: break; } } static enum s_alloc __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map) { memset(d, 0, sizeof(*d)); if (__sdt_alloc(cpu_map)) return sa_sd_storage; d->sd = alloc_percpu(struct sched_domain *); if (!d->sd) return sa_sd_storage; d->rd = alloc_rootdomain(); if (!d->rd) return sa_sd; return sa_rootdomain; } /* * NULL the sd_data elements we've used to build the sched_domain and * sched_group structure so that the subsequent __free_domain_allocs() * will not free the data we're using. */ static void claim_allocations(int cpu, struct sched_domain *sd) { struct sd_data *sdd = sd->private; WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); *per_cpu_ptr(sdd->sd, cpu) = NULL; if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) *per_cpu_ptr(sdd->sg, cpu) = NULL; if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref)) *per_cpu_ptr(sdd->sgp, cpu) = NULL; } #ifdef CONFIG_SCHED_SMT static const struct cpumask *cpu_smt_mask(int cpu) { return topology_thread_cpumask(cpu); } #endif /* * Topology list, bottom-up. */ static struct sched_domain_topology_level default_topology[] = { #ifdef CONFIG_SCHED_SMT { sd_init_SIBLING, cpu_smt_mask, }, #endif #ifdef CONFIG_SCHED_MC { sd_init_MC, cpu_coregroup_mask, }, #endif #ifdef CONFIG_SCHED_BOOK { sd_init_BOOK, cpu_book_mask, }, #endif { sd_init_CPU, cpu_cpu_mask, }, #ifdef CONFIG_NUMA { sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, }, { sd_init_ALLNODES, cpu_allnodes_mask, }, #endif { NULL, }, }; static struct sched_domain_topology_level *sched_domain_topology = default_topology; static int __sdt_alloc(const struct cpumask *cpu_map) { struct sched_domain_topology_level *tl; int j; for (tl = sched_domain_topology; tl->init; tl++) { struct sd_data *sdd = &tl->data; sdd->sd = alloc_percpu(struct sched_domain *); if (!sdd->sd) return -ENOMEM; sdd->sg = alloc_percpu(struct sched_group *); if (!sdd->sg) return -ENOMEM; sdd->sgp = alloc_percpu(struct sched_group_power *); if (!sdd->sgp) return -ENOMEM; for_each_cpu(j, cpu_map) { struct sched_domain *sd; struct sched_group *sg; struct sched_group_power *sgp; sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), GFP_KERNEL, cpu_to_node(j)); if (!sd) return -ENOMEM; *per_cpu_ptr(sdd->sd, j) = sd; sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), GFP_KERNEL, cpu_to_node(j)); if (!sg) return -ENOMEM; *per_cpu_ptr(sdd->sg, j) = sg; sgp = kzalloc_node(sizeof(struct sched_group_power), GFP_KERNEL, cpu_to_node(j)); if (!sgp) return -ENOMEM; *per_cpu_ptr(sdd->sgp, j) = sgp; } } return 0; } static void __sdt_free(const struct cpumask *cpu_map) { struct sched_domain_topology_level *tl; int j; for (tl = sched_domain_topology; tl->init; tl++) { struct sd_data *sdd = &tl->data; for_each_cpu(j, cpu_map) { struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j); if (sd && (sd->flags & SD_OVERLAP)) free_sched_groups(sd->groups, 0); kfree(*per_cpu_ptr(sdd->sd, j)); kfree(*per_cpu_ptr(sdd->sg, j)); kfree(*per_cpu_ptr(sdd->sgp, j)); } free_percpu(sdd->sd); free_percpu(sdd->sg); free_percpu(sdd->sgp); } } struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, struct s_data *d, const struct cpumask *cpu_map, struct sched_domain_attr *attr, struct sched_domain *child, int cpu) { struct sched_domain *sd = tl->init(tl, cpu); if (!sd) return child; set_domain_attribute(sd, attr); cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu)); if (child) { sd->level = child->level + 1; sched_domain_level_max = max(sched_domain_level_max, sd->level); child->parent = sd; } sd->child = child; return sd; } /* * Build sched domains for a given set of cpus and attach the sched domains * to the individual cpus */ static int build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr) { enum s_alloc alloc_state = sa_none; struct sched_domain *sd; struct s_data d; int i, ret = -ENOMEM; alloc_state = __visit_domain_allocation_hell(&d, cpu_map); if (alloc_state != sa_rootdomain) goto error; /* Set up domains for cpus specified by the cpu_map. */ for_each_cpu(i, cpu_map) { struct sched_domain_topology_level *tl; sd = NULL; for (tl = sched_domain_topology; tl->init; tl++) { sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i); if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP)) sd->flags |= SD_OVERLAP; if (cpumask_equal(cpu_map, sched_domain_span(sd))) break; } while (sd->child) sd = sd->child; *per_cpu_ptr(d.sd, i) = sd; } /* Build the groups for the domains */ for_each_cpu(i, cpu_map) { for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { sd->span_weight = cpumask_weight(sched_domain_span(sd)); if (sd->flags & SD_OVERLAP) { if (build_overlap_sched_groups(sd, i)) goto error; } else { if (build_sched_groups(sd, i)) goto error; } } } /* Calculate CPU power for physical packages and nodes */ for (i = nr_cpumask_bits-1; i >= 0; i--) { if (!cpumask_test_cpu(i, cpu_map)) continue; for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { claim_allocations(i, sd); init_sched_groups_power(i, sd); } } /* Attach the domains */ rcu_read_lock(); for_each_cpu(i, cpu_map) { sd = *per_cpu_ptr(d.sd, i); cpu_attach_domain(sd, d.rd, i); } rcu_read_unlock(); ret = 0; error: __free_domain_allocs(&d, alloc_state, cpu_map); return ret; } static cpumask_var_t *doms_cur; /* current sched domains */ static int ndoms_cur; /* number of sched domains in 'doms_cur' */ static struct sched_domain_attr *dattr_cur; /* attribues of custom domains in 'doms_cur' */ /* * Special case: If a kmalloc of a doms_cur partition (array of * cpumask) fails, then fallback to a single sched domain, * as determined by the single cpumask fallback_doms. */ static cpumask_var_t fallback_doms; /* * arch_update_cpu_topology lets virtualized architectures update the * cpu core maps. It is supposed to return 1 if the topology changed * or 0 if it stayed the same. */ int __attribute__((weak)) arch_update_cpu_topology(void) { return 0; } cpumask_var_t *alloc_sched_domains(unsigned int ndoms) { int i; cpumask_var_t *doms; doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL); if (!doms) return NULL; for (i = 0; i < ndoms; i++) { if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { free_sched_domains(doms, i); return NULL; } } return doms; } void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) { unsigned int i; for (i = 0; i < ndoms; i++) free_cpumask_var(doms[i]); kfree(doms); } /* * Set up scheduler domains and groups. Callers must hold the hotplug lock. * For now this just excludes isolated cpus, but could be used to * exclude other special cases in the future. */ static int init_sched_domains(const struct cpumask *cpu_map) { int err; arch_update_cpu_topology(); ndoms_cur = 1; doms_cur = alloc_sched_domains(ndoms_cur); if (!doms_cur) doms_cur = &fallback_doms; cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map); dattr_cur = NULL; err = build_sched_domains(doms_cur[0], NULL); register_sched_domain_sysctl(); return err; } /* * Detach sched domains from a group of cpus specified in cpu_map * These cpus will now be attached to the NULL domain */ static void detach_destroy_domains(const struct cpumask *cpu_map) { int i; rcu_read_lock(); for_each_cpu(i, cpu_map) cpu_attach_domain(NULL, &def_root_domain, i); rcu_read_unlock(); } /* handle null as "default" */ static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, struct sched_domain_attr *new, int idx_new) { struct sched_domain_attr tmp; /* fast path */ if (!new && !cur) return 1; tmp = SD_ATTR_INIT; return !memcmp(cur ? (cur + idx_cur) : &tmp, new ? (new + idx_new) : &tmp, sizeof(struct sched_domain_attr)); } /* * Partition sched domains as specified by the 'ndoms_new' * cpumasks in the array doms_new[] of cpumasks. This compares * doms_new[] to the current sched domain partitioning, doms_cur[]. * It destroys each deleted domain and builds each new domain. * * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. * The masks don't intersect (don't overlap.) We should setup one * sched domain for each mask. CPUs not in any of the cpumasks will * not be load balanced. If the same cpumask appears both in the * current 'doms_cur' domains and in the new 'doms_new', we can leave * it as it is. * * The passed in 'doms_new' should be allocated using * alloc_sched_domains. This routine takes ownership of it and will * free_sched_domains it when done with it. If the caller failed the * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, * and partition_sched_domains() will fallback to the single partition * 'fallback_doms', it also forces the domains to be rebuilt. * * If doms_new == NULL it will be replaced with cpu_online_mask. * ndoms_new == 0 is a special case for destroying existing domains, * and it will not create the default domain. * * Call with hotplug lock held */ void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], struct sched_domain_attr *dattr_new) { int i, j, n; int new_topology; mutex_lock(&sched_domains_mutex); /* always unregister in case we don't destroy any domains */ unregister_sched_domain_sysctl(); /* Let architecture update cpu core mappings. */ new_topology = arch_update_cpu_topology(); n = doms_new ? ndoms_new : 0; /* Destroy deleted domains */ for (i = 0; i < ndoms_cur; i++) { for (j = 0; j < n && !new_topology; j++) { if (cpumask_equal(doms_cur[i], doms_new[j]) && dattrs_equal(dattr_cur, i, dattr_new, j)) goto match1; } /* no match - a current sched domain not in new doms_new[] */ detach_destroy_domains(doms_cur[i]); match1: ; } if (doms_new == NULL) { ndoms_cur = 0; doms_new = &fallback_doms; cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map); WARN_ON_ONCE(dattr_new); } /* Build new domains */ for (i = 0; i < ndoms_new; i++) { for (j = 0; j < ndoms_cur && !new_topology; j++) { if (cpumask_equal(doms_new[i], doms_cur[j]) && dattrs_equal(dattr_new, i, dattr_cur, j)) goto match2; } /* no match - add a new doms_new */ build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); match2: ; } /* Remember the new sched domains */ if (doms_cur != &fallback_doms) free_sched_domains(doms_cur, ndoms_cur); kfree(dattr_cur); /* kfree(NULL) is safe */ doms_cur = doms_new; dattr_cur = dattr_new; ndoms_cur = ndoms_new; register_sched_domain_sysctl(); mutex_unlock(&sched_domains_mutex); } #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) static void reinit_sched_domains(void) { get_online_cpus(); /* Destroy domains first to force the rebuild */ partition_sched_domains(0, NULL, NULL); rebuild_sched_domains(); put_online_cpus(); } static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt) { unsigned int level = 0; if (sscanf(buf, "%u", &level) != 1) return -EINVAL; /* * level is always be positive so don't check for * level < POWERSAVINGS_BALANCE_NONE which is 0 * What happens on 0 or 1 byte write, * need to check for count as well? */ if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS) return -EINVAL; if (smt) sched_smt_power_savings = level; else sched_mc_power_savings = level; reinit_sched_domains(); return count; } #ifdef CONFIG_SCHED_MC static ssize_t sched_mc_power_savings_show(struct sysdev_class *class, struct sysdev_class_attribute *attr, char *page) { return sprintf(page, "%u\n", sched_mc_power_savings); } static ssize_t sched_mc_power_savings_store(struct sysdev_class *class, struct sysdev_class_attribute *attr, const char *buf, size_t count) { return sched_power_savings_store(buf, count, 0); } static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show, sched_mc_power_savings_store); #endif #ifdef CONFIG_SCHED_SMT static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev, struct sysdev_class_attribute *attr, char *page) { return sprintf(page, "%u\n", sched_smt_power_savings); } static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev, struct sysdev_class_attribute *attr, const char *buf, size_t count) { return sched_power_savings_store(buf, count, 1); } static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show, sched_smt_power_savings_store); #endif int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls) { int err = 0; #ifdef CONFIG_SCHED_SMT if (smt_capable()) err = sysfs_create_file(&cls->kset.kobj, &attr_sched_smt_power_savings.attr); #endif #ifdef CONFIG_SCHED_MC if (!err && mc_capable()) err = sysfs_create_file(&cls->kset.kobj, &attr_sched_mc_power_savings.attr); #endif return err; } #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ /* * Update cpusets according to cpu_active mask. If cpusets are * disabled, cpuset_update_active_cpus() becomes a simple wrapper * around partition_sched_domains(). */ static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action, void *hcpu) { switch (action & ~CPU_TASKS_FROZEN) { case CPU_ONLINE: case CPU_DOWN_FAILED: cpuset_update_active_cpus(); return NOTIFY_OK; default: return NOTIFY_DONE; } } static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action, void *hcpu) { switch (action & ~CPU_TASKS_FROZEN) { case CPU_DOWN_PREPARE: cpuset_update_active_cpus(); return NOTIFY_OK; default: return NOTIFY_DONE; } } static int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu) { int cpu = (int)(long)hcpu; switch (action) { case CPU_DOWN_PREPARE: case CPU_DOWN_PREPARE_FROZEN: disable_runtime(cpu_rq(cpu)); return NOTIFY_OK; case CPU_DOWN_FAILED: case CPU_DOWN_FAILED_FROZEN: case CPU_ONLINE: case CPU_ONLINE_FROZEN: enable_runtime(cpu_rq(cpu)); return NOTIFY_OK; default: return NOTIFY_DONE; } } void __init sched_init_smp(void) { cpumask_var_t non_isolated_cpus; alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); alloc_cpumask_var(&fallback_doms, GFP_KERNEL); get_online_cpus(); mutex_lock(&sched_domains_mutex); init_sched_domains(cpu_active_mask); cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); if (cpumask_empty(non_isolated_cpus)) cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); mutex_unlock(&sched_domains_mutex); put_online_cpus(); hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE); hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE); /* RT runtime code needs to handle some hotplug events */ hotcpu_notifier(update_runtime, 0); init_hrtick(); /* Move init over to a non-isolated CPU */ if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0) BUG(); sched_init_granularity(); free_cpumask_var(non_isolated_cpus); init_sched_rt_class(); } #else void __init sched_init_smp(void) { sched_init_granularity(); } #endif /* CONFIG_SMP */ const_debug unsigned int sysctl_timer_migration = 1; int in_sched_functions(unsigned long addr) { return in_lock_functions(addr) || (addr >= (unsigned long)__sched_text_start && addr < (unsigned long)__sched_text_end); } static void init_cfs_rq(struct cfs_rq *cfs_rq) { cfs_rq->tasks_timeline = RB_ROOT; INIT_LIST_HEAD(&cfs_rq->tasks); cfs_rq->min_vruntime = (u64)(-(1LL << 20)); #ifndef CONFIG_64BIT cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; #endif } static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq) { struct rt_prio_array *array; int i; array = &rt_rq->active; for (i = 0; i < MAX_RT_PRIO; i++) { INIT_LIST_HEAD(array->queue + i); __clear_bit(i, array->bitmap); } /* delimiter for bitsearch: */ __set_bit(MAX_RT_PRIO, array->bitmap); #if defined CONFIG_SMP rt_rq->highest_prio.curr = MAX_RT_PRIO; rt_rq->highest_prio.next = MAX_RT_PRIO; rt_rq->rt_nr_migratory = 0; rt_rq->overloaded = 0; plist_head_init(&rt_rq->pushable_tasks); #endif rt_rq->rt_time = 0; rt_rq->rt_throttled = 0; rt_rq->rt_runtime = 0; raw_spin_lock_init(&rt_rq->rt_runtime_lock); } #ifdef CONFIG_FAIR_GROUP_SCHED static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, struct sched_entity *se, int cpu, struct sched_entity *parent) { struct rq *rq = cpu_rq(cpu); cfs_rq->tg = tg; cfs_rq->rq = rq; #ifdef CONFIG_SMP /* allow initial update_cfs_load() to truncate */ cfs_rq->load_stamp = 1; #endif init_cfs_rq_runtime(cfs_rq); tg->cfs_rq[cpu] = cfs_rq; tg->se[cpu] = se; /* se could be NULL for root_task_group */ if (!se) return; if (!parent) se->cfs_rq = &rq->cfs; else se->cfs_rq = parent->my_q; se->my_q = cfs_rq; update_load_set(&se->load, 0); se->parent = parent; } #endif #ifdef CONFIG_RT_GROUP_SCHED static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int cpu, struct sched_rt_entity *parent) { struct rq *rq = cpu_rq(cpu); rt_rq->highest_prio.curr = MAX_RT_PRIO; rt_rq->rt_nr_boosted = 0; rt_rq->rq = rq; rt_rq->tg = tg; tg->rt_rq[cpu] = rt_rq; tg->rt_se[cpu] = rt_se; if (!rt_se) return; if (!parent) rt_se->rt_rq = &rq->rt; else rt_se->rt_rq = parent->my_q; rt_se->my_q = rt_rq; rt_se->parent = parent; INIT_LIST_HEAD(&rt_se->run_list); } #endif void __init sched_init(void) { int i, j; unsigned long alloc_size = 0, ptr; #ifdef CONFIG_FAIR_GROUP_SCHED alloc_size += 2 * nr_cpu_ids * sizeof(void **); #endif #ifdef CONFIG_RT_GROUP_SCHED alloc_size += 2 * nr_cpu_ids * sizeof(void **); #endif #ifdef CONFIG_CPUMASK_OFFSTACK alloc_size += num_possible_cpus() * cpumask_size(); #endif if (alloc_size) { ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); #ifdef CONFIG_FAIR_GROUP_SCHED root_task_group.se = (struct sched_entity **)ptr; ptr += nr_cpu_ids * sizeof(void **); root_task_group.cfs_rq = (struct cfs_rq **)ptr; ptr += nr_cpu_ids * sizeof(void **); #endif /* CONFIG_FAIR_GROUP_SCHED */ #ifdef CONFIG_RT_GROUP_SCHED root_task_group.rt_se = (struct sched_rt_entity **)ptr; ptr += nr_cpu_ids * sizeof(void **); root_task_group.rt_rq = (struct rt_rq **)ptr; ptr += nr_cpu_ids * sizeof(void **); #endif /* CONFIG_RT_GROUP_SCHED */ #ifdef CONFIG_CPUMASK_OFFSTACK for_each_possible_cpu(i) { per_cpu(load_balance_tmpmask, i) = (void *)ptr; ptr += cpumask_size(); } #endif /* CONFIG_CPUMASK_OFFSTACK */ } #ifdef CONFIG_SMP init_defrootdomain(); #endif init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime()); #ifdef CONFIG_RT_GROUP_SCHED init_rt_bandwidth(&root_task_group.rt_bandwidth, global_rt_period(), global_rt_runtime()); #endif /* CONFIG_RT_GROUP_SCHED */ #ifdef CONFIG_CGROUP_SCHED list_add(&root_task_group.list, &task_groups); INIT_LIST_HEAD(&root_task_group.children); autogroup_init(&init_task); #endif /* CONFIG_CGROUP_SCHED */ for_each_possible_cpu(i) { struct rq *rq; rq = cpu_rq(i); raw_spin_lock_init(&rq->lock); rq->nr_running = 0; rq->calc_load_active = 0; rq->calc_load_update = jiffies + LOAD_FREQ; init_cfs_rq(&rq->cfs); init_rt_rq(&rq->rt, rq); #ifdef CONFIG_FAIR_GROUP_SCHED root_task_group.shares = root_task_group_load; INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); /* * How much cpu bandwidth does root_task_group get? * * In case of task-groups formed thr' the cgroup filesystem, it * gets 100% of the cpu resources in the system. This overall * system cpu resource is divided among the tasks of * root_task_group and its child task-groups in a fair manner, * based on each entity's (task or task-group's) weight * (se->load.weight). * * In other words, if root_task_group has 10 tasks of weight * 1024) and two child groups A0 and A1 (of weight 1024 each), * then A0's share of the cpu resource is: * * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% * * We achieve this by letting root_task_group's tasks sit * directly in rq->cfs (i.e root_task_group->se[] = NULL). */ init_cfs_bandwidth(&root_task_group.cfs_bandwidth); init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); #endif /* CONFIG_FAIR_GROUP_SCHED */ rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; #ifdef CONFIG_RT_GROUP_SCHED INIT_LIST_HEAD(&rq->leaf_rt_rq_list); init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); #endif for (j = 0; j < CPU_LOAD_IDX_MAX; j++) rq->cpu_load[j] = 0; rq->last_load_update_tick = jiffies; #ifdef CONFIG_SMP rq->sd = NULL; rq->rd = NULL; rq->cpu_power = SCHED_POWER_SCALE; rq->post_schedule = 0; rq->active_balance = 0; rq->next_balance = jiffies; rq->push_cpu = 0; rq->cpu = i; rq->online = 0; rq->idle_stamp = 0; rq->avg_idle = 2*sysctl_sched_migration_cost; rq_attach_root(rq, &def_root_domain); #ifdef CONFIG_NO_HZ rq->nohz_balance_kick = 0; #endif #endif init_rq_hrtick(rq); atomic_set(&rq->nr_iowait, 0); } set_load_weight(&init_task); #ifdef CONFIG_PREEMPT_NOTIFIERS INIT_HLIST_HEAD(&init_task.preempt_notifiers); #endif #ifdef CONFIG_SMP open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); #endif #ifdef CONFIG_RT_MUTEXES plist_head_init(&init_task.pi_waiters); #endif /* * The boot idle thread does lazy MMU switching as well: */ atomic_inc(&init_mm.mm_count); enter_lazy_tlb(&init_mm, current); /* * Make us the idle thread. Technically, schedule() should not be * called from this thread, however somewhere below it might be, * but because we are the idle thread, we just pick up running again * when this runqueue becomes "idle". */ init_idle(current, smp_processor_id()); calc_load_update = jiffies + LOAD_FREQ; /* * During early bootup we pretend to be a normal task: */ current->sched_class = &fair_sched_class; #ifdef CONFIG_SMP zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT); #ifdef CONFIG_NO_HZ zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT); atomic_set(&nohz.load_balancer, nr_cpu_ids); atomic_set(&nohz.first_pick_cpu, nr_cpu_ids); atomic_set(&nohz.second_pick_cpu, nr_cpu_ids); #endif /* May be allocated at isolcpus cmdline parse time */ if (cpu_isolated_map == NULL) zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); #endif /* SMP */ scheduler_running = 1; } #ifdef CONFIG_DEBUG_ATOMIC_SLEEP static inline int preempt_count_equals(int preempt_offset) { int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth(); return (nested == preempt_offset); } void __might_sleep(const char *file, int line, int preempt_offset) { static unsigned long prev_jiffy; /* ratelimiting */ rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */ if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) || system_state != SYSTEM_RUNNING || oops_in_progress) return; if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) return; prev_jiffy = jiffies; printk(KERN_ERR "BUG: sleeping function called from invalid context at %s:%d\n", file, line); printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", in_atomic(), irqs_disabled(), current->pid, current->comm); debug_show_held_locks(current); if (irqs_disabled()) print_irqtrace_events(current); dump_stack(); } EXPORT_SYMBOL(__might_sleep); #endif #ifdef CONFIG_MAGIC_SYSRQ static void normalize_task(struct rq *rq, struct task_struct *p) { const struct sched_class *prev_class = p->sched_class; int old_prio = p->prio; int on_rq; on_rq = p->on_rq; if (on_rq) deactivate_task(rq, p, 0); __setscheduler(rq, p, SCHED_NORMAL, 0); if (on_rq) { activate_task(rq, p, 0); resched_task(rq->curr); } check_class_changed(rq, p, prev_class, old_prio); } void normalize_rt_tasks(void) { struct task_struct *g, *p; unsigned long flags; struct rq *rq; read_lock_irqsave(&tasklist_lock, flags); do_each_thread(g, p) { /* * Only normalize user tasks: */ if (!p->mm) continue; p->se.exec_start = 0; #ifdef CONFIG_SCHEDSTATS p->se.statistics.wait_start = 0; p->se.statistics.sleep_start = 0; p->se.statistics.block_start = 0; #endif if (!rt_task(p)) { /* * Renice negative nice level userspace * tasks back to 0: */ if (TASK_NICE(p) < 0 && p->mm) set_user_nice(p, 0); continue; } raw_spin_lock(&p->pi_lock); rq = __task_rq_lock(p); normalize_task(rq, p); __task_rq_unlock(rq); raw_spin_unlock(&p->pi_lock); } while_each_thread(g, p); read_unlock_irqrestore(&tasklist_lock, flags); } #endif /* CONFIG_MAGIC_SYSRQ */ #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) /* * These functions are only useful for the IA64 MCA handling, or kdb. * * They can only be called when the whole system has been * stopped - every CPU needs to be quiescent, and no scheduling * activity can take place. Using them for anything else would * be a serious bug, and as a result, they aren't even visible * under any other configuration. */ /** * curr_task - return the current task for a given cpu. * @cpu: the processor in question. * * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! */ struct task_struct *curr_task(int cpu) { return cpu_curr(cpu); } #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ #ifdef CONFIG_IA64 /** * set_curr_task - set the current task for a given cpu. * @cpu: the processor in question. * @p: the task pointer to set. * * Description: This function must only be used when non-maskable interrupts * are serviced on a separate stack. It allows the architecture to switch the * notion of the current task on a cpu in a non-blocking manner. This function * must be called with all CPU's synchronized, and interrupts disabled, the * and caller must save the original value of the current task (see * curr_task() above) and restore that value before reenabling interrupts and * re-starting the system. * * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! */ void set_curr_task(int cpu, struct task_struct *p) { cpu_curr(cpu) = p; } #endif #ifdef CONFIG_FAIR_GROUP_SCHED static void free_fair_sched_group(struct task_group *tg) { int i; destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); for_each_possible_cpu(i) { if (tg->cfs_rq) kfree(tg->cfs_rq[i]); if (tg->se) kfree(tg->se[i]); } kfree(tg->cfs_rq); kfree(tg->se); } static int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) { struct cfs_rq *cfs_rq; struct sched_entity *se; int i; tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL); if (!tg->cfs_rq) goto err; tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL); if (!tg->se) goto err; tg->shares = NICE_0_LOAD; init_cfs_bandwidth(tg_cfs_bandwidth(tg)); for_each_possible_cpu(i) { cfs_rq = kzalloc_node(sizeof(struct cfs_rq), GFP_KERNEL, cpu_to_node(i)); if (!cfs_rq) goto err; se = kzalloc_node(sizeof(struct sched_entity), GFP_KERNEL, cpu_to_node(i)); if (!se) goto err_free_rq; init_cfs_rq(cfs_rq); init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); } return 1; err_free_rq: kfree(cfs_rq); err: return 0; } static inline void unregister_fair_sched_group(struct task_group *tg, int cpu) { struct rq *rq = cpu_rq(cpu); unsigned long flags; /* * Only empty task groups can be destroyed; so we can speculatively * check on_list without danger of it being re-added. */ if (!tg->cfs_rq[cpu]->on_list) return; raw_spin_lock_irqsave(&rq->lock, flags); list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); raw_spin_unlock_irqrestore(&rq->lock, flags); } #else /* !CONFIG_FAIR_GROUP_SCHED */ static inline void free_fair_sched_group(struct task_group *tg) { } static inline int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) { return 1; } static inline void unregister_fair_sched_group(struct task_group *tg, int cpu) { } #endif /* CONFIG_FAIR_GROUP_SCHED */ #ifdef CONFIG_RT_GROUP_SCHED static void free_rt_sched_group(struct task_group *tg) { int i; if (tg->rt_se) destroy_rt_bandwidth(&tg->rt_bandwidth); for_each_possible_cpu(i) { if (tg->rt_rq) kfree(tg->rt_rq[i]); if (tg->rt_se) kfree(tg->rt_se[i]); } kfree(tg->rt_rq); kfree(tg->rt_se); } static int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) { struct rt_rq *rt_rq; struct sched_rt_entity *rt_se; int i; tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL); if (!tg->rt_rq) goto err; tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL); if (!tg->rt_se) goto err; init_rt_bandwidth(&tg->rt_bandwidth, ktime_to_ns(def_rt_bandwidth.rt_period), 0); for_each_possible_cpu(i) { rt_rq = kzalloc_node(sizeof(struct rt_rq), GFP_KERNEL, cpu_to_node(i)); if (!rt_rq) goto err; rt_se = kzalloc_node(sizeof(struct sched_rt_entity), GFP_KERNEL, cpu_to_node(i)); if (!rt_se) goto err_free_rq; init_rt_rq(rt_rq, cpu_rq(i)); rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime; init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]); } return 1; err_free_rq: kfree(rt_rq); err: return 0; } #else /* !CONFIG_RT_GROUP_SCHED */ static inline void free_rt_sched_group(struct task_group *tg) { } static inline int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) { return 1; } #endif /* CONFIG_RT_GROUP_SCHED */ #ifdef CONFIG_CGROUP_SCHED static void free_sched_group(struct task_group *tg) { free_fair_sched_group(tg); free_rt_sched_group(tg); autogroup_free(tg); kfree(tg); } /* allocate runqueue etc for a new task group */ struct task_group *sched_create_group(struct task_group *parent) { struct task_group *tg; unsigned long flags; tg = kzalloc(sizeof(*tg), GFP_KERNEL); if (!tg) return ERR_PTR(-ENOMEM); if (!alloc_fair_sched_group(tg, parent)) goto err; if (!alloc_rt_sched_group(tg, parent)) goto err; spin_lock_irqsave(&task_group_lock, flags); list_add_rcu(&tg->list, &task_groups); WARN_ON(!parent); /* root should already exist */ tg->parent = parent; INIT_LIST_HEAD(&tg->children); list_add_rcu(&tg->siblings, &parent->children); spin_unlock_irqrestore(&task_group_lock, flags); return tg; err: free_sched_group(tg); return ERR_PTR(-ENOMEM); } /* rcu callback to free various structures associated with a task group */ static void free_sched_group_rcu(struct rcu_head *rhp) { /* now it should be safe to free those cfs_rqs */ free_sched_group(container_of(rhp, struct task_group, rcu)); } /* Destroy runqueue etc associated with a task group */ void sched_destroy_group(struct task_group *tg) { unsigned long flags; int i; /* end participation in shares distribution */ for_each_possible_cpu(i) unregister_fair_sched_group(tg, i); spin_lock_irqsave(&task_group_lock, flags); list_del_rcu(&tg->list); list_del_rcu(&tg->siblings); spin_unlock_irqrestore(&task_group_lock, flags); /* wait for possible concurrent references to cfs_rqs complete */ call_rcu(&tg->rcu, free_sched_group_rcu); } /* change task's runqueue when it moves between groups. * The caller of this function should have put the task in its new group * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to * reflect its new group. */ void sched_move_task(struct task_struct *tsk) { int on_rq, running; unsigned long flags; struct rq *rq; rq = task_rq_lock(tsk, &flags); running = task_current(rq, tsk); on_rq = tsk->on_rq; if (on_rq) dequeue_task(rq, tsk, 0); if (unlikely(running)) tsk->sched_class->put_prev_task(rq, tsk); #ifdef CONFIG_FAIR_GROUP_SCHED if (tsk->sched_class->task_move_group) tsk->sched_class->task_move_group(tsk, on_rq); else #endif set_task_rq(tsk, task_cpu(tsk)); if (unlikely(running)) tsk->sched_class->set_curr_task(rq); if (on_rq) enqueue_task(rq, tsk, 0); task_rq_unlock(rq, tsk, &flags); } #endif /* CONFIG_CGROUP_SCHED */ #ifdef CONFIG_FAIR_GROUP_SCHED static DEFINE_MUTEX(shares_mutex); int sched_group_set_shares(struct task_group *tg, unsigned long shares) { int i; unsigned long flags; /* * We can't change the weight of the root cgroup. */ if (!tg->se[0]) return -EINVAL; shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); mutex_lock(&shares_mutex); if (tg->shares == shares) goto done; tg->shares = shares; for_each_possible_cpu(i) { struct rq *rq = cpu_rq(i); struct sched_entity *se; se = tg->se[i]; /* Propagate contribution to hierarchy */ raw_spin_lock_irqsave(&rq->lock, flags); for_each_sched_entity(se) update_cfs_shares(group_cfs_rq(se)); raw_spin_unlock_irqrestore(&rq->lock, flags); } done: mutex_unlock(&shares_mutex); return 0; } unsigned long sched_group_shares(struct task_group *tg) { return tg->shares; } #endif #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH) static unsigned long to_ratio(u64 period, u64 runtime) { if (runtime == RUNTIME_INF) return 1ULL << 20; return div64_u64(runtime << 20, period); } #endif #ifdef CONFIG_RT_GROUP_SCHED /* * Ensure that the real time constraints are schedulable. */ static DEFINE_MUTEX(rt_constraints_mutex); /* Must be called with tasklist_lock held */ static inline int tg_has_rt_tasks(struct task_group *tg) { struct task_struct *g, *p; do_each_thread(g, p) { if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg) return 1; } while_each_thread(g, p); return 0; } struct rt_schedulable_data { struct task_group *tg; u64 rt_period; u64 rt_runtime; }; static int tg_rt_schedulable(struct task_group *tg, void *data) { struct rt_schedulable_data *d = data; struct task_group *child; unsigned long total, sum = 0; u64 period, runtime; period = ktime_to_ns(tg->rt_bandwidth.rt_period); runtime = tg->rt_bandwidth.rt_runtime; if (tg == d->tg) { period = d->rt_period; runtime = d->rt_runtime; } /* * Cannot have more runtime than the period. */ if (runtime > period && runtime != RUNTIME_INF) return -EINVAL; /* * Ensure we don't starve existing RT tasks. */ if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) return -EBUSY; total = to_ratio(period, runtime); /* * Nobody can have more than the global setting allows. */ if (total > to_ratio(global_rt_period(), global_rt_runtime())) return -EINVAL; /* * The sum of our children's runtime should not exceed our own. */ list_for_each_entry_rcu(child, &tg->children, siblings) { period = ktime_to_ns(child->rt_bandwidth.rt_period); runtime = child->rt_bandwidth.rt_runtime; if (child == d->tg) { period = d->rt_period; runtime = d->rt_runtime; } sum += to_ratio(period, runtime); } if (sum > total) return -EINVAL; return 0; } static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) { int ret; struct rt_schedulable_data data = { .tg = tg, .rt_period = period, .rt_runtime = runtime, }; rcu_read_lock(); ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); rcu_read_unlock(); return ret; } static int tg_set_rt_bandwidth(struct task_group *tg, u64 rt_period, u64 rt_runtime) { int i, err = 0; mutex_lock(&rt_constraints_mutex); read_lock(&tasklist_lock); err = __rt_schedulable(tg, rt_period, rt_runtime); if (err) goto unlock; raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); tg->rt_bandwidth.rt_runtime = rt_runtime; for_each_possible_cpu(i) { struct rt_rq *rt_rq = tg->rt_rq[i]; raw_spin_lock(&rt_rq->rt_runtime_lock); rt_rq->rt_runtime = rt_runtime; raw_spin_unlock(&rt_rq->rt_runtime_lock); } raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); unlock: read_unlock(&tasklist_lock); mutex_unlock(&rt_constraints_mutex); return err; } int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) { u64 rt_runtime, rt_period; rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; if (rt_runtime_us < 0) rt_runtime = RUNTIME_INF; return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); } long sched_group_rt_runtime(struct task_group *tg) { u64 rt_runtime_us; if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) return -1; rt_runtime_us = tg->rt_bandwidth.rt_runtime; do_div(rt_runtime_us, NSEC_PER_USEC); return rt_runtime_us; } int sched_group_set_rt_period(struct task_group *tg, long rt_period_us) { u64 rt_runtime, rt_period; rt_period = (u64)rt_period_us * NSEC_PER_USEC; rt_runtime = tg->rt_bandwidth.rt_runtime; if (rt_period == 0) return -EINVAL; return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); } long sched_group_rt_period(struct task_group *tg) { u64 rt_period_us; rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); do_div(rt_period_us, NSEC_PER_USEC); return rt_period_us; } static int sched_rt_global_constraints(void) { u64 runtime, period; int ret = 0; if (sysctl_sched_rt_period <= 0) return -EINVAL; runtime = global_rt_runtime(); period = global_rt_period(); /* * Sanity check on the sysctl variables. */ if (runtime > period && runtime != RUNTIME_INF) return -EINVAL; mutex_lock(&rt_constraints_mutex); read_lock(&tasklist_lock); ret = __rt_schedulable(NULL, 0, 0); read_unlock(&tasklist_lock); mutex_unlock(&rt_constraints_mutex); return ret; } int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) { /* Don't accept realtime tasks when there is no way for them to run */ if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) return 0; return 1; } #else /* !CONFIG_RT_GROUP_SCHED */ static int sched_rt_global_constraints(void) { unsigned long flags; int i; if (sysctl_sched_rt_period <= 0) return -EINVAL; /* * There's always some RT tasks in the root group * -- migration, kstopmachine etc.. */ if (sysctl_sched_rt_runtime == 0) return -EBUSY; raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); for_each_possible_cpu(i) { struct rt_rq *rt_rq = &cpu_rq(i)->rt; raw_spin_lock(&rt_rq->rt_runtime_lock); rt_rq->rt_runtime = global_rt_runtime(); raw_spin_unlock(&rt_rq->rt_runtime_lock); } raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); return 0; } #endif /* CONFIG_RT_GROUP_SCHED */ int sched_rt_handler(struct ctl_table *table, int write, void __user *buffer, size_t *lenp, loff_t *ppos) { int ret; int old_period, old_runtime; static DEFINE_MUTEX(mutex); mutex_lock(&mutex); old_period = sysctl_sched_rt_period; old_runtime = sysctl_sched_rt_runtime; ret = proc_dointvec(table, write, buffer, lenp, ppos); if (!ret && write) { ret = sched_rt_global_constraints(); if (ret) { sysctl_sched_rt_period = old_period; sysctl_sched_rt_runtime = old_runtime; } else { def_rt_bandwidth.rt_runtime = global_rt_runtime(); def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period()); } } mutex_unlock(&mutex); return ret; } #ifdef CONFIG_CGROUP_SCHED /* return corresponding task_group object of a cgroup */ static inline struct task_group *cgroup_tg(struct cgroup *cgrp) { return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id), struct task_group, css); } static struct cgroup_subsys_state * cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp) { struct task_group *tg, *parent; if (!cgrp->parent) { /* This is early initialization for the top cgroup */ return &root_task_group.css; } parent = cgroup_tg(cgrp->parent); tg = sched_create_group(parent); if (IS_ERR(tg)) return ERR_PTR(-ENOMEM); return &tg->css; } static void cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp) { struct task_group *tg = cgroup_tg(cgrp); sched_destroy_group(tg); } static int cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk) { #ifdef CONFIG_RT_GROUP_SCHED if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk)) return -EINVAL; #else /* We don't support RT-tasks being in separate groups */ if (tsk->sched_class != &fair_sched_class) return -EINVAL; #endif return 0; } static void cpu_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk) { sched_move_task(tsk); } static void cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp, struct cgroup *old_cgrp, struct task_struct *task) { /* * cgroup_exit() is called in the copy_process() failure path. * Ignore this case since the task hasn't ran yet, this avoids * trying to poke a half freed task state from generic code. */ if (!(task->flags & PF_EXITING)) return; sched_move_task(task); } #ifdef CONFIG_FAIR_GROUP_SCHED static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype, u64 shareval) { return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval)); } static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft) { struct task_group *tg = cgroup_tg(cgrp); return (u64) scale_load_down(tg->shares); } #ifdef CONFIG_CFS_BANDWIDTH static DEFINE_MUTEX(cfs_constraints_mutex); const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) { int i, ret = 0, runtime_enabled; struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg); if (tg == &root_task_group) return -EINVAL; /* * Ensure we have at some amount of bandwidth every period. This is * to prevent reaching a state of large arrears when throttled via * entity_tick() resulting in prolonged exit starvation. */ if (quota < min_cfs_quota_period || period < min_cfs_quota_period) return -EINVAL; /* * Likewise, bound things on the otherside by preventing insane quota * periods. This also allows us to normalize in computing quota * feasibility. */ if (period > max_cfs_quota_period) return -EINVAL; mutex_lock(&cfs_constraints_mutex); ret = __cfs_schedulable(tg, period, quota); if (ret) goto out_unlock; runtime_enabled = quota != RUNTIME_INF; raw_spin_lock_irq(&cfs_b->lock); cfs_b->period = ns_to_ktime(period); cfs_b->quota = quota; __refill_cfs_bandwidth_runtime(cfs_b); /* restart the period timer (if active) to handle new period expiry */ if (runtime_enabled && cfs_b->timer_active) { /* force a reprogram */ cfs_b->timer_active = 0; __start_cfs_bandwidth(cfs_b); } raw_spin_unlock_irq(&cfs_b->lock); for_each_possible_cpu(i) { struct cfs_rq *cfs_rq = tg->cfs_rq[i]; struct rq *rq = rq_of(cfs_rq); raw_spin_lock_irq(&rq->lock); cfs_rq->runtime_enabled = runtime_enabled; cfs_rq->runtime_remaining = 0; if (cfs_rq_throttled(cfs_rq)) unthrottle_cfs_rq(cfs_rq); raw_spin_unlock_irq(&rq->lock); } out_unlock: mutex_unlock(&cfs_constraints_mutex); return ret; } int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) { u64 quota, period; period = ktime_to_ns(tg_cfs_bandwidth(tg)->period); if (cfs_quota_us < 0) quota = RUNTIME_INF; else quota = (u64)cfs_quota_us * NSEC_PER_USEC; return tg_set_cfs_bandwidth(tg, period, quota); } long tg_get_cfs_quota(struct task_group *tg) { u64 quota_us; if (tg_cfs_bandwidth(tg)->quota == RUNTIME_INF) return -1; quota_us = tg_cfs_bandwidth(tg)->quota; do_div(quota_us, NSEC_PER_USEC); return quota_us; } int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) { u64 quota, period; period = (u64)cfs_period_us * NSEC_PER_USEC; quota = tg_cfs_bandwidth(tg)->quota; if (period <= 0) return -EINVAL; return tg_set_cfs_bandwidth(tg, period, quota); } long tg_get_cfs_period(struct task_group *tg) { u64 cfs_period_us; cfs_period_us = ktime_to_ns(tg_cfs_bandwidth(tg)->period); do_div(cfs_period_us, NSEC_PER_USEC); return cfs_period_us; } static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft) { return tg_get_cfs_quota(cgroup_tg(cgrp)); } static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype, s64 cfs_quota_us) { return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us); } static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft) { return tg_get_cfs_period(cgroup_tg(cgrp)); } static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype, u64 cfs_period_us) { return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us); } struct cfs_schedulable_data { struct task_group *tg; u64 period, quota; }; /* * normalize group quota/period to be quota/max_period * note: units are usecs */ static u64 normalize_cfs_quota(struct task_group *tg, struct cfs_schedulable_data *d) { u64 quota, period; if (tg == d->tg) { period = d->period; quota = d->quota; } else { period = tg_get_cfs_period(tg); quota = tg_get_cfs_quota(tg); } /* note: these should typically be equivalent */ if (quota == RUNTIME_INF || quota == -1) return RUNTIME_INF; return to_ratio(period, quota); } static int tg_cfs_schedulable_down(struct task_group *tg, void *data) { struct cfs_schedulable_data *d = data; struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg); s64 quota = 0, parent_quota = -1; if (!tg->parent) { quota = RUNTIME_INF; } else { struct cfs_bandwidth *parent_b = tg_cfs_bandwidth(tg->parent); quota = normalize_cfs_quota(tg, d); parent_quota = parent_b->hierarchal_quota; /* * ensure max(child_quota) <= parent_quota, inherit when no * limit is set */ if (quota == RUNTIME_INF) quota = parent_quota; else if (parent_quota != RUNTIME_INF && quota > parent_quota) return -EINVAL; } cfs_b->hierarchal_quota = quota; return 0; } static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) { int ret; struct cfs_schedulable_data data = { .tg = tg, .period = period, .quota = quota, }; if (quota != RUNTIME_INF) { do_div(data.period, NSEC_PER_USEC); do_div(data.quota, NSEC_PER_USEC); } rcu_read_lock(); ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); rcu_read_unlock(); return ret; } static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft, struct cgroup_map_cb *cb) { struct task_group *tg = cgroup_tg(cgrp); struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg); cb->fill(cb, "nr_periods", cfs_b->nr_periods); cb->fill(cb, "nr_throttled", cfs_b->nr_throttled); cb->fill(cb, "throttled_time", cfs_b->throttled_time); return 0; } #endif /* CONFIG_CFS_BANDWIDTH */ #endif /* CONFIG_FAIR_GROUP_SCHED */ #ifdef CONFIG_RT_GROUP_SCHED static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft, s64 val) { return sched_group_set_rt_runtime(cgroup_tg(cgrp), val); } static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft) { return sched_group_rt_runtime(cgroup_tg(cgrp)); } static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype, u64 rt_period_us) { return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us); } static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft) { return sched_group_rt_period(cgroup_tg(cgrp)); } #endif /* CONFIG_RT_GROUP_SCHED */ static struct cftype cpu_files[] = { #ifdef CONFIG_FAIR_GROUP_SCHED { .name = "shares", .read_u64 = cpu_shares_read_u64, .write_u64 = cpu_shares_write_u64, }, #endif #ifdef CONFIG_CFS_BANDWIDTH { .name = "cfs_quota_us", .read_s64 = cpu_cfs_quota_read_s64, .write_s64 = cpu_cfs_quota_write_s64, }, { .name = "cfs_period_us", .read_u64 = cpu_cfs_period_read_u64, .write_u64 = cpu_cfs_period_write_u64, }, { .name = "stat", .read_map = cpu_stats_show, }, #endif #ifdef CONFIG_RT_GROUP_SCHED { .name = "rt_runtime_us", .read_s64 = cpu_rt_runtime_read, .write_s64 = cpu_rt_runtime_write, }, { .name = "rt_period_us", .read_u64 = cpu_rt_period_read_uint, .write_u64 = cpu_rt_period_write_uint, }, #endif }; static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont) { return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files)); } struct cgroup_subsys cpu_cgroup_subsys = { .name = "cpu", .create = cpu_cgroup_create, .destroy = cpu_cgroup_destroy, .can_attach_task = cpu_cgroup_can_attach_task, .attach_task = cpu_cgroup_attach_task, .exit = cpu_cgroup_exit, .populate = cpu_cgroup_populate, .subsys_id = cpu_cgroup_subsys_id, .early_init = 1, }; #endif /* CONFIG_CGROUP_SCHED */ #ifdef CONFIG_CGROUP_CPUACCT /* * CPU accounting code for task groups. * * Based on the work by Paul Menage (menage@google.com) and Balbir Singh * (balbir@in.ibm.com). */ /* track cpu usage of a group of tasks and its child groups */ struct cpuacct { struct cgroup_subsys_state css; /* cpuusage holds pointer to a u64-type object on every cpu */ u64 __percpu *cpuusage; struct percpu_counter cpustat[CPUACCT_STAT_NSTATS]; struct cpuacct *parent; }; struct cgroup_subsys cpuacct_subsys; /* return cpu accounting group corresponding to this container */ static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp) { return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id), struct cpuacct, css); } /* return cpu accounting group to which this task belongs */ static inline struct cpuacct *task_ca(struct task_struct *tsk) { return container_of(task_subsys_state(tsk, cpuacct_subsys_id), struct cpuacct, css); } /* create a new cpu accounting group */ static struct cgroup_subsys_state *cpuacct_create( struct cgroup_subsys *ss, struct cgroup *cgrp) { struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL); int i; if (!ca) goto out; ca->cpuusage = alloc_percpu(u64); if (!ca->cpuusage) goto out_free_ca; for (i = 0; i < CPUACCT_STAT_NSTATS; i++) if (percpu_counter_init(&ca->cpustat[i], 0)) goto out_free_counters; if (cgrp->parent) ca->parent = cgroup_ca(cgrp->parent); return &ca->css; out_free_counters: while (--i >= 0) percpu_counter_destroy(&ca->cpustat[i]); free_percpu(ca->cpuusage); out_free_ca: kfree(ca); out: return ERR_PTR(-ENOMEM); } /* destroy an existing cpu accounting group */ static void cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp) { struct cpuacct *ca = cgroup_ca(cgrp); int i; for (i = 0; i < CPUACCT_STAT_NSTATS; i++) percpu_counter_destroy(&ca->cpustat[i]); free_percpu(ca->cpuusage); kfree(ca); } static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu) { u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); u64 data; #ifndef CONFIG_64BIT /* * Take rq->lock to make 64-bit read safe on 32-bit platforms. */ raw_spin_lock_irq(&cpu_rq(cpu)->lock); data = *cpuusage; raw_spin_unlock_irq(&cpu_rq(cpu)->lock); #else data = *cpuusage; #endif return data; } static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val) { u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); #ifndef CONFIG_64BIT /* * Take rq->lock to make 64-bit write safe on 32-bit platforms. */ raw_spin_lock_irq(&cpu_rq(cpu)->lock); *cpuusage = val; raw_spin_unlock_irq(&cpu_rq(cpu)->lock); #else *cpuusage = val; #endif } /* return total cpu usage (in nanoseconds) of a group */ static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft) { struct cpuacct *ca = cgroup_ca(cgrp); u64 totalcpuusage = 0; int i; for_each_present_cpu(i) totalcpuusage += cpuacct_cpuusage_read(ca, i); return totalcpuusage; } static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype, u64 reset) { struct cpuacct *ca = cgroup_ca(cgrp); int err = 0; int i; if (reset) { err = -EINVAL; goto out; } for_each_present_cpu(i) cpuacct_cpuusage_write(ca, i, 0); out: return err; } static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft, struct seq_file *m) { struct cpuacct *ca = cgroup_ca(cgroup); u64 percpu; int i; for_each_present_cpu(i) { percpu = cpuacct_cpuusage_read(ca, i); seq_printf(m, "%llu ", (unsigned long long) percpu); } seq_printf(m, "\n"); return 0; } static const char *cpuacct_stat_desc[] = { [CPUACCT_STAT_USER] = "user", [CPUACCT_STAT_SYSTEM] = "system", }; static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft, struct cgroup_map_cb *cb) { struct cpuacct *ca = cgroup_ca(cgrp); int i; for (i = 0; i < CPUACCT_STAT_NSTATS; i++) { s64 val = percpu_counter_read(&ca->cpustat[i]); val = cputime64_to_clock_t(val); cb->fill(cb, cpuacct_stat_desc[i], val); } return 0; } static struct cftype files[] = { { .name = "usage", .read_u64 = cpuusage_read, .write_u64 = cpuusage_write, }, { .name = "usage_percpu", .read_seq_string = cpuacct_percpu_seq_read, }, { .name = "stat", .read_map = cpuacct_stats_show, }, }; static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp) { return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files)); } /* * charge this task's execution time to its accounting group. * * called with rq->lock held. */ static void cpuacct_charge(struct task_struct *tsk, u64 cputime) { struct cpuacct *ca; int cpu; if (unlikely(!cpuacct_subsys.active)) return; cpu = task_cpu(tsk); rcu_read_lock(); ca = task_ca(tsk); for (; ca; ca = ca->parent) { u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); *cpuusage += cputime; } rcu_read_unlock(); } /* * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large * in cputime_t units. As a result, cpuacct_update_stats calls * percpu_counter_add with values large enough to always overflow the * per cpu batch limit causing bad SMP scalability. * * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled * and enabled. We cap it at INT_MAX which is the largest allowed batch value. */ #ifdef CONFIG_SMP #define CPUACCT_BATCH \ min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX) #else #define CPUACCT_BATCH 0 #endif /* * Charge the system/user time to the task's accounting group. */ static void cpuacct_update_stats(struct task_struct *tsk, enum cpuacct_stat_index idx, cputime_t val) { struct cpuacct *ca; int batch = CPUACCT_BATCH; if (unlikely(!cpuacct_subsys.active)) return; rcu_read_lock(); ca = task_ca(tsk); do { __percpu_counter_add(&ca->cpustat[idx], val, batch); ca = ca->parent; } while (ca); rcu_read_unlock(); } struct cgroup_subsys cpuacct_subsys = { .name = "cpuacct", .create = cpuacct_create, .destroy = cpuacct_destroy, .populate = cpuacct_populate, .subsys_id = cpuacct_subsys_id, }; #endif /* CONFIG_CGROUP_CPUACCT */ |