Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 */

#include <linux/mm.h>
#include <linux/nmi.h>
#include <linux/init.h>
#include <asm/uaccess.h>
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
#include <linux/completion.h>
#include <linux/kernel_stat.h>
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>

/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
 * These are the 'tuning knobs' of the scheduler:
 *
 * Minimum timeslice is 10 msecs, default timeslice is 150 msecs,
 * maximum timeslice is 300 msecs. Timeslices get refilled after
 * they expire.
 */
#define MIN_TIMESLICE		( 10 * HZ / 1000)
#define MAX_TIMESLICE		(300 * HZ / 1000)
#define CHILD_PENALTY		95
#define PARENT_PENALTY		100
#define EXIT_WEIGHT		3
#define PRIO_BONUS_RATIO	25
#define INTERACTIVE_DELTA	2
#define MAX_SLEEP_AVG		(2*HZ)
#define STARVATION_LIMIT	(2*HZ)

/*
 * If a task is 'interactive' then we reinsert it in the active
 * array after it has expired its current timeslice. (it will not
 * continue to run immediately, it will still roundrobin with
 * other interactive tasks.)
 *
 * This part scales the interactivity limit depending on niceness.
 *
 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
 * Here are a few examples of different nice levels:
 *
 *  TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
 *  TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
 *  TASK_INTERACTIVE(  0): [1,1,1,1,0,0,0,0,0,0,0]
 *  TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
 *  TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
 *
 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
 *  priority range a task can explore, a value of '1' means the
 *  task is rated interactive.)
 *
 * Ie. nice +19 tasks can never get 'interactive' enough to be
 * reinserted into the active array. And only heavily CPU-hog nice -20
 * tasks will be expired. Default nice 0 tasks are somewhere between,
 * it takes some effort for them to get interactive, but it's not
 * too hard.
 */

#define SCALE(v1,v1_max,v2_max) \
	(v1) * (v2_max) / (v1_max)

#define DELTA(p) \
	(SCALE(TASK_NICE(p), 40, MAX_USER_PRIO*PRIO_BONUS_RATIO/100) + \
		INTERACTIVE_DELTA)

#define TASK_INTERACTIVE(p) \
	((p)->prio <= (p)->static_prio - DELTA(p))

/*
 * BASE_TIMESLICE scales user-nice values [ -20 ... 19 ]
 * to time slice values.
 *
 * The higher a thread's priority, the bigger timeslices
 * it gets during one round of execution. But even the lowest
 * priority thread gets MIN_TIMESLICE worth of execution time.
 *
 * task_timeslice() is the interface that is used by the scheduler.
 */

#define BASE_TIMESLICE(p) (MIN_TIMESLICE + \
	((MAX_TIMESLICE - MIN_TIMESLICE) * (MAX_PRIO-1-(p)->static_prio)/(MAX_USER_PRIO - 1)))

static inline unsigned int task_timeslice(task_t *p)
{
	return BASE_TIMESLICE(p);
}

/*
 * These are the runqueue data structures:
 */

#define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))

typedef struct runqueue runqueue_t;

struct prio_array {
	int nr_active;
	unsigned long bitmap[BITMAP_SIZE];
	struct list_head queue[MAX_PRIO];
};

/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
struct runqueue {
	spinlock_t lock;
	unsigned long nr_running, nr_switches, expired_timestamp,
			nr_uninterruptible;
	task_t *curr, *idle;
	prio_array_t *active, *expired, arrays[2];
	int prev_nr_running[NR_CPUS];

	task_t *migration_thread;
	struct list_head migration_queue;

	atomic_t nr_iowait;
} ____cacheline_aligned;

static struct runqueue runqueues[NR_CPUS] __cacheline_aligned;

#define cpu_rq(cpu)		(runqueues + (cpu))
#define this_rq()		cpu_rq(smp_processor_id())
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
#define rt_task(p)		((p)->prio < MAX_RT_PRIO)

/*
 * Default context-switch locking:
 */
#ifndef prepare_arch_switch
# define prepare_arch_switch(rq, next)	do { } while(0)
# define finish_arch_switch(rq, next)	spin_unlock_irq(&(rq)->lock)
# define task_running(rq, p)		((rq)->curr == (p))
#endif

/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
 * interrupts.  Note the ordering: we can safely lookup the task_rq without
 * explicitly disabling preemption.
 */
static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
{
	struct runqueue *rq;

repeat_lock_task:
	local_irq_save(*flags);
	rq = task_rq(p);
	spin_lock(&rq->lock);
	if (unlikely(rq != task_rq(p))) {
		spin_unlock_irqrestore(&rq->lock, *flags);
		goto repeat_lock_task;
	}
	return rq;
}

static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
 * rq_lock - lock a given runqueue and disable interrupts.
 */
static inline runqueue_t *this_rq_lock(void)
{
	runqueue_t *rq;

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

static inline void rq_unlock(runqueue_t *rq)
{
	spin_unlock_irq(&rq->lock);
}

/*
 * Adding/removing a task to/from a priority array:
 */
static inline void dequeue_task(struct task_struct *p, prio_array_t *array)
{
	array->nr_active--;
	list_del(&p->run_list);
	if (list_empty(array->queue + p->prio))
		__clear_bit(p->prio, array->bitmap);
}

static inline void enqueue_task(struct task_struct *p, prio_array_t *array)
{
	list_add_tail(&p->run_list, array->queue + p->prio);
	__set_bit(p->prio, array->bitmap);
	array->nr_active++;
	p->array = array;
}

/*
 * effective_prio - return the priority that is based on the static
 * priority but is modified by bonuses/penalties.
 *
 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
 * into the -5 ... 0 ... +5 bonus/penalty range.
 *
 * We use 25% of the full 0...39 priority range so that:
 *
 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
 *
 * Both properties are important to certain workloads.
 */
static inline int effective_prio(task_t *p)
{
	int bonus, prio;

	bonus = MAX_USER_PRIO*PRIO_BONUS_RATIO*p->sleep_avg/MAX_SLEEP_AVG/100 -
			MAX_USER_PRIO*PRIO_BONUS_RATIO/100/2;

	prio = p->static_prio - bonus;
	if (prio < MAX_RT_PRIO)
		prio = MAX_RT_PRIO;
	if (prio > MAX_PRIO-1)
		prio = MAX_PRIO-1;
	return prio;
}

/*
 * activate_task - move a task to the runqueue.

 * Also update all the scheduling statistics stuff. (sleep average
 * calculation, priority modifiers, etc.)
 */
static inline void activate_task(task_t *p, runqueue_t *rq)
{
	unsigned long sleep_time = jiffies - p->sleep_timestamp;
	prio_array_t *array = rq->active;

	if (!rt_task(p) && sleep_time) {
		/*
		 * This code gives a bonus to interactive tasks. We update
		 * an 'average sleep time' value here, based on
		 * sleep_timestamp. The more time a task spends sleeping,
		 * the higher the average gets - and the higher the priority
		 * boost gets as well.
		 */
		p->sleep_avg += sleep_time;
		if (p->sleep_avg > MAX_SLEEP_AVG)
			p->sleep_avg = MAX_SLEEP_AVG;
		p->prio = effective_prio(p);
	}
	enqueue_task(p, array);
	rq->nr_running++;
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
static inline void deactivate_task(struct task_struct *p, runqueue_t *rq)
{
	rq->nr_running--;
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible++;
	dequeue_task(p, p->array);
	p->array = NULL;
}

/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
static inline void resched_task(task_t *p)
{
#ifdef CONFIG_SMP
	int need_resched, nrpolling;

	preempt_disable();
	/* minimise the chance of sending an interrupt to poll_idle() */
	nrpolling = test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
	need_resched = test_and_set_tsk_thread_flag(p,TIF_NEED_RESCHED);
	nrpolling |= test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);

	if (!need_resched && !nrpolling && (task_cpu(p) != smp_processor_id()))
		smp_send_reschedule(task_cpu(p));
	preempt_enable();
#else
	set_tsk_need_resched(p);
#endif
}

#ifdef CONFIG_SMP

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time.
 */
void wait_task_inactive(task_t * p)
{
	unsigned long flags;
	runqueue_t *rq;

repeat:
	preempt_disable();
	rq = task_rq(p);
	if (unlikely(task_running(rq, p))) {
		cpu_relax();
		/*
		 * enable/disable preemption just to make this
		 * a preemption point - we are busy-waiting
		 * anyway.
		 */
		preempt_enable();
		goto repeat;
	}
	rq = task_rq_lock(p, &flags);
	if (unlikely(task_running(rq, p))) {
		task_rq_unlock(rq, &flags);
		preempt_enable();
		goto repeat;
	}
	task_rq_unlock(rq, &flags);
	preempt_enable();
}
#endif

/*
 * kick_if_running - kick the remote CPU if the task is running currently.
 *
 * This code is used by the signal code to signal tasks
 * which are in user-mode, as quickly as possible.
 *
 * (Note that we do this lockless - if the task does anything
 * while the message is in flight then it will notice the
 * sigpending condition anyway.)
 */
void kick_if_running(task_t * p)
{
	if ((task_running(task_rq(p), p)) && (task_cpu(p) != smp_processor_id()))
		resched_task(p);
}

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
static int try_to_wake_up(task_t * p, int sync)
{
	unsigned long flags;
	int success = 0;
	long old_state;
	runqueue_t *rq;

repeat_lock_task:
	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!p->array) {
		/*
		 * Fast-migrate the task if it's not running or runnable
		 * currently. Do not violate hard affinity.
		 */
		if (unlikely(sync && !task_running(rq, p) &&
			(task_cpu(p) != smp_processor_id()) &&
			(p->cpus_allowed & (1UL << smp_processor_id())))) {

			set_task_cpu(p, smp_processor_id());
			task_rq_unlock(rq, &flags);
			goto repeat_lock_task;
		}
		if (old_state == TASK_UNINTERRUPTIBLE)
			rq->nr_uninterruptible--;
		activate_task(p, rq);

		if (p->prio < rq->curr->prio)
			resched_task(rq->curr);
		success = 1;
	}
	p->state = TASK_RUNNING;
	task_rq_unlock(rq, &flags);

	return success;
}

int wake_up_process(task_t * p)
{
	return try_to_wake_up(p, 0);
}

/*
 * wake_up_forked_process - wake up a freshly forked process.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created process.
 */
void wake_up_forked_process(task_t * p)
{
	runqueue_t *rq = this_rq_lock();

	p->state = TASK_RUNNING;
	if (!rt_task(p)) {
		/*
		 * We decrease the sleep average of forking parents
		 * and children as well, to keep max-interactive tasks
		 * from forking tasks that are max-interactive.
		 */
		current->sleep_avg = current->sleep_avg * PARENT_PENALTY / 100;
		p->sleep_avg = p->sleep_avg * CHILD_PENALTY / 100;
		p->prio = effective_prio(p);
	}
	set_task_cpu(p, smp_processor_id());
	activate_task(p, rq);

	rq_unlock(rq);
}

/*
 * Potentially available exiting-child timeslices are
 * retrieved here - this way the parent does not get
 * penalized for creating too many threads.
 *
 * (this cannot be used to 'generate' timeslices
 * artificially, because any timeslice recovered here
 * was given away by the parent in the first place.)
 */
void sched_exit(task_t * p)
{
	unsigned long flags;

	local_irq_save(flags);
	if (p->first_time_slice) {
		p->parent->time_slice += p->time_slice;
		if (unlikely(p->parent->time_slice > MAX_TIMESLICE))
			p->parent->time_slice = MAX_TIMESLICE;
	}
	local_irq_restore(flags);
	/*
	 * If the child was a (relative-) CPU hog then decrease
	 * the sleep_avg of the parent as well.
	 */
	if (p->sleep_avg < p->parent->sleep_avg)
		p->parent->sleep_avg = (p->parent->sleep_avg * EXIT_WEIGHT +
			p->sleep_avg) / (EXIT_WEIGHT + 1);
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
asmlinkage void schedule_tail(task_t *prev)
{
	finish_arch_switch(this_rq(), prev);
	if (current->set_child_tid)
		put_user(current->pid, current->set_child_tid);
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
static inline task_t * context_switch(task_t *prev, task_t *next)
{
	struct mm_struct *mm = next->mm;
	struct mm_struct *oldmm = prev->active_mm;

	if (unlikely(!mm)) {
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next, smp_processor_id());
	} else
		switch_mm(oldmm, mm, next, smp_processor_id());

	if (unlikely(!prev->mm)) {
		prev->active_mm = NULL;
		mmdrop(oldmm);
	}

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

	return prev;
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for (i = 0; i < NR_CPUS; i++)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

	for (i = 0; i < NR_CPUS; i++) {
		if (!cpu_online(i))
			continue;
		sum += cpu_rq(i)->nr_uninterruptible;
	}
	return sum;
}

unsigned long nr_context_switches(void)
{
	unsigned long i, sum = 0;

	for (i = 0; i < NR_CPUS; i++) {
		if (!cpu_online(i))
			continue;
		sum += cpu_rq(i)->nr_switches;
	}
	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

	for (i = 0; i < NR_CPUS; ++i) {
		if (!cpu_online(i))
			continue;
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
	}
	return sum;
}

/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
static inline void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
{
	if (rq1 == rq2)
		spin_lock(&rq1->lock);
	else {
		if (rq1 < rq2) {
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
static inline void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
}

#if CONFIG_SMP

/*
 * double_lock_balance - lock the busiest runqueue
 *
 * this_rq is locked already. Recalculate nr_running if we have to
 * drop the runqueue lock.
 */
static inline unsigned int double_lock_balance(runqueue_t *this_rq,
	runqueue_t *busiest, int this_cpu, int idle, unsigned int nr_running)
{
	if (unlikely(!spin_trylock(&busiest->lock))) {
		if (busiest < this_rq) {
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
			/* Need to recalculate nr_running */
			if (idle || (this_rq->nr_running > this_rq->prev_nr_running[this_cpu]))
				nr_running = this_rq->nr_running;
			else
				nr_running = this_rq->prev_nr_running[this_cpu];
		} else
			spin_lock(&busiest->lock);
	}
	return nr_running;
}

/*
 * find_busiest_queue - find the busiest runqueue.
 */
static inline runqueue_t *find_busiest_queue(runqueue_t *this_rq, int this_cpu, int idle, int *imbalance)
{
	int nr_running, load, max_load, i;
	runqueue_t *busiest, *rq_src;

	/*
	 * We search all runqueues to find the most busy one.
	 * We do this lockless to reduce cache-bouncing overhead,
	 * we re-check the 'best' source CPU later on again, with
	 * the lock held.
	 *
	 * We fend off statistical fluctuations in runqueue lengths by
	 * saving the runqueue length during the previous load-balancing
	 * operation and using the smaller one the current and saved lengths.
	 * If a runqueue is long enough for a longer amount of time then
	 * we recognize it and pull tasks from it.
	 *
	 * The 'current runqueue length' is a statistical maximum variable,
	 * for that one we take the longer one - to avoid fluctuations in
	 * the other direction. So for a load-balance to happen it needs
	 * stable long runqueue on the target CPU and stable short runqueue
	 * on the local runqueue.
	 *
	 * We make an exception if this CPU is about to become idle - in
	 * that case we are less picky about moving a task across CPUs and
	 * take what can be taken.
	 */
	if (idle || (this_rq->nr_running > this_rq->prev_nr_running[this_cpu]))
		nr_running = this_rq->nr_running;
	else
		nr_running = this_rq->prev_nr_running[this_cpu];

	busiest = NULL;
	max_load = 1;
	for (i = 0; i < NR_CPUS; i++) {
		if (!cpu_online(i))
			continue;

		rq_src = cpu_rq(i);
		if (idle || (rq_src->nr_running < this_rq->prev_nr_running[i]))
			load = rq_src->nr_running;
		else
			load = this_rq->prev_nr_running[i];
		this_rq->prev_nr_running[i] = rq_src->nr_running;

		if ((load > max_load) && (rq_src != this_rq)) {
			busiest = rq_src;
			max_load = load;
		}
	}

	if (likely(!busiest))
		goto out;

	*imbalance = (max_load - nr_running) / 2;

	/* It needs an at least ~25% imbalance to trigger balancing. */
	if (!idle && (*imbalance < (max_load + 3)/4)) {
		busiest = NULL;
		goto out;
	}

	nr_running = double_lock_balance(this_rq, busiest, this_cpu, idle, nr_running);
	/*
	 * Make sure nothing changed since we checked the
	 * runqueue length.
	 */
	if (busiest->nr_running <= nr_running + 1) {
		spin_unlock(&busiest->lock);
		busiest = NULL;
	}
out:
	return busiest;
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
static inline void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p, runqueue_t *this_rq, int this_cpu)
{
	dequeue_task(p, src_array);
	src_rq->nr_running--;
	set_task_cpu(p, this_cpu);
	this_rq->nr_running++;
	enqueue_task(p, this_rq->active);
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
	if (p->prio < this_rq->curr->prio)
		set_need_resched();
}

/*
 * Current runqueue is empty, or rebalance tick: if there is an
 * inbalance (current runqueue is too short) then pull from
 * busiest runqueue(s).
 *
 * We call this with the current runqueue locked,
 * irqs disabled.
 */
static void load_balance(runqueue_t *this_rq, int idle)
{
	int imbalance, idx, this_cpu = smp_processor_id();
	runqueue_t *busiest;
	prio_array_t *array;
	struct list_head *head, *curr;
	task_t *tmp;

	busiest = find_busiest_queue(this_rq, this_cpu, idle, &imbalance);
	if (!busiest)
		goto out;

	/*
	 * We first consider expired tasks. Those will likely not be
	 * executed in the near future, and they are most likely to
	 * be cache-cold, thus switching CPUs has the least effect
	 * on them.
	 */
	if (busiest->expired->nr_active)
		array = busiest->expired;
	else
		array = busiest->active;

new_array:
	/* Start searching at priority 0: */
	idx = 0;
skip_bitmap:
	if (!idx)
		idx = sched_find_first_bit(array->bitmap);
	else
		idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
	if (idx >= MAX_PRIO) {
		if (array == busiest->expired) {
			array = busiest->active;
			goto new_array;
		}
		goto out_unlock;
	}

	head = array->queue + idx;
	curr = head->prev;
skip_queue:
	tmp = list_entry(curr, task_t, run_list);

	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */

#define CAN_MIGRATE_TASK(p,rq,this_cpu)					\
	((jiffies - (p)->sleep_timestamp > cache_decay_ticks) &&	\
		!task_running(rq, p) &&					\
			((p)->cpus_allowed & (1UL << (this_cpu))))

	curr = curr->prev;

	if (!CAN_MIGRATE_TASK(tmp, busiest, this_cpu)) {
		if (curr != head)
			goto skip_queue;
		idx++;
		goto skip_bitmap;
	}
	pull_task(busiest, array, tmp, this_rq, this_cpu);
	if (!idle && --imbalance) {
		if (curr != head)
			goto skip_queue;
		idx++;
		goto skip_bitmap;
	}
out_unlock:
	spin_unlock(&busiest->lock);
out:
	;
}

/*
 * One of the idle_cpu_tick() and busy_cpu_tick() functions will
 * get called every timer tick, on every CPU. Our balancing action
 * frequency and balancing agressivity depends on whether the CPU is
 * idle or not.
 *
 * busy-rebalance every 250 msecs. idle-rebalance every 1 msec. (or on
 * systems with HZ=100, every 10 msecs.)
 */
#define BUSY_REBALANCE_TICK (HZ/4 ?: 1)
#define IDLE_REBALANCE_TICK (HZ/1000 ?: 1)

static inline void idle_tick(runqueue_t *rq)
{
	if (jiffies % IDLE_REBALANCE_TICK)
		return;
	spin_lock(&rq->lock);
	load_balance(rq, 1);
	spin_unlock(&rq->lock);
}

#endif

DEFINE_PER_CPU(struct kernel_stat, kstat) = { { 0 } };

/*
 * We place interactive tasks back into the active array, if possible.
 *
 * To guarantee that this does not starve expired tasks we ignore the
 * interactivity of a task if the first expired task had to wait more
 * than a 'reasonable' amount of time. This deadline timeout is
 * load-dependent, as the frequency of array switched decreases with
 * increasing number of running tasks:
 */
#define EXPIRED_STARVING(rq) \
		((rq)->expired_timestamp && \
		(jiffies - (rq)->expired_timestamp >= \
			STARVATION_LIMIT * ((rq)->nr_running) + 1))

/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(int user_ticks, int sys_ticks)
{
	int cpu = smp_processor_id();
	runqueue_t *rq = this_rq();
	task_t *p = current;

 	if (rcu_pending(cpu))
 		rcu_check_callbacks(cpu, user_ticks);

	if (p == rq->idle) {
		/* note: this timer irq context must be accounted for as well */
		if (irq_count() - HARDIRQ_OFFSET >= SOFTIRQ_OFFSET)
			kstat_cpu(cpu).cpustat.system += sys_ticks;
		else if (atomic_read(&rq->nr_iowait) > 0)
			kstat_cpu(cpu).cpustat.iowait += sys_ticks;
		else
			kstat_cpu(cpu).cpustat.idle += sys_ticks;
#if CONFIG_SMP
		idle_tick(rq);
#endif
		return;
	}
	if (TASK_NICE(p) > 0)
		kstat_cpu(cpu).cpustat.nice += user_ticks;
	else
		kstat_cpu(cpu).cpustat.user += user_ticks;
	kstat_cpu(cpu).cpustat.system += sys_ticks;

	/* Task might have expired already, but not scheduled off yet */
	if (p->array != rq->active) {
		set_tsk_need_resched(p);
		return;
	}
	spin_lock(&rq->lock);
	if (unlikely(rt_task(p))) {
		/*
		 * RR tasks need a special form of timeslice management.
		 * FIFO tasks have no timeslices.
		 */
		if ((p->policy == SCHED_RR) && !--p->time_slice) {
			p->time_slice = task_timeslice(p);
			p->first_time_slice = 0;
			set_tsk_need_resched(p);

			/* put it at the end of the queue: */
			dequeue_task(p, rq->active);
			enqueue_task(p, rq->active);
		}
		goto out;
	}
	/*
	 * The task was running during this tick - update the
	 * time slice counter and the sleep average. Note: we
	 * do not update a thread's priority until it either
	 * goes to sleep or uses up its timeslice. This makes
	 * it possible for interactive tasks to use up their
	 * timeslices at their highest priority levels.
	 */
	if (p->sleep_avg)
		p->sleep_avg--;
	if (!--p->time_slice) {
		dequeue_task(p, rq->active);
		set_tsk_need_resched(p);
		p->prio = effective_prio(p);
		p->time_slice = task_timeslice(p);
		p->first_time_slice = 0;

		if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
			if (!rq->expired_timestamp)
				rq->expired_timestamp = jiffies;
			enqueue_task(p, rq->expired);
		} else
			enqueue_task(p, rq->active);
	}
out:
#if CONFIG_SMP
	if (!(jiffies % BUSY_REBALANCE_TICK))
		load_balance(rq, 0);
#endif
	spin_unlock(&rq->lock);
}

void scheduling_functions_start_here(void) { }

/*
 * schedule() is the main scheduler function.
 */
asmlinkage void schedule(void)
{
	task_t *prev, *next;
	runqueue_t *rq;
	prio_array_t *array;
	struct list_head *queue;
	int idx;

	/*
	 * Test if we are atomic.  Since do_exit() needs to call into
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
	if (likely(current->state != TASK_ZOMBIE)) {
		if (unlikely(in_atomic())) {
			printk(KERN_ERR "bad: scheduling while atomic!\n");
			dump_stack();
		}
	}

#if CONFIG_DEBUG_HIGHMEM
	check_highmem_ptes();
#endif
need_resched:
	preempt_disable();
	prev = current;
	rq = this_rq();

	release_kernel_lock(prev);
	prev->sleep_timestamp = jiffies;
	spin_lock_irq(&rq->lock);

	/*
	 * if entering off of a kernel preemption go straight
	 * to picking the next task.
	 */
	if (unlikely(preempt_count() & PREEMPT_ACTIVE))
		goto pick_next_task;

	switch (prev->state) {
	case TASK_INTERRUPTIBLE:
		if (unlikely(signal_pending(prev))) {
			prev->state = TASK_RUNNING;
			break;
		}
	default:
		deactivate_task(prev, rq);
	case TASK_RUNNING:
		;
	}
pick_next_task:
	if (unlikely(!rq->nr_running)) {
#if CONFIG_SMP
		load_balance(rq, 1);
		if (rq->nr_running)
			goto pick_next_task;
#endif
		next = rq->idle;
		rq->expired_timestamp = 0;
		goto switch_tasks;
	}

	array = rq->active;
	if (unlikely(!array->nr_active)) {
		/*
		 * Switch the active and expired arrays.
		 */
		rq->active = rq->expired;
		rq->expired = array;
		array = rq->active;
		rq->expired_timestamp = 0;
	}

	idx = sched_find_first_bit(array->bitmap);
	queue = array->queue + idx;
	next = list_entry(queue->next, task_t, run_list);

switch_tasks:
	prefetch(next);
	clear_tsk_need_resched(prev);
	RCU_qsctr(prev->thread_info->cpu)++;

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
	
		prepare_arch_switch(rq, next);
		prev = context_switch(prev, next);
		barrier();
		rq = this_rq();
		finish_arch_switch(rq, prev);
	} else
		spin_unlock_irq(&rq->lock);

	reacquire_kernel_lock(current);
	preempt_enable_no_resched();
	if (test_thread_flag(TIF_NEED_RESCHED))
		goto need_resched;
}

#ifdef CONFIG_PREEMPT
/*
 * this is is the entry point to schedule() from in-kernel preemption
 * off of preempt_enable.  Kernel preemptions off return from interrupt
 * occur there and call schedule directly.
 */
asmlinkage void preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();

	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
	 * we do not want to preempt the current task.  Just return..
	 */
	if (unlikely(ti->preempt_count || irqs_disabled()))
		return;

need_resched:
	ti->preempt_count = PREEMPT_ACTIVE;
	schedule();
	ti->preempt_count = 0;

	/* we could miss a preemption opportunity between schedule and now */
	barrier();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
#endif /* CONFIG_PREEMPT */

int default_wake_function(wait_queue_t *curr, unsigned mode, int sync)
{
	task_t *p = curr->task;
	return ((p->state & mode) && try_to_wake_up(p, sync));
}

/*
 * The core wakeup function.  Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up.  If it's an exclusive wakeup (nr_exclusive == small +ve
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
 * started to run but is not in state TASK_RUNNING.  try_to_wake_up() returns
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode, int nr_exclusive, int sync)
{
	struct list_head *tmp, *next;

	list_for_each_safe(tmp, next, &q->task_list) {
		wait_queue_t *curr;
		unsigned flags;
		curr = list_entry(tmp, wait_queue_t, task_list);
		flags = curr->flags;
		if (curr->func(curr, mode, sync) &&
		    (flags & WQ_FLAG_EXCLUSIVE) &&
		    !--nr_exclusive)
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 */
void __wake_up(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	unsigned long flags;

	if (unlikely(!q))
		return;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0);
	spin_unlock_irqrestore(&q->lock, flags);
}

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
{
	__wake_up_common(q, mode, 1, 0);
}

#if CONFIG_SMP

/**
 * __wake_up - sync- wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	unsigned long flags;

	if (unlikely(!q))
		return;

	spin_lock_irqsave(&q->lock, flags);
	if (likely(nr_exclusive))
		__wake_up_common(q, mode, nr_exclusive, 1);
	else
		__wake_up_common(q, mode, nr_exclusive, 0);
	spin_unlock_irqrestore(&q->lock, flags);
}

#endif
 
void complete(struct completion *x)
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE, 1, 0);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}

void complete_all(struct completion *x)
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE, 0, 0);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}

void wait_for_completion(struct completion *x)
{
	might_sleep();
	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			__set_current_state(TASK_UNINTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			schedule();
			spin_lock_irq(&x->wait.lock);
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
	spin_unlock_irq(&x->wait.lock);
}

#define	SLEEP_ON_VAR				\
	unsigned long flags;			\
	wait_queue_t wait;			\
	init_waitqueue_entry(&wait, current);

#define SLEEP_ON_HEAD					\
	spin_lock_irqsave(&q->lock,flags);		\
	__add_wait_queue(q, &wait);			\
	spin_unlock(&q->lock);

#define	SLEEP_ON_TAIL						\
	spin_lock_irq(&q->lock);				\
	__remove_wait_queue(q, &wait);				\
	spin_unlock_irqrestore(&q->lock, flags);

void interruptible_sleep_on(wait_queue_head_t *q)
{
	SLEEP_ON_VAR

	current->state = TASK_INTERRUPTIBLE;

	SLEEP_ON_HEAD
	schedule();
	SLEEP_ON_TAIL
}

long interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
{
	SLEEP_ON_VAR

	current->state = TASK_INTERRUPTIBLE;

	SLEEP_ON_HEAD
	timeout = schedule_timeout(timeout);
	SLEEP_ON_TAIL

	return timeout;
}

void sleep_on(wait_queue_head_t *q)
{
	SLEEP_ON_VAR
	
	current->state = TASK_UNINTERRUPTIBLE;

	SLEEP_ON_HEAD
	schedule();
	SLEEP_ON_TAIL
}

long sleep_on_timeout(wait_queue_head_t *q, long timeout)
{
	SLEEP_ON_VAR
	
	current->state = TASK_UNINTERRUPTIBLE;

	SLEEP_ON_HEAD
	timeout = schedule_timeout(timeout);
	SLEEP_ON_TAIL

	return timeout;
}

void scheduling_functions_end_here(void) { }

void set_user_nice(task_t *p, long nice)
{
	unsigned long flags;
	prio_array_t *array;
	runqueue_t *rq;

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	if (rt_task(p)) {
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
	array = p->array;
	if (array)
		dequeue_task(p, array);
	p->static_prio = NICE_TO_PRIO(nice);
	p->prio = NICE_TO_PRIO(nice);
	if (array) {
		enqueue_task(p, array);
		/*
		 * If the task is running and lowered its priority,
		 * or increased its priority then reschedule its CPU:
		 */
		if ((NICE_TO_PRIO(nice) < p->static_prio) ||
							task_running(rq, p))
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}

#ifndef __alpha__

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
	int retval;
	long nice;

	/*
	 *	Setpriority might change our priority at the same moment.
	 *	We don't have to worry. Conceptually one call occurs first
	 *	and we have a single winner.
	 */
	if (increment < 0) {
		if (!capable(CAP_SYS_NICE))
			return -EPERM;
		if (increment < -40)
			increment = -40;
	}
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
int task_prio(task_t *p)
{
	return p->prio - MAX_USER_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
int task_nice(task_t *p)
{
	return TASK_NICE(p);
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
int task_curr(task_t *p)
{
	return cpu_curr(task_cpu(p)) == p;
}

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
static inline task_t *find_process_by_pid(pid_t pid)
{
	return pid ? find_task_by_pid(pid) : current;
}

/*
 * setscheduler - change the scheduling policy and/or RT priority of a thread.
 */
static int setscheduler(pid_t pid, int policy, struct sched_param *param)
{
	struct sched_param lp;
	int retval = -EINVAL;
	prio_array_t *array;
	unsigned long flags;
	runqueue_t *rq;
	task_t *p;

	if (!param || pid < 0)
		goto out_nounlock;

	retval = -EFAULT;
	if (copy_from_user(&lp, param, sizeof(struct sched_param)))
		goto out_nounlock;

	/*
	 * We play safe to avoid deadlocks.
	 */
	read_lock_irq(&tasklist_lock);

	p = find_process_by_pid(pid);

	retval = -ESRCH;
	if (!p)
		goto out_unlock_tasklist;

	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
	rq = task_rq_lock(p, &flags);

	if (policy < 0)
		policy = p->policy;
	else {
		retval = -EINVAL;
		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL)
			goto out_unlock;
	}

	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL is 0.
	 */
	retval = -EINVAL;
	if (lp.sched_priority < 0 || lp.sched_priority > MAX_USER_RT_PRIO-1)
		goto out_unlock;
	if ((policy == SCHED_NORMAL) != (lp.sched_priority == 0))
		goto out_unlock;

	retval = -EPERM;
	if ((policy == SCHED_FIFO || policy == SCHED_RR) &&
	    !capable(CAP_SYS_NICE))
		goto out_unlock;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
	    !capable(CAP_SYS_NICE))
		goto out_unlock;

	retval = security_task_setscheduler(p, policy, &lp);
	if (retval)
		goto out_unlock;

	array = p->array;
	if (array)
		deactivate_task(p, task_rq(p));
	retval = 0;
	p->policy = policy;
	p->rt_priority = lp.sched_priority;
	if (policy != SCHED_NORMAL)
		p->prio = MAX_USER_RT_PRIO-1 - p->rt_priority;
	else
		p->prio = p->static_prio;
	if (array)
		activate_task(p, task_rq(p));

out_unlock:
	task_rq_unlock(rq, &flags);
out_unlock_tasklist:
	read_unlock_irq(&tasklist_lock);

out_nounlock:
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
				      struct sched_param *param)
{
	return setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param *param)
{
	return setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
	int retval = -EINVAL;
	task_t *p;

	if (pid < 0)
		goto out_nounlock;

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);

out_nounlock:
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param *param)
{
	struct sched_param lp;
	int retval = -EINVAL;
	task_t *p;

	if (!param || pid < 0)
		goto out_nounlock;

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

out_nounlock:
	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage int sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long *user_mask_ptr)
{
	unsigned long new_mask;
	int retval;
	task_t *p;

	if (len < sizeof(new_mask))
		return -EINVAL;

	if (copy_from_user(&new_mask, user_mask_ptr, sizeof(new_mask)))
		return -EFAULT;

	new_mask &= cpu_online_map;
	if (!new_mask)
		return -EINVAL;

	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
	 * tasklist_lock held.  We will bump the task_struct's
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

	retval = 0;
	set_cpus_allowed(p, new_mask);

out_unlock:
	put_task_struct(p);
	return retval;
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage int sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long *user_mask_ptr)
{
	unsigned int real_len;
	unsigned long mask;
	int retval;
	task_t *p;

	real_len = sizeof(mask);
	if (len < real_len)
		return -EINVAL;

	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = 0;
	mask = p->cpus_allowed & cpu_online_map;

out_unlock:
	read_unlock(&tasklist_lock);
	if (retval)
		return retval;
	if (copy_to_user(user_mask_ptr, &mask, real_len))
		return -EFAULT;
	return real_len;
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
 * this function yields the current CPU by moving the calling thread
 * to the expired array. If there are no other threads running on this
 * CPU then this function will return.
 */
asmlinkage long sys_sched_yield(void)
{
	runqueue_t *rq = this_rq_lock();
	prio_array_t *array = current->array;

	/*
	 * We implement yielding by moving the task into the expired
	 * queue.
	 *
	 * (special rule: RT tasks will just roundrobin in the active
	 *  array.)
	 */
	if (likely(!rt_task(current))) {
		dequeue_task(current, array);
		enqueue_task(current, rq->expired);
	} else {
		list_del(&current->run_list);
		list_add_tail(&current->run_list, array->queue + current->prio);
	}
	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt:
	 */
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

void __cond_resched(void)
{
	set_current_state(TASK_RUNNING);
	schedule();
}

/**
 * yield - yield the current processor to other threads.
 *
 * this is a shortcut for kernel-space yielding - it marks the
 * thread runnable and calls sys_sched_yield().
 */
void yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}

/*
 * This task is about to go to sleep on IO.  Increment rq->nr_iowait so
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void io_schedule(void)
{
	struct runqueue *rq = this_rq();

	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
}

long io_schedule_timeout(long timeout)
{
	struct runqueue *rq = this_rq();
	long ret;

	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_mix - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage long sys_sched_rr_get_interval(pid_t pid, struct timespec *interval)
{
	int retval = -EINVAL;
	struct timespec t;
	task_t *p;

	if (pid < 0)
		goto out_nounlock;

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	jiffies_to_timespec(p->policy & SCHED_FIFO ?
				0 : task_timeslice(p), &t);
	read_unlock(&tasklist_lock);
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
out_nounlock:
	return retval;
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

static inline struct task_struct *eldest_child(struct task_struct *p)
{
	if (list_empty(&p->children)) return NULL;
	return list_entry(p->children.next,struct task_struct,sibling);
}

static inline struct task_struct *older_sibling(struct task_struct *p)
{
	if (p->sibling.prev==&p->parent->children) return NULL;
	return list_entry(p->sibling.prev,struct task_struct,sibling);
}

static inline struct task_struct *younger_sibling(struct task_struct *p)
{
	if (p->sibling.next==&p->parent->children) return NULL;
	return list_entry(p->sibling.next,struct task_struct,sibling);
}

static void show_task(task_t * p)
{
	unsigned long free = 0;
	task_t *relative;
	int state;
	static const char * stat_nam[] = { "R", "S", "D", "Z", "T", "W" };

	printk("%-13.13s ", p->comm);
	state = p->state ? __ffs(p->state) + 1 : 0;
	if (((unsigned) state) < sizeof(stat_nam)/sizeof(char *))
		printk(stat_nam[state]);
	else
		printk(" ");
#if (BITS_PER_LONG == 32)
	if (p == current)
		printk(" current  ");
	else
		printk(" %08lX ", thread_saved_pc(p));
#else
	if (p == current)
		printk("   current task   ");
	else
		printk(" %016lx ", thread_saved_pc(p));
#endif
	{
		unsigned long * n = (unsigned long *) (p+1);
		while (!*n)
			n++;
		free = (unsigned long) n - (unsigned long)(p+1);
	}
	printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
	if ((relative = eldest_child(p)))
		printk("%5d ", relative->pid);
	else
		printk("      ");
	if ((relative = younger_sibling(p)))
		printk("%7d", relative->pid);
	else
		printk("       ");
	if ((relative = older_sibling(p)))
		printk(" %5d", relative->pid);
	else
		printk("      ");
	if (!p->mm)
		printk(" (L-TLB)\n");
	else
		printk(" (NOTLB)\n");

	{
		extern void show_trace_task(task_t *tsk);
		show_trace_task(p);
	}
}

char * render_sigset_t(sigset_t *set, char *buffer)
{
	int i = _NSIG, x;
	do {
		i -= 4, x = 0;
		if (sigismember(set, i+1)) x |= 1;
		if (sigismember(set, i+2)) x |= 2;
		if (sigismember(set, i+3)) x |= 4;
		if (sigismember(set, i+4)) x |= 8;
		*buffer++ = (x < 10 ? '0' : 'a' - 10) + x;
	} while (i >= 4);
	*buffer = 0;
	return buffer;
}

void show_state(void)
{
	task_t *g, *p;

#if (BITS_PER_LONG == 32)
	printk("\n"
	       "                         free                        sibling\n");
	printk("  task             PC    stack   pid father child younger older\n");
#else
	printk("\n"
	       "                                 free                        sibling\n");
	printk("  task                 PC        stack   pid father child younger older\n");
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
		show_task(p);
	} while_each_thread(g, p);

	read_unlock(&tasklist_lock);
}

void __init init_idle(task_t *idle, int cpu)
{
	runqueue_t *idle_rq = cpu_rq(cpu), *rq = cpu_rq(task_cpu(idle));
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(idle_rq, rq);

	idle_rq->curr = idle_rq->idle = idle;
	deactivate_task(idle, rq);
	idle->array = NULL;
	idle->prio = MAX_PRIO;
	idle->state = TASK_RUNNING;
	set_task_cpu(idle, cpu);
	double_rq_unlock(idle_rq, rq);
	set_tsk_need_resched(idle);
	local_irq_restore(flags);

	/* Set the preempt count _outside_ the spinlocks! */
#if CONFIG_PREEMPT
	idle->thread_info->preempt_count = (idle->lock_depth >= 0);
#else
	idle->thread_info->preempt_count = 0;
#endif
}

#if CONFIG_SMP
/*
 * This is how migration works:
 *
 * 1) we queue a migration_req_t structure in the source CPU's
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

typedef struct {
	struct list_head list;
	task_t *task;
	struct completion done;
} migration_req_t;

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
 * task must not exit() & deallocate itself prematurely.  The
 * call is not atomic; no spinlocks may be held.
 */
void set_cpus_allowed(task_t *p, unsigned long new_mask)
{
	unsigned long flags;
	migration_req_t req;
	runqueue_t *rq;

#if 0 /* FIXME: Grab cpu_lock, return error on this case. --RR */
	new_mask &= cpu_online_map;
	if (!new_mask)
		BUG();
#endif

	rq = task_rq_lock(p, &flags);
	p->cpus_allowed = new_mask;
	/*
	 * Can the task run on the task's current CPU? If not then
	 * migrate the thread off to a proper CPU.
	 */
	if (new_mask & (1UL << task_cpu(p))) {
		task_rq_unlock(rq, &flags);
		return;
	}
	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
	if (!p->array && !task_running(rq, p)) {
		set_task_cpu(p, __ffs(p->cpus_allowed));
		task_rq_unlock(rq, &flags);
		return;
	}
	init_completion(&req.done);
	req.task = p;
	list_add(&req.list, &rq->migration_queue);
	task_rq_unlock(rq, &flags);

	wake_up_process(rq->migration_thread);

	wait_for_completion(&req.done);
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by 'pulling' threads into the target runqueue.
 */
static int migration_thread(void * data)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO-1 };
	int cpu = (long) data;
	runqueue_t *rq;
	int ret;

	daemonize();
	sigfillset(&current->blocked);
	set_fs(KERNEL_DS);

	/*
	 * Either we are running on the right CPU, or there's a
	 * a migration thread on the target CPU, guaranteed.
	 */
	set_cpus_allowed(current, 1UL << cpu);

	ret = setscheduler(0, SCHED_FIFO, &param);

	rq = this_rq();
	rq->migration_thread = current;

	sprintf(current->comm, "migration/%d", smp_processor_id());

	for (;;) {
		runqueue_t *rq_src, *rq_dest;
		struct list_head *head;
		int cpu_src, cpu_dest;
		migration_req_t *req;
		unsigned long flags;
		task_t *p;

		spin_lock_irqsave(&rq->lock, flags);
		head = &rq->migration_queue;
		current->state = TASK_INTERRUPTIBLE;
		if (list_empty(head)) {
			spin_unlock_irqrestore(&rq->lock, flags);
			schedule();
			continue;
		}
		req = list_entry(head->next, migration_req_t, list);
		list_del_init(head->next);
		spin_unlock_irqrestore(&rq->lock, flags);

		p = req->task;
		cpu_dest = __ffs(p->cpus_allowed);
		rq_dest = cpu_rq(cpu_dest);
repeat:
		cpu_src = task_cpu(p);
		rq_src = cpu_rq(cpu_src);

		local_irq_save(flags);
		double_rq_lock(rq_src, rq_dest);
		if (task_cpu(p) != cpu_src) {
			double_rq_unlock(rq_src, rq_dest);
			local_irq_restore(flags);
			goto repeat;
		}
		if (rq_src == rq) {
			set_task_cpu(p, cpu_dest);
			if (p->array) {
				deactivate_task(p, rq_src);
				activate_task(p, rq_dest);
				if (p->prio < rq_dest->curr->prio)
					resched_task(rq_dest->curr);
			}
		}
		double_rq_unlock(rq_src, rq_dest);
		local_irq_restore(flags);

		complete(&req->done);
	}
}

/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
static int migration_call(struct notifier_block *nfb,
			  unsigned long action,
			  void *hcpu)
{
	switch (action) {
	case CPU_ONLINE:
		printk("Starting migration thread for cpu %li\n",
		       (long)hcpu);
		kernel_thread(migration_thread, hcpu, CLONE_KERNEL);
		while (!cpu_rq((long)hcpu)->migration_thread)
			yield();
		break;
	}
	return NOTIFY_OK;
}

static struct notifier_block migration_notifier = { &migration_call, NULL, 0 };

__init int migration_init(void)
{
	/* Start one for boot CPU. */
	migration_call(&migration_notifier, CPU_ONLINE,
		       (void *)(long)smp_processor_id());
	register_cpu_notifier(&migration_notifier);
	return 0;
}

#endif

#if CONFIG_SMP || CONFIG_PREEMPT
/*
 * The 'big kernel lock'
 *
 * This spinlock is taken and released recursively by lock_kernel()
 * and unlock_kernel().  It is transparently dropped and reaquired
 * over schedule().  It is used to protect legacy code that hasn't
 * been migrated to a proper locking design yet.
 *
 * Don't use in new code.
 */
spinlock_t kernel_flag __cacheline_aligned_in_smp = SPIN_LOCK_UNLOCKED;
#endif

static void kstat_init_cpu(int cpu)
{
        /* Add any initialisation to kstat here */
        /* Useful when cpu offlining logic is added.. */
}

static int __devinit kstat_cpu_notify(struct notifier_block *self,
                                unsigned long action, void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	switch(action) {
	case CPU_UP_PREPARE:
		kstat_init_cpu(cpu);
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}
 
static struct notifier_block __devinitdata kstat_nb = {
	.notifier_call  = kstat_cpu_notify,
	.next           = NULL,
};

__init static void init_kstat(void) {
	kstat_cpu_notify(&kstat_nb, (unsigned long)CPU_UP_PREPARE,
			(void *)(long)smp_processor_id());
	register_cpu_notifier(&kstat_nb);  
}

void __init sched_init(void)
{
	runqueue_t *rq;
	int i, j, k;

	/* Init the kstat counters */
	init_kstat();
	for (i = 0; i < NR_CPUS; i++) {
		prio_array_t *array;

		rq = cpu_rq(i);
		rq->active = rq->arrays;
		rq->expired = rq->arrays + 1;
		spin_lock_init(&rq->lock);
		INIT_LIST_HEAD(&rq->migration_queue);
		atomic_set(&rq->nr_iowait, 0);

		for (j = 0; j < 2; j++) {
			array = rq->arrays + j;
			for (k = 0; k < MAX_PRIO; k++) {
				INIT_LIST_HEAD(array->queue + k);
				__clear_bit(k, array->bitmap);
			}
			// delimiter for bitsearch
			__set_bit(MAX_PRIO, array->bitmap);
		}
	}
	/*
	 * We have to do a little magic to get the first
	 * thread right in SMP mode.
	 */
	rq = this_rq();
	rq->curr = current;
	rq->idle = current;
	set_task_cpu(current, smp_processor_id());
	wake_up_process(current);

	init_timers();

	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current, smp_processor_id());
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
#if defined(in_atomic)
	static unsigned long prev_jiffy;	/* ratelimiting */

	if (in_atomic()) {
		if (time_before(jiffies, prev_jiffy + HZ))
			return;
		prev_jiffy = jiffies;
		printk(KERN_ERR "Debug: sleeping function called from illegal"
				" context at %s:%d\n", file, line);
		dump_stack();
	}
#endif
}
#endif