Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 | /* * linux/kernel/sched.c * * Copyright (C) 1991, 1992 Linus Torvalds * * 1996-04-21 Modified by Ulrich Windl to make NTP work * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and * make semaphores SMP safe * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better. */ /* * 'sched.c' is the main kernel file. It contains scheduling primitives * (sleep_on, wakeup, schedule etc) as well as a number of simple system * call functions (type getpid()), which just extract a field from * current-task */ #include <linux/signal.h> #include <linux/sched.h> #include <linux/timer.h> #include <linux/kernel.h> #include <linux/kernel_stat.h> #include <linux/fdreg.h> #include <linux/errno.h> #include <linux/time.h> #include <linux/ptrace.h> #include <linux/delay.h> #include <linux/interrupt.h> #include <linux/tqueue.h> #include <linux/resource.h> #include <linux/mm.h> #include <linux/smp.h> #include <linux/smp_lock.h> #include <linux/init.h> #include <asm/system.h> #include <asm/io.h> #include <asm/uaccess.h> #include <asm/pgtable.h> #include <asm/mmu_context.h> #include <asm/spinlock.h> #include <linux/timex.h> /* * kernel variables */ unsigned securebits = SECUREBITS_DEFAULT; /* systemwide security settings */ long tick = (1000000 + HZ/2) / HZ; /* timer interrupt period */ /* The current time */ volatile struct timeval xtime __attribute__ ((aligned (16))); /* Don't completely fail for HZ > 500. */ int tickadj = 500/HZ ? : 1; /* microsecs */ DECLARE_TASK_QUEUE(tq_timer); DECLARE_TASK_QUEUE(tq_immediate); DECLARE_TASK_QUEUE(tq_scheduler); /* * phase-lock loop variables */ /* TIME_ERROR prevents overwriting the CMOS clock */ int time_state = TIME_ERROR; /* clock synchronization status */ int time_status = STA_UNSYNC; /* clock status bits */ long time_offset = 0; /* time adjustment (us) */ long time_constant = 2; /* pll time constant */ long time_tolerance = MAXFREQ; /* frequency tolerance (ppm) */ long time_precision = 1; /* clock precision (us) */ long time_maxerror = MAXPHASE; /* maximum error (us) */ long time_esterror = MAXPHASE; /* estimated error (us) */ long time_phase = 0; /* phase offset (scaled us) */ long time_freq = ((1000000 + HZ/2) % HZ - HZ/2) << SHIFT_USEC; /* frequency offset (scaled ppm) */ long time_adj = 0; /* tick adjust (scaled 1 / HZ) */ long time_reftime = 0; /* time at last adjustment (s) */ long time_adjust = 0; long time_adjust_step = 0; unsigned long event = 0; extern int do_setitimer(int, struct itimerval *, struct itimerval *); unsigned int * prof_buffer = NULL; unsigned long prof_len = 0; unsigned long prof_shift = 0; extern void mem_use(void); unsigned long volatile jiffies=0; /* * Init task must be ok at boot for the ix86 as we will check its signals * via the SMP irq return path. */ struct task_struct * task[NR_TASKS] = {&init_task, }; struct kernel_stat kstat = { 0 }; void scheduling_functions_start_here(void) { } static inline void reschedule_idle(struct task_struct * p) { /* * For SMP, we try to see if the CPU the task used * to run on is idle.. */ #if 0 /* * Disable this for now. Ingo has some interesting * code that looks too complex, and I have some ideas, * but in the meantime.. One problem is that "wakeup()" * can be (and is) called before we've even initialized * SMP completely, so.. */ #ifdef __SMP__ int want_cpu = p->processor; /* * Don't even try to find another CPU for us if the task * ran on this one before.. */ if (want_cpu != smp_processor_id()) { struct task_struct **idle = task; int i = smp_num_cpus; do { struct task_struct *tsk = *idle; idle++; /* Something like this.. */ if (tsk->has_cpu && tsk->processor == want_cpu) { tsk->need_resched = 1; smp_send_reschedule(want_cpu); return; } } while (--i > 0); } #endif #endif if (p->policy != SCHED_OTHER || p->counter > current->counter + 3) current->need_resched = 1; } /* * Careful! * * This has to add the process to the _beginning_ of the * run-queue, not the end. See the comment about "This is * subtle" in the scheduler proper.. */ static inline void add_to_runqueue(struct task_struct * p) { struct task_struct *next = init_task.next_run; p->prev_run = &init_task; init_task.next_run = p; p->next_run = next; next->prev_run = p; } static inline void del_from_runqueue(struct task_struct * p) { struct task_struct *next = p->next_run; struct task_struct *prev = p->prev_run; nr_running--; next->prev_run = prev; prev->next_run = next; p->next_run = NULL; p->prev_run = NULL; } static inline void move_last_runqueue(struct task_struct * p) { struct task_struct *next = p->next_run; struct task_struct *prev = p->prev_run; /* remove from list */ next->prev_run = prev; prev->next_run = next; /* add back to list */ p->next_run = &init_task; prev = init_task.prev_run; init_task.prev_run = p; p->prev_run = prev; prev->next_run = p; } static inline void move_first_runqueue(struct task_struct * p) { struct task_struct *next = p->next_run; struct task_struct *prev = p->prev_run; /* remove from list */ next->prev_run = prev; prev->next_run = next; /* add back to list */ p->prev_run = &init_task; next = init_task.next_run; init_task.next_run = p; p->next_run = next; next->prev_run = p; } /* * The tasklist_lock protects the linked list of processes. * * The scheduler lock is protecting against multiple entry * into the scheduling code, and doesn't need to worry * about interrupts (because interrupts cannot call the * scheduler). * * The run-queue lock locks the parts that actually access * and change the run-queues, and have to be interrupt-safe. */ spinlock_t scheduler_lock = SPIN_LOCK_UNLOCKED; /* should be acquired first */ spinlock_t runqueue_lock = SPIN_LOCK_UNLOCKED; /* second */ rwlock_t tasklist_lock = RW_LOCK_UNLOCKED; /* third */ /* * Wake up a process. Put it on the run-queue if it's not * already there. The "current" process is always on the * run-queue (except when the actual re-schedule is in * progress), and as such you're allowed to do the simpler * "current->state = TASK_RUNNING" to mark yourself runnable * without the overhead of this. */ inline void wake_up_process(struct task_struct * p) { unsigned long flags; spin_lock_irqsave(&runqueue_lock, flags); p->state = TASK_RUNNING; if (!p->next_run) { add_to_runqueue(p); reschedule_idle(p); nr_running++; } spin_unlock_irqrestore(&runqueue_lock, flags); } static void process_timeout(unsigned long __data) { struct task_struct * p = (struct task_struct *) __data; p->timeout = 0; wake_up_process(p); } /* * This is the function that decides how desirable a process is.. * You can weigh different processes against each other depending * on what CPU they've run on lately etc to try to handle cache * and TLB miss penalties. * * Return values: * -1000: never select this * 0: out of time, recalculate counters (but it might still be * selected) * +ve: "goodness" value (the larger, the better) * +1000: realtime process, select this. */ static inline int goodness(struct task_struct * p, struct task_struct * prev, int this_cpu) { int policy = p->policy; int weight; if (policy & SCHED_YIELD) { p->policy = policy & ~SCHED_YIELD; return 0; } /* * Realtime process, select the first one on the * runqueue (taking priorities within processes * into account). */ if (policy != SCHED_OTHER) return 1000 + p->rt_priority; /* * Give the process a first-approximation goodness value * according to the number of clock-ticks it has left. * * Don't do any other calculations if the time slice is * over.. */ weight = p->counter; if (weight) { #ifdef __SMP__ /* Give a largish advantage to the same processor... */ /* (this is equivalent to penalizing other processors) */ if (p->processor == this_cpu) weight += PROC_CHANGE_PENALTY; #endif /* .. and a slight advantage to the current thread */ if (p->mm == prev->mm) weight += 1; weight += p->priority; } return weight; } /* * Event timer code */ #define TVN_BITS 6 #define TVR_BITS 8 #define TVN_SIZE (1 << TVN_BITS) #define TVR_SIZE (1 << TVR_BITS) #define TVN_MASK (TVN_SIZE - 1) #define TVR_MASK (TVR_SIZE - 1) struct timer_vec { int index; struct timer_list *vec[TVN_SIZE]; }; struct timer_vec_root { int index; struct timer_list *vec[TVR_SIZE]; }; static struct timer_vec tv5 = { 0 }; static struct timer_vec tv4 = { 0 }; static struct timer_vec tv3 = { 0 }; static struct timer_vec tv2 = { 0 }; static struct timer_vec_root tv1 = { 0 }; static struct timer_vec * const tvecs[] = { (struct timer_vec *)&tv1, &tv2, &tv3, &tv4, &tv5 }; #define NOOF_TVECS (sizeof(tvecs) / sizeof(tvecs[0])) static unsigned long timer_jiffies = 0; static inline void insert_timer(struct timer_list *timer, struct timer_list **vec, int idx) { if ((timer->next = vec[idx])) vec[idx]->prev = timer; vec[idx] = timer; timer->prev = (struct timer_list *)&vec[idx]; } static inline void internal_add_timer(struct timer_list *timer) { /* * must be cli-ed when calling this */ unsigned long expires = timer->expires; unsigned long idx = expires - timer_jiffies; if (idx < TVR_SIZE) { int i = expires & TVR_MASK; insert_timer(timer, tv1.vec, i); } else if (idx < 1 << (TVR_BITS + TVN_BITS)) { int i = (expires >> TVR_BITS) & TVN_MASK; insert_timer(timer, tv2.vec, i); } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) { int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK; insert_timer(timer, tv3.vec, i); } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) { int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK; insert_timer(timer, tv4.vec, i); } else if (expires < timer_jiffies) { /* can happen if you add a timer with expires == jiffies, * or you set a timer to go off in the past */ insert_timer(timer, tv1.vec, tv1.index); } else if (idx < 0xffffffffUL) { int i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK; insert_timer(timer, tv5.vec, i); } else { /* Can only get here on architectures with 64-bit jiffies */ timer->next = timer->prev = timer; } } spinlock_t timerlist_lock = SPIN_LOCK_UNLOCKED; void add_timer(struct timer_list *timer) { unsigned long flags; spin_lock_irqsave(&timerlist_lock, flags); internal_add_timer(timer); spin_unlock_irqrestore(&timerlist_lock, flags); } static inline int detach_timer(struct timer_list *timer) { struct timer_list *prev = timer->prev; if (prev) { struct timer_list *next = timer->next; prev->next = next; if (next) next->prev = prev; return 1; } return 0; } void mod_timer(struct timer_list *timer, unsigned long expires) { unsigned long flags; spin_lock_irqsave(&timerlist_lock, flags); timer->expires = expires; detach_timer(timer); internal_add_timer(timer); spin_unlock_irqrestore(&timerlist_lock, flags); } int del_timer(struct timer_list * timer) { int ret; unsigned long flags; spin_lock_irqsave(&timerlist_lock, flags); ret = detach_timer(timer); timer->next = timer->prev = 0; spin_unlock_irqrestore(&timerlist_lock, flags); return ret; } #ifdef __SMP__ #define idle_task (task[cpu_number_map[this_cpu]]) #define can_schedule(p) (!(p)->has_cpu) #else #define idle_task (&init_task) #define can_schedule(p) (1) #endif /* * 'schedule()' is the scheduler function. It's a very simple and nice * scheduler: it's not perfect, but certainly works for most things. * * The goto is "interesting". * * NOTE!! Task 0 is the 'idle' task, which gets called when no other * tasks can run. It can not be killed, and it cannot sleep. The 'state' * information in task[0] is never used. */ asmlinkage void schedule(void) { struct task_struct * prev, * next; unsigned long timeout; int this_cpu; prev = current; this_cpu = prev->processor; if (in_interrupt()) goto scheduling_in_interrupt; release_kernel_lock(prev, this_cpu); /* Do "administrative" work here while we don't hold any locks */ if (bh_active & bh_mask) do_bottom_half(); run_task_queue(&tq_scheduler); spin_lock(&scheduler_lock); spin_lock_irq(&runqueue_lock); /* move an exhausted RR process to be last.. */ prev->need_resched = 0; if (!prev->counter && prev->policy == SCHED_RR) { prev->counter = prev->priority; move_last_runqueue(prev); } timeout = 0; switch (prev->state) { case TASK_INTERRUPTIBLE: if (signal_pending(prev)) goto makerunnable; timeout = prev->timeout; if (timeout && (timeout <= jiffies)) { prev->timeout = 0; timeout = 0; makerunnable: prev->state = TASK_RUNNING; break; } default: del_from_runqueue(prev); case TASK_RUNNING: } { struct task_struct * p = init_task.next_run; /* * This is subtle. * Note how we can enable interrupts here, even * though interrupts can add processes to the run- * queue. This is because any new processes will * be added to the front of the queue, so "p" above * is a safe starting point. * run-queue deletion and re-ordering is protected by * the scheduler lock */ spin_unlock_irq(&runqueue_lock); #ifdef __SMP__ prev->has_cpu = 0; #endif /* * Note! there may appear new tasks on the run-queue during this, as * interrupts are enabled. However, they will be put on front of the * list, so our list starting at "p" is essentially fixed. */ /* this is the scheduler proper: */ { int c = -1000; next = idle_task; while (p != &init_task) { if (can_schedule(p)) { int weight = goodness(p, prev, this_cpu); if (weight > c) c = weight, next = p; } p = p->next_run; } /* Do we need to re-calculate counters? */ if (!c) { struct task_struct *p; read_lock(&tasklist_lock); for_each_task(p) p->counter = (p->counter >> 1) + p->priority; read_unlock(&tasklist_lock); } } } #ifdef __SMP__ next->has_cpu = 1; next->processor = this_cpu; #endif if (prev != next) { struct timer_list timer; kstat.context_swtch++; if (timeout) { init_timer(&timer); timer.expires = timeout; timer.data = (unsigned long) prev; timer.function = process_timeout; add_timer(&timer); } get_mmu_context(next); switch_to(prev,next); if (timeout) del_timer(&timer); } spin_unlock(&scheduler_lock); /* * At this point "prev" is "current", as we just * switched into it (from an even more "previous" * prev) */ reacquire_kernel_lock(prev); return; scheduling_in_interrupt: printk("Scheduling in interrupt\n"); *(int *)0 = 0; } rwlock_t waitqueue_lock = RW_LOCK_UNLOCKED; /* * wake_up doesn't wake up stopped processes - they have to be awakened * with signals or similar. * * Note that we only need a read lock for the wait queue (and thus do not * have to protect against interrupts), as the actual removal from the * queue is handled by the process itself. */ void __wake_up(struct wait_queue **q, unsigned int mode) { struct wait_queue *next; read_lock(&waitqueue_lock); if (q && (next = *q)) { struct wait_queue *head; head = WAIT_QUEUE_HEAD(q); while (next != head) { struct task_struct *p = next->task; next = next->next; if (p->state & mode) wake_up_process(p); } } read_unlock(&waitqueue_lock); } /* * Semaphores are implemented using a two-way counter: * The "count" variable is decremented for each process * that tries to sleep, while the "waking" variable is * incremented when the "up()" code goes to wake up waiting * processes. * * Notably, the inline "up()" and "down()" functions can * efficiently test if they need to do any extra work (up * needs to do something only if count was negative before * the increment operation. * * waking_non_zero() (from asm/semaphore.h) must execute * atomically. * * When __up() is called, the count was negative before * incrementing it, and we need to wake up somebody. * * This routine adds one to the count of processes that need to * wake up and exit. ALL waiting processes actually wake up but * only the one that gets to the "waking" field first will gate * through and acquire the semaphore. The others will go back * to sleep. * * Note that these functions are only called when there is * contention on the lock, and as such all this is the * "non-critical" part of the whole semaphore business. The * critical part is the inline stuff in <asm/semaphore.h> * where we want to avoid any extra jumps and calls. */ void __up(struct semaphore *sem) { wake_one_more(sem); wake_up(&sem->wait); } /* * Perform the "down" function. Return zero for semaphore acquired, * return negative for signalled out of the function. * * If called from __down, the return is ignored and the wait loop is * not interruptible. This means that a task waiting on a semaphore * using "down()" cannot be killed until someone does an "up()" on * the semaphore. * * If called from __down_interruptible, the return value gets checked * upon return. If the return value is negative then the task continues * with the negative value in the return register (it can be tested by * the caller). * * Either form may be used in conjunction with "up()". * */ static inline int __do_down(struct semaphore * sem, int task_state) { struct task_struct *tsk = current; struct wait_queue wait = { tsk, NULL }; int ret = 0; tsk->state = task_state; add_wait_queue(&sem->wait, &wait); /* * Ok, we're set up. sem->count is known to be less than zero * so we must wait. * * We can let go the lock for purposes of waiting. * We re-acquire it after awaking so as to protect * all semaphore operations. * * If "up()" is called before we call waking_non_zero() then * we will catch it right away. If it is called later then * we will have to go through a wakeup cycle to catch it. * * Multiple waiters contend for the semaphore lock to see * who gets to gate through and who has to wait some more. */ for (;;) { if (waking_non_zero(sem)) /* are we waking up? */ break; /* yes, exit loop */ if (task_state == TASK_INTERRUPTIBLE && signal_pending(tsk)) { ret = -EINTR; /* interrupted */ atomic_inc(&sem->count); /* give up on down operation */ break; } schedule(); tsk->state = task_state; } tsk->state = TASK_RUNNING; remove_wait_queue(&sem->wait, &wait); return ret; } void __down(struct semaphore * sem) { __do_down(sem,TASK_UNINTERRUPTIBLE); } int __down_interruptible(struct semaphore * sem) { return __do_down(sem,TASK_INTERRUPTIBLE); } static void FASTCALL(__sleep_on(struct wait_queue **p, int state)); static void __sleep_on(struct wait_queue **p, int state) { unsigned long flags; struct wait_queue wait; current->state = state; wait.task = current; write_lock_irqsave(&waitqueue_lock, flags); __add_wait_queue(p, &wait); write_unlock(&waitqueue_lock); schedule(); write_lock_irq(&waitqueue_lock); __remove_wait_queue(p, &wait); write_unlock_irqrestore(&waitqueue_lock, flags); } void interruptible_sleep_on(struct wait_queue **p) { __sleep_on(p,TASK_INTERRUPTIBLE); } void sleep_on(struct wait_queue **p) { __sleep_on(p,TASK_UNINTERRUPTIBLE); } void scheduling_functions_end_here(void) { } static inline void cascade_timers(struct timer_vec *tv) { /* cascade all the timers from tv up one level */ struct timer_list *timer; timer = tv->vec[tv->index]; /* * We are removing _all_ timers from the list, so we don't have to * detach them individually, just clear the list afterwards. */ while (timer) { struct timer_list *tmp = timer; timer = timer->next; internal_add_timer(tmp); } tv->vec[tv->index] = NULL; tv->index = (tv->index + 1) & TVN_MASK; } static inline void run_timer_list(void) { spin_lock_irq(&timerlist_lock); while ((long)(jiffies - timer_jiffies) >= 0) { struct timer_list *timer; if (!tv1.index) { int n = 1; do { cascade_timers(tvecs[n]); } while (tvecs[n]->index == 1 && ++n < NOOF_TVECS); } while ((timer = tv1.vec[tv1.index])) { void (*fn)(unsigned long) = timer->function; unsigned long data = timer->data; detach_timer(timer); timer->next = timer->prev = NULL; spin_unlock_irq(&timerlist_lock); fn(data); spin_lock_irq(&timerlist_lock); } ++timer_jiffies; tv1.index = (tv1.index + 1) & TVR_MASK; } spin_unlock_irq(&timerlist_lock); } static inline void run_old_timers(void) { struct timer_struct *tp; unsigned long mask; for (mask = 1, tp = timer_table+0 ; mask ; tp++,mask += mask) { if (mask > timer_active) break; if (!(mask & timer_active)) continue; if (tp->expires > jiffies) continue; timer_active &= ~mask; tp->fn(); sti(); } } spinlock_t tqueue_lock; void tqueue_bh(void) { run_task_queue(&tq_timer); } void immediate_bh(void) { run_task_queue(&tq_immediate); } unsigned long timer_active = 0; struct timer_struct timer_table[32]; /* * Hmm.. Changed this, as the GNU make sources (load.c) seems to * imply that avenrun[] is the standard name for this kind of thing. * Nothing else seems to be standardized: the fractional size etc * all seem to differ on different machines. */ unsigned long avenrun[3] = { 0,0,0 }; /* * Nr of active tasks - counted in fixed-point numbers */ static unsigned long count_active_tasks(void) { struct task_struct *p; unsigned long nr = 0; read_lock(&tasklist_lock); for_each_task(p) { if ((p->state == TASK_RUNNING || p->state == TASK_UNINTERRUPTIBLE || p->state == TASK_SWAPPING)) nr += FIXED_1; } read_unlock(&tasklist_lock); return nr; } static inline void calc_load(unsigned long ticks) { unsigned long active_tasks; /* fixed-point */ static int count = LOAD_FREQ; count -= ticks; if (count < 0) { count += LOAD_FREQ; active_tasks = count_active_tasks(); CALC_LOAD(avenrun[0], EXP_1, active_tasks); CALC_LOAD(avenrun[1], EXP_5, active_tasks); CALC_LOAD(avenrun[2], EXP_15, active_tasks); } } /* * this routine handles the overflow of the microsecond field * * The tricky bits of code to handle the accurate clock support * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame. * They were originally developed for SUN and DEC kernels. * All the kudos should go to Dave for this stuff. * */ static void second_overflow(void) { long ltemp; /* Bump the maxerror field */ time_maxerror += time_tolerance >> SHIFT_USEC; if ( time_maxerror > MAXPHASE ) time_maxerror = MAXPHASE; /* * Leap second processing. If in leap-insert state at * the end of the day, the system clock is set back one * second; if in leap-delete state, the system clock is * set ahead one second. The microtime() routine or * external clock driver will insure that reported time * is always monotonic. The ugly divides should be * replaced. */ switch (time_state) { case TIME_OK: if (time_status & STA_INS) time_state = TIME_INS; else if (time_status & STA_DEL) time_state = TIME_DEL; break; case TIME_INS: if (xtime.tv_sec % 86400 == 0) { xtime.tv_sec--; time_state = TIME_OOP; printk("Clock: inserting leap second 23:59:60 UTC\n"); } break; case TIME_DEL: if ((xtime.tv_sec + 1) % 86400 == 0) { xtime.tv_sec++; time_state = TIME_WAIT; printk("Clock: deleting leap second 23:59:59 UTC\n"); } break; case TIME_OOP: time_state = TIME_WAIT; break; case TIME_WAIT: if (!(time_status & (STA_INS | STA_DEL))) time_state = TIME_OK; } /* * Compute the phase adjustment for the next second. In * PLL mode, the offset is reduced by a fixed factor * times the time constant. In FLL mode the offset is * used directly. In either mode, the maximum phase * adjustment for each second is clamped so as to spread * the adjustment over not more than the number of * seconds between updates. */ if (time_offset < 0) { ltemp = -time_offset; if (!(time_status & STA_FLL)) ltemp >>= SHIFT_KG + time_constant; if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE) ltemp = (MAXPHASE / MINSEC) << SHIFT_UPDATE; time_offset += ltemp; time_adj = -ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE); } else { ltemp = time_offset; if (!(time_status & STA_FLL)) ltemp >>= SHIFT_KG + time_constant; if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE) ltemp = (MAXPHASE / MINSEC) << SHIFT_UPDATE; time_offset -= ltemp; time_adj = ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE); } /* * Compute the frequency estimate and additional phase * adjustment due to frequency error for the next * second. When the PPS signal is engaged, gnaw on the * watchdog counter and update the frequency computed by * the pll and the PPS signal. */ pps_valid++; if (pps_valid == PPS_VALID) { pps_jitter = MAXTIME; pps_stabil = MAXFREQ; time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR); } ltemp = time_freq + pps_freq; if (ltemp < 0) time_adj -= -ltemp >> (SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE); else time_adj += ltemp >> (SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE); #if HZ == 100 /* compensate for (HZ==100) != 128. Add 25% to get 125; => only 3% error */ if (time_adj < 0) time_adj -= -time_adj >> 2; else time_adj += time_adj >> 2; #endif } /* in the NTP reference this is called "hardclock()" */ static void update_wall_time_one_tick(void) { /* * Advance the phase, once it gets to one microsecond, then * advance the tick more. */ time_phase += time_adj; if (time_phase <= -FINEUSEC) { long ltemp = -time_phase >> SHIFT_SCALE; time_phase += ltemp << SHIFT_SCALE; xtime.tv_usec += tick + time_adjust_step - ltemp; } else if (time_phase >= FINEUSEC) { long ltemp = time_phase >> SHIFT_SCALE; time_phase -= ltemp << SHIFT_SCALE; xtime.tv_usec += tick + time_adjust_step + ltemp; } else xtime.tv_usec += tick + time_adjust_step; if (time_adjust) { /* We are doing an adjtime thing. * * Modify the value of the tick for next time. * Note that a positive delta means we want the clock * to run fast. This means that the tick should be bigger * * Limit the amount of the step for *next* tick to be * in the range -tickadj .. +tickadj */ if (time_adjust > tickadj) time_adjust_step = tickadj; else if (time_adjust < -tickadj) time_adjust_step = -tickadj; else time_adjust_step = time_adjust; /* Reduce by this step the amount of time left */ time_adjust -= time_adjust_step; } else time_adjust_step = 0; } /* * Using a loop looks inefficient, but "ticks" is * usually just one (we shouldn't be losing ticks, * we're doing this this way mainly for interrupt * latency reasons, not because we think we'll * have lots of lost timer ticks */ static void update_wall_time(unsigned long ticks) { do { ticks--; update_wall_time_one_tick(); } while (ticks); if (xtime.tv_usec >= 1000000) { xtime.tv_usec -= 1000000; xtime.tv_sec++; second_overflow(); } } static inline void do_process_times(struct task_struct *p, unsigned long user, unsigned long system) { long psecs; psecs = (p->times.tms_utime += user); psecs += (p->times.tms_stime += system); if (psecs / HZ > p->rlim[RLIMIT_CPU].rlim_cur) { /* Send SIGXCPU every second.. */ if (!(psecs % HZ)) send_sig(SIGXCPU, p, 1); /* and SIGKILL when we go over max.. */ if (psecs / HZ > p->rlim[RLIMIT_CPU].rlim_max) send_sig(SIGKILL, p, 1); } } static inline void do_it_virt(struct task_struct * p, unsigned long ticks) { unsigned long it_virt = p->it_virt_value; if (it_virt) { if (it_virt <= ticks) { it_virt = ticks + p->it_virt_incr; send_sig(SIGVTALRM, p, 1); } p->it_virt_value = it_virt - ticks; } } static inline void do_it_prof(struct task_struct * p, unsigned long ticks) { unsigned long it_prof = p->it_prof_value; if (it_prof) { if (it_prof <= ticks) { it_prof = ticks + p->it_prof_incr; send_sig(SIGPROF, p, 1); } p->it_prof_value = it_prof - ticks; } } void update_one_process(struct task_struct *p, unsigned long ticks, unsigned long user, unsigned long system, int cpu) { p->per_cpu_utime[cpu] += user; p->per_cpu_stime[cpu] += system; do_process_times(p, user, system); do_it_virt(p, user); do_it_prof(p, ticks); } static void update_process_times(unsigned long ticks, unsigned long system) { /* * SMP does this on a per-CPU basis elsewhere */ #ifndef __SMP__ struct task_struct * p = current; unsigned long user = ticks - system; if (p->pid) { p->counter -= ticks; if (p->counter < 0) { p->counter = 0; p->need_resched = 1; } if (p->priority < DEF_PRIORITY) kstat.cpu_nice += user; else kstat.cpu_user += user; kstat.cpu_system += system; } update_one_process(p, ticks, user, system, 0); #endif } volatile unsigned long lost_ticks = 0; static unsigned long lost_ticks_system = 0; static inline void update_times(void) { unsigned long ticks; unsigned long flags; save_flags(flags); cli(); ticks = lost_ticks; lost_ticks = 0; if (ticks) { unsigned long system; system = xchg(&lost_ticks_system, 0); calc_load(ticks); update_wall_time(ticks); restore_flags(flags); update_process_times(ticks, system); } else restore_flags(flags); } static void timer_bh(void) { update_times(); run_old_timers(); run_timer_list(); } void do_timer(struct pt_regs * regs) { (*(unsigned long *)&jiffies)++; lost_ticks++; mark_bh(TIMER_BH); if (!user_mode(regs)) lost_ticks_system++; if (tq_timer) mark_bh(TQUEUE_BH); } #ifndef __alpha__ /* * For backwards compatibility? This can be done in libc so Alpha * and all newer ports shouldn't need it. */ asmlinkage unsigned int sys_alarm(unsigned int seconds) { struct itimerval it_new, it_old; unsigned int oldalarm; it_new.it_interval.tv_sec = it_new.it_interval.tv_usec = 0; it_new.it_value.tv_sec = seconds; it_new.it_value.tv_usec = 0; do_setitimer(ITIMER_REAL, &it_new, &it_old); oldalarm = it_old.it_value.tv_sec; /* ehhh.. We can't return 0 if we have an alarm pending.. */ /* And we'd better return too much than too little anyway */ if (it_old.it_value.tv_usec) oldalarm++; return oldalarm; } /* * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this * should be moved into arch/i386 instead? */ asmlinkage int sys_getpid(void) { /* This is SMP safe - current->pid doesn't change */ return current->pid; } /* * This is not strictly SMP safe: p_opptr could change * from under us. However, rather than getting any lock * we can use an optimistic algorithm: get the parent * pid, and go back and check that the parent is still * the same. If it has changed (which is extremely unlikely * indeed), we just try again.. * * NOTE! This depends on the fact that even if we _do_ * get an old value of "parent", we can happily dereference * the pointer: we just can't necessarily trust the result * until we know that the parent pointer is valid. * * The "mb()" macro is a memory barrier - a synchronizing * event. It also makes sure that gcc doesn't optimize * away the necessary memory references.. The barrier doesn't * have to have all that strong semantics: on x86 we don't * really require a synchronizing instruction, for example. * The barrier is more important for code generation than * for any real memory ordering semantics (even if there is * a small window for a race, using the old pointer is * harmless for a while). */ asmlinkage int sys_getppid(void) { int pid; struct task_struct * me = current; struct task_struct * parent; parent = me->p_opptr; for (;;) { pid = parent->pid; #if __SMP__ { struct task_struct *old = parent; mb(); parent = me->p_opptr; if (old != parent) continue; } #endif break; } return pid; } asmlinkage int sys_getuid(void) { /* Only we change this so SMP safe */ return current->uid; } asmlinkage int sys_geteuid(void) { /* Only we change this so SMP safe */ return current->euid; } asmlinkage int sys_getgid(void) { /* Only we change this so SMP safe */ return current->gid; } asmlinkage int sys_getegid(void) { /* Only we change this so SMP safe */ return current->egid; } /* * This has been replaced by sys_setpriority. Maybe it should be * moved into the arch dependent tree for those ports that require * it for backward compatibility? */ asmlinkage int sys_nice(int increment) { unsigned long newprio; int increase = 0; /* * Setpriority might change our priority at the same moment. * We don't have to worry. Conceptually one call occurs first * and we have a single winner. */ newprio = increment; if (increment < 0) { if (!capable(CAP_SYS_NICE)) return -EPERM; newprio = -increment; increase = 1; } if (newprio > 40) newprio = 40; /* * do a "normalization" of the priority (traditionally * Unix nice values are -20 to 20; Linux doesn't really * use that kind of thing, but uses the length of the * timeslice instead (default 150 ms). The rounding is * why we want to avoid negative values. */ newprio = (newprio * DEF_PRIORITY + 10) / 20; increment = newprio; if (increase) increment = -increment; /* * Current->priority can change between this point * and the assignment. We are assigning not doing add/subs * so thats ok. Conceptually a process might just instantaneously * read the value we stomp over. I don't think that is an issue * unless posix makes it one. If so we can loop on changes * to current->priority. */ newprio = current->priority - increment; if ((signed) newprio < 1) newprio = 1; if (newprio > DEF_PRIORITY*2) newprio = DEF_PRIORITY*2; current->priority = newprio; return 0; } #endif static inline struct task_struct *find_process_by_pid(pid_t pid) { struct task_struct *tsk = current; if (pid) tsk = find_task_by_pid(pid); return tsk; } static int setscheduler(pid_t pid, int policy, struct sched_param *param) { struct sched_param lp; struct task_struct *p; int retval; retval = -EINVAL; if (!param || pid < 0) goto out_nounlock; retval = -EFAULT; if (copy_from_user(&lp, param, sizeof(struct sched_param))) goto out_nounlock; /* * We play safe to avoid deadlocks. */ spin_lock(&scheduler_lock); spin_lock_irq(&runqueue_lock); read_lock(&tasklist_lock); p = find_process_by_pid(pid); retval = -ESRCH; if (!p) goto out_unlock; if (policy < 0) policy = p->policy; else { retval = -EINVAL; if (policy != SCHED_FIFO && policy != SCHED_RR && policy != SCHED_OTHER) goto out_unlock; } /* * Valid priorities for SCHED_FIFO and SCHED_RR are 1..99, valid * priority for SCHED_OTHER is 0. */ retval = -EINVAL; if (lp.sched_priority < 0 || lp.sched_priority > 99) goto out_unlock; if ((policy == SCHED_OTHER) != (lp.sched_priority == 0)) goto out_unlock; retval = -EPERM; if ((policy == SCHED_FIFO || policy == SCHED_RR) && !capable(CAP_SYS_NICE)) goto out_unlock; if ((current->euid != p->euid) && (current->euid != p->uid) && !capable(CAP_SYS_NICE)) goto out_unlock; retval = 0; p->policy = policy; p->rt_priority = lp.sched_priority; if (p->next_run) move_first_runqueue(p); current->need_resched = 1; out_unlock: read_unlock(&tasklist_lock); spin_unlock_irq(&runqueue_lock); spin_unlock(&scheduler_lock); out_nounlock: return retval; } asmlinkage int sys_sched_setscheduler(pid_t pid, int policy, struct sched_param *param) { return setscheduler(pid, policy, param); } asmlinkage int sys_sched_setparam(pid_t pid, struct sched_param *param) { return setscheduler(pid, -1, param); } asmlinkage int sys_sched_getscheduler(pid_t pid) { struct task_struct *p; int retval; retval = -EINVAL; if (pid < 0) goto out_nounlock; read_lock(&tasklist_lock); retval = -ESRCH; p = find_process_by_pid(pid); if (!p) goto out_unlock; retval = p->policy; out_unlock: read_unlock(&tasklist_lock); out_nounlock: return retval; } asmlinkage int sys_sched_getparam(pid_t pid, struct sched_param *param) { struct task_struct *p; struct sched_param lp; int retval; retval = -EINVAL; if (!param || pid < 0) goto out_nounlock; read_lock(&tasklist_lock); p = find_process_by_pid(pid); retval = -ESRCH; if (!p) goto out_unlock; lp.sched_priority = p->rt_priority; read_unlock(&tasklist_lock); /* * This one might sleep, we cannot do it with a spinlock held ... */ retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; out_nounlock: return retval; out_unlock: read_unlock(&tasklist_lock); return retval; } asmlinkage int sys_sched_yield(void) { spin_lock(&scheduler_lock); spin_lock_irq(&runqueue_lock); if (current->policy == SCHED_OTHER) current->policy |= SCHED_YIELD; current->need_resched = 1; move_last_runqueue(current); spin_unlock_irq(&runqueue_lock); spin_unlock(&scheduler_lock); return 0; } asmlinkage int sys_sched_get_priority_max(int policy) { int ret = -EINVAL; switch (policy) { case SCHED_FIFO: case SCHED_RR: ret = 99; break; case SCHED_OTHER: ret = 0; break; } return ret; } asmlinkage int sys_sched_get_priority_min(int policy) { int ret = -EINVAL; switch (policy) { case SCHED_FIFO: case SCHED_RR: ret = 1; break; case SCHED_OTHER: ret = 0; } return ret; } asmlinkage int sys_sched_rr_get_interval(pid_t pid, struct timespec *interval) { struct timespec t; t.tv_sec = 0; t.tv_nsec = 150000; if (copy_to_user(interval, &t, sizeof(struct timespec))) return -EFAULT; return 0; } asmlinkage int sys_nanosleep(struct timespec *rqtp, struct timespec *rmtp) { struct timespec t; unsigned long expire; if(copy_from_user(&t, rqtp, sizeof(struct timespec))) return -EFAULT; if (t.tv_nsec >= 1000000000L || t.tv_nsec < 0 || t.tv_sec < 0) return -EINVAL; if (t.tv_sec == 0 && t.tv_nsec <= 2000000L && current->policy != SCHED_OTHER) { /* * Short delay requests up to 2 ms will be handled with * high precision by a busy wait for all real-time processes. * * Its important on SMP not to do this holding locks. */ udelay((t.tv_nsec + 999) / 1000); return 0; } expire = timespec_to_jiffies(&t) + (t.tv_sec || t.tv_nsec) + jiffies; current->timeout = expire; current->state = TASK_INTERRUPTIBLE; schedule(); if (expire > jiffies) { if (rmtp) { jiffies_to_timespec(expire - jiffies - (expire > jiffies + 1), &t); if (copy_to_user(rmtp, &t, sizeof(struct timespec))) return -EFAULT; } return -EINTR; } return 0; } static void show_task(int nr,struct task_struct * p) { unsigned long free = 0; int state; static const char * stat_nam[] = { "R", "S", "D", "Z", "T", "W" }; printk("%-8s %3d ", p->comm, (p == current) ? -nr : nr); state = p->state ? ffz(~p->state) + 1 : 0; if (((unsigned) state) < sizeof(stat_nam)/sizeof(char *)) printk(stat_nam[state]); else printk(" "); #if (BITS_PER_LONG == 32) if (p == current) printk(" current "); else printk(" %08lX ", thread_saved_pc(&p->tss)); #else if (p == current) printk(" current task "); else printk(" %016lx ", thread_saved_pc(&p->tss)); #endif { unsigned long * n = (unsigned long *) (p+1); while (!*n) n++; free = (unsigned long) n - (unsigned long)(p+1); } printk("%5lu %5d %6d ", free, p->pid, p->p_pptr->pid); if (p->p_cptr) printk("%5d ", p->p_cptr->pid); else printk(" "); if (p->p_ysptr) printk("%7d", p->p_ysptr->pid); else printk(" "); if (p->p_osptr) printk(" %5d\n", p->p_osptr->pid); else printk("\n"); { struct signal_queue *q; char s[sizeof(sigset_t)*2+1], b[sizeof(sigset_t)*2+1]; render_sigset_t(&p->signal, s); render_sigset_t(&p->blocked, b); printk(" sig: %d %s %s :", signal_pending(p), s, b); for (q = p->sigqueue; q ; q = q->next) printk(" %d", q->info.si_signo); printk(" X\n"); } } char * render_sigset_t(sigset_t *set, char *buffer) { int i = _NSIG, x; do { i -= 4, x = 0; if (sigismember(set, i+1)) x |= 1; if (sigismember(set, i+2)) x |= 2; if (sigismember(set, i+3)) x |= 4; if (sigismember(set, i+4)) x |= 8; *buffer++ = (x < 10 ? '0' : 'a' - 10) + x; } while (i >= 4); *buffer = 0; return buffer; } void show_state(void) { struct task_struct *p; #if (BITS_PER_LONG == 32) printk("\n" " free sibling\n"); printk(" task PC stack pid father child younger older\n"); #else printk("\n" " free sibling\n"); printk(" task PC stack pid father child younger older\n"); #endif read_lock(&tasklist_lock); for_each_task(p) show_task((p->tarray_ptr - &task[0]),p); read_unlock(&tasklist_lock); } void __init sched_init(void) { /* * We have to do a little magic to get the first * process right in SMP mode. */ int cpu=hard_smp_processor_id(); int nr = NR_TASKS; init_task.processor=cpu; /* Init task array free list and pidhash table. */ while(--nr > 0) add_free_taskslot(&task[nr]); for(nr = 0; nr < PIDHASH_SZ; nr++) pidhash[nr] = NULL; init_bh(TIMER_BH, timer_bh); init_bh(TQUEUE_BH, tqueue_bh); init_bh(IMMEDIATE_BH, immediate_bh); } |