Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
/*
 *  linux/kernel/sched.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  1996-04-21	Modified by Ulrich Windl to make NTP work
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *              make semaphores SMP safe
 *  1997-01-28  Modified by Finn Arne Gangstad to make timers scale better.
 */

/*
 * 'sched.c' is the main kernel file. It contains scheduling primitives
 * (sleep_on, wakeup, schedule etc) as well as a number of simple system
 * call functions (type getpid()), which just extract a field from
 * current-task
 */

#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/timer.h>
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/fdreg.h>
#include <linux/errno.h>
#include <linux/time.h>
#include <linux/ptrace.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/tqueue.h>
#include <linux/resource.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/smp_lock.h>
#include <linux/init.h>

#include <asm/system.h>
#include <asm/io.h>
#include <asm/uaccess.h>
#include <asm/pgtable.h>
#include <asm/mmu_context.h>
#include <asm/spinlock.h>

#include <linux/timex.h>

/*
 * kernel variables
 */

unsigned securebits = SECUREBITS_DEFAULT; /* systemwide security settings */

long tick = (1000000 + HZ/2) / HZ;	/* timer interrupt period */

/* The current time */
volatile struct timeval xtime __attribute__ ((aligned (16)));

/* Don't completely fail for HZ > 500.  */
int tickadj = 500/HZ ? : 1;		/* microsecs */

DECLARE_TASK_QUEUE(tq_timer);
DECLARE_TASK_QUEUE(tq_immediate);
DECLARE_TASK_QUEUE(tq_scheduler);

/*
 * phase-lock loop variables
 */
/* TIME_ERROR prevents overwriting the CMOS clock */
int time_state = TIME_ERROR;	/* clock synchronization status */
int time_status = STA_UNSYNC;	/* clock status bits */
long time_offset = 0;		/* time adjustment (us) */
long time_constant = 2;		/* pll time constant */
long time_tolerance = MAXFREQ;	/* frequency tolerance (ppm) */
long time_precision = 1;	/* clock precision (us) */
long time_maxerror = MAXPHASE;	/* maximum error (us) */
long time_esterror = MAXPHASE;	/* estimated error (us) */
long time_phase = 0;		/* phase offset (scaled us) */
long time_freq = ((1000000 + HZ/2) % HZ - HZ/2) << SHIFT_USEC;	/* frequency offset (scaled ppm) */
long time_adj = 0;		/* tick adjust (scaled 1 / HZ) */
long time_reftime = 0;		/* time at last adjustment (s) */

long time_adjust = 0;
long time_adjust_step = 0;

unsigned long event = 0;

extern int do_setitimer(int, struct itimerval *, struct itimerval *);
unsigned int * prof_buffer = NULL;
unsigned long prof_len = 0;
unsigned long prof_shift = 0;

extern void mem_use(void);

unsigned long volatile jiffies=0;

/*
 *	Init task must be ok at boot for the ix86 as we will check its signals
 *	via the SMP irq return path.
 */
 
struct task_struct * task[NR_TASKS] = {&init_task, };

struct kernel_stat kstat = { 0 };

void scheduling_functions_start_here(void) { }

static inline void reschedule_idle(struct task_struct * p)
{

	/*
	 * For SMP, we try to see if the CPU the task used
	 * to run on is idle..
	 */
#if 0
	/*
	 * Disable this for now. Ingo has some interesting
	 * code that looks too complex, and I have some ideas,
	 * but in the meantime.. One problem is that "wakeup()"
	 * can be (and is) called before we've even initialized
	 * SMP completely, so..
	 */
#ifdef __SMP__
	int want_cpu = p->processor;

	/*
	 * Don't even try to find another CPU for us if the task
	 * ran on this one before..
	 */
	if (want_cpu != smp_processor_id()) {
		struct task_struct **idle = task;
		int i = smp_num_cpus;

		do {
			struct task_struct *tsk = *idle;
			idle++;
			/* Something like this.. */
			if (tsk->has_cpu && tsk->processor == want_cpu) {
				tsk->need_resched = 1;
				smp_send_reschedule(want_cpu);
				return;
			}
		} while (--i > 0);
	}
#endif
#endif
	if (p->policy != SCHED_OTHER || p->counter > current->counter + 3)
		current->need_resched = 1;	
}

/*
 * Careful!
 *
 * This has to add the process to the _beginning_ of the
 * run-queue, not the end. See the comment about "This is
 * subtle" in the scheduler proper..
 */
static inline void add_to_runqueue(struct task_struct * p)
{
	struct task_struct *next = init_task.next_run;

	p->prev_run = &init_task;
	init_task.next_run = p;
	p->next_run = next;
	next->prev_run = p;
}

static inline void del_from_runqueue(struct task_struct * p)
{
	struct task_struct *next = p->next_run;
	struct task_struct *prev = p->prev_run;

	nr_running--;
	next->prev_run = prev;
	prev->next_run = next;
	p->next_run = NULL;
	p->prev_run = NULL;
}

static inline void move_last_runqueue(struct task_struct * p)
{
	struct task_struct *next = p->next_run;
	struct task_struct *prev = p->prev_run;

	/* remove from list */
	next->prev_run = prev;
	prev->next_run = next;
	/* add back to list */
	p->next_run = &init_task;
	prev = init_task.prev_run;
	init_task.prev_run = p;
	p->prev_run = prev;
	prev->next_run = p;
}

static inline void move_first_runqueue(struct task_struct * p)
{
	struct task_struct *next = p->next_run;
	struct task_struct *prev = p->prev_run;

	/* remove from list */
	next->prev_run = prev;
	prev->next_run = next;
	/* add back to list */
	p->prev_run = &init_task;
	next = init_task.next_run;
	init_task.next_run = p;
	p->next_run = next;
	next->prev_run = p;
}

/*
 * The tasklist_lock protects the linked list of processes.
 *
 * The scheduler lock is protecting against multiple entry
 * into the scheduling code, and doesn't need to worry
 * about interrupts (because interrupts cannot call the
 * scheduler).
 *
 * The run-queue lock locks the parts that actually access
 * and change the run-queues, and have to be interrupt-safe.
 */
spinlock_t scheduler_lock = SPIN_LOCK_UNLOCKED;	/* should be acquired first */
spinlock_t runqueue_lock = SPIN_LOCK_UNLOCKED;  /* second */
rwlock_t tasklist_lock = RW_LOCK_UNLOCKED;	/* third */

/*
 * Wake up a process. Put it on the run-queue if it's not
 * already there.  The "current" process is always on the
 * run-queue (except when the actual re-schedule is in
 * progress), and as such you're allowed to do the simpler
 * "current->state = TASK_RUNNING" to mark yourself runnable
 * without the overhead of this.
 */
inline void wake_up_process(struct task_struct * p)
{
	unsigned long flags;

	spin_lock_irqsave(&runqueue_lock, flags);
	p->state = TASK_RUNNING;
	if (!p->next_run) {
		add_to_runqueue(p);
		reschedule_idle(p);
		nr_running++;
	}
	spin_unlock_irqrestore(&runqueue_lock, flags);
}

static void process_timeout(unsigned long __data)
{
	struct task_struct * p = (struct task_struct *) __data;

	p->timeout = 0;
	wake_up_process(p);
}

/*
 * This is the function that decides how desirable a process is..
 * You can weigh different processes against each other depending
 * on what CPU they've run on lately etc to try to handle cache
 * and TLB miss penalties.
 *
 * Return values:
 *	 -1000: never select this
 *	     0: out of time, recalculate counters (but it might still be
 *		selected)
 *	   +ve: "goodness" value (the larger, the better)
 *	 +1000: realtime process, select this.
 */
static inline int goodness(struct task_struct * p, struct task_struct * prev, int this_cpu)
{
	int policy = p->policy;
	int weight;

	if (policy & SCHED_YIELD) {
		p->policy = policy & ~SCHED_YIELD;
		return 0;
	}

	/*
	 * Realtime process, select the first one on the
	 * runqueue (taking priorities within processes
	 * into account).
	 */
	if (policy != SCHED_OTHER)
		return 1000 + p->rt_priority;

	/*
	 * Give the process a first-approximation goodness value
	 * according to the number of clock-ticks it has left.
	 *
	 * Don't do any other calculations if the time slice is
	 * over..
	 */
	weight = p->counter;
	if (weight) {
			
#ifdef __SMP__
		/* Give a largish advantage to the same processor...   */
		/* (this is equivalent to penalizing other processors) */
		if (p->processor == this_cpu)
			weight += PROC_CHANGE_PENALTY;
#endif

		/* .. and a slight advantage to the current thread */
		if (p->mm == prev->mm)
			weight += 1;
		weight += p->priority;
	}

	return weight;
}

/*
 * Event timer code
 */
#define TVN_BITS 6
#define TVR_BITS 8
#define TVN_SIZE (1 << TVN_BITS)
#define TVR_SIZE (1 << TVR_BITS)
#define TVN_MASK (TVN_SIZE - 1)
#define TVR_MASK (TVR_SIZE - 1)

struct timer_vec {
        int index;
        struct timer_list *vec[TVN_SIZE];
};

struct timer_vec_root {
        int index;
        struct timer_list *vec[TVR_SIZE];
};

static struct timer_vec tv5 = { 0 };
static struct timer_vec tv4 = { 0 };
static struct timer_vec tv3 = { 0 };
static struct timer_vec tv2 = { 0 };
static struct timer_vec_root tv1 = { 0 };

static struct timer_vec * const tvecs[] = {
	(struct timer_vec *)&tv1, &tv2, &tv3, &tv4, &tv5
};

#define NOOF_TVECS (sizeof(tvecs) / sizeof(tvecs[0]))

static unsigned long timer_jiffies = 0;

static inline void insert_timer(struct timer_list *timer,
				struct timer_list **vec, int idx)
{
	if ((timer->next = vec[idx]))
		vec[idx]->prev = timer;
	vec[idx] = timer;
	timer->prev = (struct timer_list *)&vec[idx];
}

static inline void internal_add_timer(struct timer_list *timer)
{
	/*
	 * must be cli-ed when calling this
	 */
	unsigned long expires = timer->expires;
	unsigned long idx = expires - timer_jiffies;

	if (idx < TVR_SIZE) {
		int i = expires & TVR_MASK;
		insert_timer(timer, tv1.vec, i);
	} else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
		int i = (expires >> TVR_BITS) & TVN_MASK;
		insert_timer(timer, tv2.vec, i);
	} else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
		int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
		insert_timer(timer, tv3.vec, i);
	} else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
		int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
		insert_timer(timer, tv4.vec, i);
	} else if (expires < timer_jiffies) {
		/* can happen if you add a timer with expires == jiffies,
		 * or you set a timer to go off in the past
		 */
		insert_timer(timer, tv1.vec, tv1.index);
	} else if (idx < 0xffffffffUL) {
		int i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
		insert_timer(timer, tv5.vec, i);
	} else {
		/* Can only get here on architectures with 64-bit jiffies */
		timer->next = timer->prev = timer;
	}
}

spinlock_t timerlist_lock = SPIN_LOCK_UNLOCKED;

void add_timer(struct timer_list *timer)
{
	unsigned long flags;

	spin_lock_irqsave(&timerlist_lock, flags);
	internal_add_timer(timer);
	spin_unlock_irqrestore(&timerlist_lock, flags);
}

static inline int detach_timer(struct timer_list *timer)
{
	struct timer_list *prev = timer->prev;
	if (prev) {
		struct timer_list *next = timer->next;
		prev->next = next;
		if (next)
			next->prev = prev;
		return 1;
	}
	return 0;
}

void mod_timer(struct timer_list *timer, unsigned long expires)
{
	unsigned long flags;

	spin_lock_irqsave(&timerlist_lock, flags);
	timer->expires = expires;
	detach_timer(timer);
	internal_add_timer(timer);
	spin_unlock_irqrestore(&timerlist_lock, flags);
}

int del_timer(struct timer_list * timer)
{
	int ret;
	unsigned long flags;

	spin_lock_irqsave(&timerlist_lock, flags);
	ret = detach_timer(timer);
	timer->next = timer->prev = 0;
	spin_unlock_irqrestore(&timerlist_lock, flags);
	return ret;
}

#ifdef __SMP__

#define idle_task (task[cpu_number_map[this_cpu]])
#define can_schedule(p)	(!(p)->has_cpu)

#else

#define idle_task (&init_task)
#define can_schedule(p) (1)

#endif

/*
 *  'schedule()' is the scheduler function. It's a very simple and nice
 * scheduler: it's not perfect, but certainly works for most things.
 *
 * The goto is "interesting".
 *
 *   NOTE!!  Task 0 is the 'idle' task, which gets called when no other
 * tasks can run. It can not be killed, and it cannot sleep. The 'state'
 * information in task[0] is never used.
 */
asmlinkage void schedule(void)
{
	struct task_struct * prev, * next;
	unsigned long timeout;
	int this_cpu;

	prev = current;
	this_cpu = prev->processor;
	if (in_interrupt())
		goto scheduling_in_interrupt;
	release_kernel_lock(prev, this_cpu);

	/* Do "administrative" work here while we don't hold any locks */
	if (bh_active & bh_mask)
		do_bottom_half();
	run_task_queue(&tq_scheduler);

	spin_lock(&scheduler_lock);
	spin_lock_irq(&runqueue_lock);

	/* move an exhausted RR process to be last.. */
	prev->need_resched = 0;
	if (!prev->counter && prev->policy == SCHED_RR) {
		prev->counter = prev->priority;
		move_last_runqueue(prev);
	}
	timeout = 0;
	switch (prev->state) {
		case TASK_INTERRUPTIBLE:
			if (signal_pending(prev))
				goto makerunnable;
			timeout = prev->timeout;
			if (timeout && (timeout <= jiffies)) {
				prev->timeout = 0;
				timeout = 0;
		makerunnable:
				prev->state = TASK_RUNNING;
				break;
			}
		default:
			del_from_runqueue(prev);
		case TASK_RUNNING:
	}
	{
		struct task_struct * p = init_task.next_run;
		/*
		 * This is subtle.
		 * Note how we can enable interrupts here, even
		 * though interrupts can add processes to the run-
		 * queue. This is because any new processes will
		 * be added to the front of the queue, so "p" above
		 * is a safe starting point.
		 * run-queue deletion and re-ordering is protected by
		 * the scheduler lock
		 */
		spin_unlock_irq(&runqueue_lock);
#ifdef __SMP__
		prev->has_cpu = 0;
#endif
	
/*
 * Note! there may appear new tasks on the run-queue during this, as
 * interrupts are enabled. However, they will be put on front of the
 * list, so our list starting at "p" is essentially fixed.
 */
/* this is the scheduler proper: */
		{
			int c = -1000;
			next = idle_task;
			while (p != &init_task) {
				if (can_schedule(p)) {
					int weight = goodness(p, prev, this_cpu);
					if (weight > c)
						c = weight, next = p;
				}
				p = p->next_run;
			}

			/* Do we need to re-calculate counters? */
			if (!c) {
				struct task_struct *p;
				read_lock(&tasklist_lock);
				for_each_task(p)
					p->counter = (p->counter >> 1) + p->priority;
				read_unlock(&tasklist_lock);
			}
		}
	}

#ifdef __SMP__
	next->has_cpu = 1;
	next->processor = this_cpu;
#endif

	if (prev != next) {
		struct timer_list timer;

		kstat.context_swtch++;
		if (timeout) {
			init_timer(&timer);
			timer.expires = timeout;
			timer.data = (unsigned long) prev;
			timer.function = process_timeout;
			add_timer(&timer);
		}
		get_mmu_context(next);
		switch_to(prev,next);

		if (timeout)
			del_timer(&timer);
	}

	spin_unlock(&scheduler_lock);

	/*
	 * At this point "prev" is "current", as we just
	 * switched into it (from an even more "previous"
	 * prev)
	 */
	reacquire_kernel_lock(prev);
	return;

scheduling_in_interrupt:
	printk("Scheduling in interrupt\n");
	*(int *)0 = 0;
}


rwlock_t waitqueue_lock = RW_LOCK_UNLOCKED;

/*
 * wake_up doesn't wake up stopped processes - they have to be awakened
 * with signals or similar.
 *
 * Note that we only need a read lock for the wait queue (and thus do not
 * have to protect against interrupts), as the actual removal from the
 * queue is handled by the process itself.
 */
void __wake_up(struct wait_queue **q, unsigned int mode)
{
	struct wait_queue *next;

	read_lock(&waitqueue_lock);
	if (q && (next = *q)) {
		struct wait_queue *head;

		head = WAIT_QUEUE_HEAD(q);
		while (next != head) {
			struct task_struct *p = next->task;
			next = next->next;
			if (p->state & mode)
				wake_up_process(p);
		}
	}
	read_unlock(&waitqueue_lock);
}

/*
 * Semaphores are implemented using a two-way counter:
 * The "count" variable is decremented for each process
 * that tries to sleep, while the "waking" variable is
 * incremented when the "up()" code goes to wake up waiting
 * processes.
 *
 * Notably, the inline "up()" and "down()" functions can
 * efficiently test if they need to do any extra work (up
 * needs to do something only if count was negative before
 * the increment operation.
 *
 * waking_non_zero() (from asm/semaphore.h) must execute
 * atomically.
 *
 * When __up() is called, the count was negative before
 * incrementing it, and we need to wake up somebody.
 *
 * This routine adds one to the count of processes that need to
 * wake up and exit.  ALL waiting processes actually wake up but
 * only the one that gets to the "waking" field first will gate
 * through and acquire the semaphore.  The others will go back
 * to sleep.
 *
 * Note that these functions are only called when there is
 * contention on the lock, and as such all this is the
 * "non-critical" part of the whole semaphore business. The
 * critical part is the inline stuff in <asm/semaphore.h>
 * where we want to avoid any extra jumps and calls.
 */
void __up(struct semaphore *sem)
{
	wake_one_more(sem);
	wake_up(&sem->wait);
}

/*
 * Perform the "down" function.  Return zero for semaphore acquired,
 * return negative for signalled out of the function.
 *
 * If called from __down, the return is ignored and the wait loop is
 * not interruptible.  This means that a task waiting on a semaphore
 * using "down()" cannot be killed until someone does an "up()" on
 * the semaphore.
 *
 * If called from __down_interruptible, the return value gets checked
 * upon return.  If the return value is negative then the task continues
 * with the negative value in the return register (it can be tested by
 * the caller).
 *
 * Either form may be used in conjunction with "up()".
 *
 */
static inline int __do_down(struct semaphore * sem, int task_state)
{
	struct task_struct *tsk = current;
	struct wait_queue wait = { tsk, NULL };
	int		  ret = 0;

	tsk->state = task_state;
	add_wait_queue(&sem->wait, &wait);

	/*
	 * Ok, we're set up.  sem->count is known to be less than zero
	 * so we must wait.
	 *
	 * We can let go the lock for purposes of waiting.
	 * We re-acquire it after awaking so as to protect
	 * all semaphore operations.
	 *
	 * If "up()" is called before we call waking_non_zero() then
	 * we will catch it right away.  If it is called later then
	 * we will have to go through a wakeup cycle to catch it.
	 *
	 * Multiple waiters contend for the semaphore lock to see
	 * who gets to gate through and who has to wait some more.
	 */
	for (;;) {
		if (waking_non_zero(sem))	/* are we waking up?  */
			break;			/* yes, exit loop */

		if (task_state == TASK_INTERRUPTIBLE && signal_pending(tsk)) {
			ret = -EINTR;			/* interrupted */
			atomic_inc(&sem->count);	/* give up on down operation */
			break;
		}

		schedule();
		tsk->state = task_state;
	}

	tsk->state = TASK_RUNNING;
	remove_wait_queue(&sem->wait, &wait);
	return ret;
}

void __down(struct semaphore * sem)
{
	__do_down(sem,TASK_UNINTERRUPTIBLE);
}

int __down_interruptible(struct semaphore * sem)
{
	return __do_down(sem,TASK_INTERRUPTIBLE);
}


static void FASTCALL(__sleep_on(struct wait_queue **p, int state));
static void __sleep_on(struct wait_queue **p, int state)
{
	unsigned long flags;
	struct wait_queue wait;

	current->state = state;
	wait.task = current;
	write_lock_irqsave(&waitqueue_lock, flags);
	__add_wait_queue(p, &wait);
	write_unlock(&waitqueue_lock);
	schedule();
	write_lock_irq(&waitqueue_lock);
	__remove_wait_queue(p, &wait);
	write_unlock_irqrestore(&waitqueue_lock, flags);
}

void interruptible_sleep_on(struct wait_queue **p)
{
	__sleep_on(p,TASK_INTERRUPTIBLE);
}

void sleep_on(struct wait_queue **p)
{
	__sleep_on(p,TASK_UNINTERRUPTIBLE);
}

void scheduling_functions_end_here(void) { }

static inline void cascade_timers(struct timer_vec *tv)
{
        /* cascade all the timers from tv up one level */
        struct timer_list *timer;
        timer = tv->vec[tv->index];
        /*
         * We are removing _all_ timers from the list, so we don't  have to
         * detach them individually, just clear the list afterwards.
         */
        while (timer) {
                struct timer_list *tmp = timer;
                timer = timer->next;
                internal_add_timer(tmp);
        }
        tv->vec[tv->index] = NULL;
        tv->index = (tv->index + 1) & TVN_MASK;
}

static inline void run_timer_list(void)
{
	spin_lock_irq(&timerlist_lock);
	while ((long)(jiffies - timer_jiffies) >= 0) {
		struct timer_list *timer;
		if (!tv1.index) {
			int n = 1;
			do {
				cascade_timers(tvecs[n]);
			} while (tvecs[n]->index == 1 && ++n < NOOF_TVECS);
		}
		while ((timer = tv1.vec[tv1.index])) {
			void (*fn)(unsigned long) = timer->function;
			unsigned long data = timer->data;
			detach_timer(timer);
			timer->next = timer->prev = NULL;
			spin_unlock_irq(&timerlist_lock);
			fn(data);
			spin_lock_irq(&timerlist_lock);
		}
		++timer_jiffies; 
		tv1.index = (tv1.index + 1) & TVR_MASK;
	}
	spin_unlock_irq(&timerlist_lock);
}


static inline void run_old_timers(void)
{
	struct timer_struct *tp;
	unsigned long mask;

	for (mask = 1, tp = timer_table+0 ; mask ; tp++,mask += mask) {
		if (mask > timer_active)
			break;
		if (!(mask & timer_active))
			continue;
		if (tp->expires > jiffies)
			continue;
		timer_active &= ~mask;
		tp->fn();
		sti();
	}
}

spinlock_t tqueue_lock;

void tqueue_bh(void)
{
	run_task_queue(&tq_timer);
}

void immediate_bh(void)
{
	run_task_queue(&tq_immediate);
}

unsigned long timer_active = 0;
struct timer_struct timer_table[32];

/*
 * Hmm.. Changed this, as the GNU make sources (load.c) seems to
 * imply that avenrun[] is the standard name for this kind of thing.
 * Nothing else seems to be standardized: the fractional size etc
 * all seem to differ on different machines.
 */
unsigned long avenrun[3] = { 0,0,0 };

/*
 * Nr of active tasks - counted in fixed-point numbers
 */
static unsigned long count_active_tasks(void)
{
	struct task_struct *p;
	unsigned long nr = 0;

	read_lock(&tasklist_lock);
	for_each_task(p) {
		if ((p->state == TASK_RUNNING ||
		     p->state == TASK_UNINTERRUPTIBLE ||
		     p->state == TASK_SWAPPING))
			nr += FIXED_1;
	}
	read_unlock(&tasklist_lock);
	return nr;
}

static inline void calc_load(unsigned long ticks)
{
	unsigned long active_tasks; /* fixed-point */
	static int count = LOAD_FREQ;

	count -= ticks;
	if (count < 0) {
		count += LOAD_FREQ;
		active_tasks = count_active_tasks();
		CALC_LOAD(avenrun[0], EXP_1, active_tasks);
		CALC_LOAD(avenrun[1], EXP_5, active_tasks);
		CALC_LOAD(avenrun[2], EXP_15, active_tasks);
	}
}

/*
 * this routine handles the overflow of the microsecond field
 *
 * The tricky bits of code to handle the accurate clock support
 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
 * They were originally developed for SUN and DEC kernels.
 * All the kudos should go to Dave for this stuff.
 *
 */
static void second_overflow(void)
{
    long ltemp;

    /* Bump the maxerror field */
    time_maxerror += time_tolerance >> SHIFT_USEC;
    if ( time_maxerror > MAXPHASE )
        time_maxerror = MAXPHASE;

    /*
     * Leap second processing. If in leap-insert state at
     * the end of the day, the system clock is set back one
     * second; if in leap-delete state, the system clock is
     * set ahead one second. The microtime() routine or
     * external clock driver will insure that reported time
     * is always monotonic. The ugly divides should be
     * replaced.
     */
    switch (time_state) {

    case TIME_OK:
	if (time_status & STA_INS)
	    time_state = TIME_INS;
	else if (time_status & STA_DEL)
	    time_state = TIME_DEL;
	break;

    case TIME_INS:
	if (xtime.tv_sec % 86400 == 0) {
	    xtime.tv_sec--;
	    time_state = TIME_OOP;
	    printk("Clock: inserting leap second 23:59:60 UTC\n");
	}
	break;

    case TIME_DEL:
	if ((xtime.tv_sec + 1) % 86400 == 0) {
	    xtime.tv_sec++;
	    time_state = TIME_WAIT;
	    printk("Clock: deleting leap second 23:59:59 UTC\n");
	}
	break;

    case TIME_OOP:
	time_state = TIME_WAIT;
	break;

    case TIME_WAIT:
	if (!(time_status & (STA_INS | STA_DEL)))
	    time_state = TIME_OK;
    }

    /*
     * Compute the phase adjustment for the next second. In
     * PLL mode, the offset is reduced by a fixed factor
     * times the time constant. In FLL mode the offset is
     * used directly. In either mode, the maximum phase
     * adjustment for each second is clamped so as to spread
     * the adjustment over not more than the number of
     * seconds between updates.
     */
    if (time_offset < 0) {
	ltemp = -time_offset;
	if (!(time_status & STA_FLL))
	    ltemp >>= SHIFT_KG + time_constant;
	if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
	    ltemp = (MAXPHASE / MINSEC) << SHIFT_UPDATE;
	time_offset += ltemp;
	time_adj = -ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE);
    } else {
	ltemp = time_offset;
	if (!(time_status & STA_FLL))
	    ltemp >>= SHIFT_KG + time_constant;
	if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
	    ltemp = (MAXPHASE / MINSEC) << SHIFT_UPDATE;
	time_offset -= ltemp;
	time_adj = ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE);
    }

    /*
     * Compute the frequency estimate and additional phase
     * adjustment due to frequency error for the next
     * second. When the PPS signal is engaged, gnaw on the
     * watchdog counter and update the frequency computed by
     * the pll and the PPS signal.
     */
    pps_valid++;
    if (pps_valid == PPS_VALID) {
	pps_jitter = MAXTIME;
	pps_stabil = MAXFREQ;
	time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
			 STA_PPSWANDER | STA_PPSERROR);
    }
    ltemp = time_freq + pps_freq;
    if (ltemp < 0)
	time_adj -= -ltemp >>
	    (SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE);
    else
	time_adj += ltemp >>
	    (SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE);

#if HZ == 100
    /* compensate for (HZ==100) != 128. Add 25% to get 125; => only 3% error */
    if (time_adj < 0)
	time_adj -= -time_adj >> 2;
    else
	time_adj += time_adj >> 2;
#endif
}

/* in the NTP reference this is called "hardclock()" */
static void update_wall_time_one_tick(void)
{
	/*
	 * Advance the phase, once it gets to one microsecond, then
	 * advance the tick more.
	 */
	time_phase += time_adj;
	if (time_phase <= -FINEUSEC) {
		long ltemp = -time_phase >> SHIFT_SCALE;
		time_phase += ltemp << SHIFT_SCALE;
		xtime.tv_usec += tick + time_adjust_step - ltemp;
	}
	else if (time_phase >= FINEUSEC) {
		long ltemp = time_phase >> SHIFT_SCALE;
		time_phase -= ltemp << SHIFT_SCALE;
		xtime.tv_usec += tick + time_adjust_step + ltemp;
	} else
		xtime.tv_usec += tick + time_adjust_step;

	if (time_adjust) {
	    /* We are doing an adjtime thing. 
	     *
	     * Modify the value of the tick for next time.
	     * Note that a positive delta means we want the clock
	     * to run fast. This means that the tick should be bigger
	     *
	     * Limit the amount of the step for *next* tick to be
	     * in the range -tickadj .. +tickadj
	     */
	     if (time_adjust > tickadj)
		time_adjust_step = tickadj;
	     else if (time_adjust < -tickadj)
		time_adjust_step = -tickadj;
	     else
		time_adjust_step = time_adjust;
	     
	    /* Reduce by this step the amount of time left  */
	    time_adjust -= time_adjust_step;
	}
	else
	    time_adjust_step = 0;
}

/*
 * Using a loop looks inefficient, but "ticks" is
 * usually just one (we shouldn't be losing ticks,
 * we're doing this this way mainly for interrupt
 * latency reasons, not because we think we'll
 * have lots of lost timer ticks
 */
static void update_wall_time(unsigned long ticks)
{
	do {
		ticks--;
		update_wall_time_one_tick();
	} while (ticks);

	if (xtime.tv_usec >= 1000000) {
	    xtime.tv_usec -= 1000000;
	    xtime.tv_sec++;
	    second_overflow();
	}
}

static inline void do_process_times(struct task_struct *p,
	unsigned long user, unsigned long system)
{
	long psecs;

	psecs = (p->times.tms_utime += user);
	psecs += (p->times.tms_stime += system);
	if (psecs / HZ > p->rlim[RLIMIT_CPU].rlim_cur) {
		/* Send SIGXCPU every second.. */
		if (!(psecs % HZ))
			send_sig(SIGXCPU, p, 1);
		/* and SIGKILL when we go over max.. */
		if (psecs / HZ > p->rlim[RLIMIT_CPU].rlim_max)
			send_sig(SIGKILL, p, 1);
	}
}

static inline void do_it_virt(struct task_struct * p, unsigned long ticks)
{
	unsigned long it_virt = p->it_virt_value;

	if (it_virt) {
		if (it_virt <= ticks) {
			it_virt = ticks + p->it_virt_incr;
			send_sig(SIGVTALRM, p, 1);
		}
		p->it_virt_value = it_virt - ticks;
	}
}

static inline void do_it_prof(struct task_struct * p, unsigned long ticks)
{
	unsigned long it_prof = p->it_prof_value;

	if (it_prof) {
		if (it_prof <= ticks) {
			it_prof = ticks + p->it_prof_incr;
			send_sig(SIGPROF, p, 1);
		}
		p->it_prof_value = it_prof - ticks;
	}
}

void update_one_process(struct task_struct *p,
	unsigned long ticks, unsigned long user, unsigned long system, int cpu)
{
	p->per_cpu_utime[cpu] += user;
	p->per_cpu_stime[cpu] += system;
	do_process_times(p, user, system);
	do_it_virt(p, user);
	do_it_prof(p, ticks);
}	

static void update_process_times(unsigned long ticks, unsigned long system)
{
/*
 * SMP does this on a per-CPU basis elsewhere
 */
#ifndef  __SMP__
	struct task_struct * p = current;
	unsigned long user = ticks - system;
	if (p->pid) {
		p->counter -= ticks;
		if (p->counter < 0) {
			p->counter = 0;
			p->need_resched = 1;
		}
		if (p->priority < DEF_PRIORITY)
			kstat.cpu_nice += user;
		else
			kstat.cpu_user += user;
		kstat.cpu_system += system;
	}
	update_one_process(p, ticks, user, system, 0);
#endif
}

volatile unsigned long lost_ticks = 0;
static unsigned long lost_ticks_system = 0;

static inline void update_times(void)
{
	unsigned long ticks;
	unsigned long flags;

	save_flags(flags);
	cli();

	ticks = lost_ticks;
	lost_ticks = 0;

	if (ticks) {
		unsigned long system;
		system = xchg(&lost_ticks_system, 0);

		calc_load(ticks);
		update_wall_time(ticks);
		restore_flags(flags);
		
		update_process_times(ticks, system);

	} else
		restore_flags(flags);
}

static void timer_bh(void)
{
	update_times();
	run_old_timers();
	run_timer_list();
}

void do_timer(struct pt_regs * regs)
{
	(*(unsigned long *)&jiffies)++;
	lost_ticks++;
	mark_bh(TIMER_BH);
	if (!user_mode(regs))
		lost_ticks_system++;
	if (tq_timer)
		mark_bh(TQUEUE_BH);
}

#ifndef __alpha__

/*
 * For backwards compatibility?  This can be done in libc so Alpha
 * and all newer ports shouldn't need it.
 */
asmlinkage unsigned int sys_alarm(unsigned int seconds)
{
	struct itimerval it_new, it_old;
	unsigned int oldalarm;

	it_new.it_interval.tv_sec = it_new.it_interval.tv_usec = 0;
	it_new.it_value.tv_sec = seconds;
	it_new.it_value.tv_usec = 0;
	do_setitimer(ITIMER_REAL, &it_new, &it_old);
	oldalarm = it_old.it_value.tv_sec;
	/* ehhh.. We can't return 0 if we have an alarm pending.. */
	/* And we'd better return too much than too little anyway */
	if (it_old.it_value.tv_usec)
		oldalarm++;
	return oldalarm;
}

/*
 * The Alpha uses getxpid, getxuid, and getxgid instead.  Maybe this
 * should be moved into arch/i386 instead?
 */
 
asmlinkage int sys_getpid(void)
{
	/* This is SMP safe - current->pid doesn't change */
	return current->pid;
}

/*
 * This is not strictly SMP safe: p_opptr could change
 * from under us. However, rather than getting any lock
 * we can use an optimistic algorithm: get the parent
 * pid, and go back and check that the parent is still
 * the same. If it has changed (which is extremely unlikely
 * indeed), we just try again..
 *
 * NOTE! This depends on the fact that even if we _do_
 * get an old value of "parent", we can happily dereference
 * the pointer: we just can't necessarily trust the result
 * until we know that the parent pointer is valid.
 *
 * The "mb()" macro is a memory barrier - a synchronizing
 * event. It also makes sure that gcc doesn't optimize
 * away the necessary memory references.. The barrier doesn't
 * have to have all that strong semantics: on x86 we don't
 * really require a synchronizing instruction, for example.
 * The barrier is more important for code generation than
 * for any real memory ordering semantics (even if there is
 * a small window for a race, using the old pointer is
 * harmless for a while).
 */
asmlinkage int sys_getppid(void)
{
	int pid;
	struct task_struct * me = current;
	struct task_struct * parent;

	parent = me->p_opptr;
	for (;;) {
		pid = parent->pid;
#if __SMP__
{
		struct task_struct *old = parent;
		mb();
		parent = me->p_opptr;
		if (old != parent)
			continue;
}
#endif
		break;
	}
	return pid;
}

asmlinkage int sys_getuid(void)
{
	/* Only we change this so SMP safe */
	return current->uid;
}

asmlinkage int sys_geteuid(void)
{
	/* Only we change this so SMP safe */
	return current->euid;
}

asmlinkage int sys_getgid(void)
{
	/* Only we change this so SMP safe */
	return current->gid;
}

asmlinkage int sys_getegid(void)
{
	/* Only we change this so SMP safe */
	return  current->egid;
}

/*
 * This has been replaced by sys_setpriority.  Maybe it should be
 * moved into the arch dependent tree for those ports that require
 * it for backward compatibility?
 */

asmlinkage int sys_nice(int increment)
{
	unsigned long newprio;
	int increase = 0;

	/*
	 *	Setpriority might change our priority at the same moment.
	 *	We don't have to worry. Conceptually one call occurs first
	 *	and we have a single winner.
	 */
	 
	newprio = increment;
	if (increment < 0) {
		if (!capable(CAP_SYS_NICE))
			return -EPERM;
		newprio = -increment;
		increase = 1;
	}

	if (newprio > 40)
		newprio = 40;
	/*
	 * do a "normalization" of the priority (traditionally
	 * Unix nice values are -20 to 20; Linux doesn't really
	 * use that kind of thing, but uses the length of the
	 * timeslice instead (default 150 ms). The rounding is
	 * why we want to avoid negative values.
	 */
	newprio = (newprio * DEF_PRIORITY + 10) / 20;
	increment = newprio;
	if (increase)
		increment = -increment;
	/*
	 *	Current->priority can change between this point
	 *	and the assignment. We are assigning not doing add/subs
	 *	so thats ok. Conceptually a process might just instantaneously
	 *	read the value we stomp over. I don't think that is an issue
	 *	unless posix makes it one. If so we can loop on changes
	 *	to current->priority.
	 */
	newprio = current->priority - increment;
	if ((signed) newprio < 1)
		newprio = 1;
	if (newprio > DEF_PRIORITY*2)
		newprio = DEF_PRIORITY*2;
	current->priority = newprio;
	return 0;
}

#endif

static inline struct task_struct *find_process_by_pid(pid_t pid)
{
	struct task_struct *tsk = current;

	if (pid)
		tsk = find_task_by_pid(pid);
	return tsk;
}

static int setscheduler(pid_t pid, int policy, 
			struct sched_param *param)
{
	struct sched_param lp;
	struct task_struct *p;
	int retval;

	retval = -EINVAL;
	if (!param || pid < 0)
		goto out_nounlock;

	retval = -EFAULT;
	if (copy_from_user(&lp, param, sizeof(struct sched_param)))
		goto out_nounlock;

	/*
	 * We play safe to avoid deadlocks.
	 */
	spin_lock(&scheduler_lock);
	spin_lock_irq(&runqueue_lock);
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);

	retval = -ESRCH;
	if (!p)
		goto out_unlock;
			
	if (policy < 0)
		policy = p->policy;
	else {
		retval = -EINVAL;
		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_OTHER)
			goto out_unlock;
	}
	
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are 1..99, valid
	 * priority for SCHED_OTHER is 0.
	 */
	retval = -EINVAL;
	if (lp.sched_priority < 0 || lp.sched_priority > 99)
		goto out_unlock;
	if ((policy == SCHED_OTHER) != (lp.sched_priority == 0))
		goto out_unlock;

	retval = -EPERM;
	if ((policy == SCHED_FIFO || policy == SCHED_RR) && 
	    !capable(CAP_SYS_NICE))
		goto out_unlock;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
	    !capable(CAP_SYS_NICE))
		goto out_unlock;

	retval = 0;
	p->policy = policy;
	p->rt_priority = lp.sched_priority;
	if (p->next_run)
		move_first_runqueue(p);

	current->need_resched = 1;

out_unlock:
	read_unlock(&tasklist_lock);
	spin_unlock_irq(&runqueue_lock);
	spin_unlock(&scheduler_lock);

out_nounlock:
	return retval;
}

asmlinkage int sys_sched_setscheduler(pid_t pid, int policy, 
				      struct sched_param *param)
{
	return setscheduler(pid, policy, param);
}

asmlinkage int sys_sched_setparam(pid_t pid, struct sched_param *param)
{
	return setscheduler(pid, -1, param);
}

asmlinkage int sys_sched_getscheduler(pid_t pid)
{
	struct task_struct *p;
	int retval;

	retval = -EINVAL;
	if (pid < 0)
		goto out_nounlock;

	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;
			
	retval = p->policy;

out_unlock:
	read_unlock(&tasklist_lock);

out_nounlock:
	return retval;
}

asmlinkage int sys_sched_getparam(pid_t pid, struct sched_param *param)
{
	struct task_struct *p;
	struct sched_param lp;
	int retval;

	retval = -EINVAL;
	if (!param || pid < 0)
		goto out_nounlock;

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;
	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

out_nounlock:
	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

asmlinkage int sys_sched_yield(void)
{
	spin_lock(&scheduler_lock);
	spin_lock_irq(&runqueue_lock);
	if (current->policy == SCHED_OTHER)
		current->policy |= SCHED_YIELD;
	current->need_resched = 1;
	move_last_runqueue(current);
	spin_unlock_irq(&runqueue_lock);
	spin_unlock(&scheduler_lock);
	return 0;
}

asmlinkage int sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 99;
		break;
	case SCHED_OTHER:
		ret = 0;
		break;
	}
	return ret;
}

asmlinkage int sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_OTHER:
		ret = 0;
	}
	return ret;
}

asmlinkage int sys_sched_rr_get_interval(pid_t pid, struct timespec *interval)
{
	struct timespec t;

	t.tv_sec = 0;
	t.tv_nsec = 150000;
	if (copy_to_user(interval, &t, sizeof(struct timespec)))
		return -EFAULT;
	return 0;
}

asmlinkage int sys_nanosleep(struct timespec *rqtp, struct timespec *rmtp)
{
	struct timespec t;
	unsigned long expire;

	if(copy_from_user(&t, rqtp, sizeof(struct timespec)))
		return -EFAULT;

	if (t.tv_nsec >= 1000000000L || t.tv_nsec < 0 || t.tv_sec < 0)
		return -EINVAL;


	if (t.tv_sec == 0 && t.tv_nsec <= 2000000L &&
	    current->policy != SCHED_OTHER)
	{
		/*
		 * Short delay requests up to 2 ms will be handled with
		 * high precision by a busy wait for all real-time processes.
		 *
		 * Its important on SMP not to do this holding locks.
		 */
		udelay((t.tv_nsec + 999) / 1000);
		return 0;
	}

	expire = timespec_to_jiffies(&t) + (t.tv_sec || t.tv_nsec) + jiffies;

	current->timeout = expire;
	current->state = TASK_INTERRUPTIBLE;
	schedule();

	if (expire > jiffies) {
		if (rmtp) {
			jiffies_to_timespec(expire - jiffies -
					    (expire > jiffies + 1), &t);
			if (copy_to_user(rmtp, &t, sizeof(struct timespec)))
				return -EFAULT;
		}
		return -EINTR;
	}
	return 0;
}

static void show_task(int nr,struct task_struct * p)
{
	unsigned long free = 0;
	int state;
	static const char * stat_nam[] = { "R", "S", "D", "Z", "T", "W" };

	printk("%-8s %3d ", p->comm, (p == current) ? -nr : nr);
	state = p->state ? ffz(~p->state) + 1 : 0;
	if (((unsigned) state) < sizeof(stat_nam)/sizeof(char *))
		printk(stat_nam[state]);
	else
		printk(" ");
#if (BITS_PER_LONG == 32)
	if (p == current)
		printk(" current  ");
	else
		printk(" %08lX ", thread_saved_pc(&p->tss));
#else
	if (p == current)
		printk("   current task   ");
	else
		printk(" %016lx ", thread_saved_pc(&p->tss));
#endif
	{
		unsigned long * n = (unsigned long *) (p+1);
		while (!*n)
			n++;
		free = (unsigned long) n - (unsigned long)(p+1);
	}
	printk("%5lu %5d %6d ", free, p->pid, p->p_pptr->pid);
	if (p->p_cptr)
		printk("%5d ", p->p_cptr->pid);
	else
		printk("      ");
	if (p->p_ysptr)
		printk("%7d", p->p_ysptr->pid);
	else
		printk("       ");
	if (p->p_osptr)
		printk(" %5d\n", p->p_osptr->pid);
	else
		printk("\n");

	{
		struct signal_queue *q;
		char s[sizeof(sigset_t)*2+1], b[sizeof(sigset_t)*2+1]; 

		render_sigset_t(&p->signal, s);
		render_sigset_t(&p->blocked, b);
		printk("   sig: %d %s %s :", signal_pending(p), s, b);
		for (q = p->sigqueue; q ; q = q->next)
			printk(" %d", q->info.si_signo);
		printk(" X\n");
	}
}

char * render_sigset_t(sigset_t *set, char *buffer)
{
	int i = _NSIG, x;
	do {
		i -= 4, x = 0;
		if (sigismember(set, i+1)) x |= 1;
		if (sigismember(set, i+2)) x |= 2;
		if (sigismember(set, i+3)) x |= 4;
		if (sigismember(set, i+4)) x |= 8;
		*buffer++ = (x < 10 ? '0' : 'a' - 10) + x;
	} while (i >= 4);
	*buffer = 0;
	return buffer;
}

void show_state(void)
{
	struct task_struct *p;

#if (BITS_PER_LONG == 32)
	printk("\n"
	       "                         free                        sibling\n");
	printk("  task             PC    stack   pid father child younger older\n");
#else
	printk("\n"
	       "                                 free                        sibling\n");
	printk("  task                 PC        stack   pid father child younger older\n");
#endif
	read_lock(&tasklist_lock);
	for_each_task(p)
		show_task((p->tarray_ptr - &task[0]),p);
	read_unlock(&tasklist_lock);
}

void __init sched_init(void)
{
	/*
	 *	We have to do a little magic to get the first
	 *	process right in SMP mode.
	 */
	int cpu=hard_smp_processor_id();
	int nr = NR_TASKS;

	init_task.processor=cpu;

	/* Init task array free list and pidhash table. */
	while(--nr > 0)
		add_free_taskslot(&task[nr]);

	for(nr = 0; nr < PIDHASH_SZ; nr++)
		pidhash[nr] = NULL;

	init_bh(TIMER_BH, timer_bh);
	init_bh(TQUEUE_BH, tqueue_bh);
	init_bh(IMMEDIATE_BH, immediate_bh);
}