Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
/*
 *  linux/kernel/sched.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 */

/*
 * 'sched.c' is the main kernel file. It contains scheduling primitives
 * (sleep_on, wakeup, schedule etc) as well as a number of simple system
 * call functions (type getpid(), which just extracts a field from
 * current-task
 */

#include <linux/config.h>
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/timer.h>
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/fdreg.h>
#include <linux/errno.h>
#include <linux/time.h>
#include <linux/ptrace.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/tqueue.h>
#include <linux/resource.h>
#include <linux/mm.h>

#include <asm/system.h>
#include <asm/io.h>
#include <asm/segment.h>
#include <asm/pgtable.h>

#define TIMER_IRQ 0

#include <linux/timex.h>

/*
 * kernel variables
 */
long tick = 1000000 / HZ;               /* timer interrupt period */
volatile struct timeval xtime;		/* The current time */
int tickadj = 500/HZ;			/* microsecs */

DECLARE_TASK_QUEUE(tq_timer);
DECLARE_TASK_QUEUE(tq_immediate);

/*
 * phase-lock loop variables
 */
int time_status = TIME_BAD;     /* clock synchronization status */
long time_offset = 0;           /* time adjustment (us) */
long time_constant = 0;         /* pll time constant */
long time_tolerance = MAXFREQ;  /* frequency tolerance (ppm) */
long time_precision = 1; 	/* clock precision (us) */
long time_maxerror = 0x70000000;/* maximum error */
long time_esterror = 0x70000000;/* estimated error */
long time_phase = 0;            /* phase offset (scaled us) */
long time_freq = 0;             /* frequency offset (scaled ppm) */
long time_adj = 0;              /* tick adjust (scaled 1 / HZ) */
long time_reftime = 0;          /* time at last adjustment (s) */

long time_adjust = 0;
long time_adjust_step = 0;

int need_resched = 0;
unsigned long event = 0;

extern int _setitimer(int, struct itimerval *, struct itimerval *);
unsigned long * prof_buffer = NULL;
unsigned long prof_len = 0;

#define _S(nr) (1<<((nr)-1))

extern void mem_use(void);

extern int timer_interrupt(void);
 
static unsigned long init_kernel_stack[1024] = { STACK_MAGIC, };
unsigned long init_user_stack[1024] = { STACK_MAGIC, };
static struct vm_area_struct init_mmap = INIT_MMAP;
struct task_struct init_task = INIT_TASK;

unsigned long volatile jiffies=0;

struct task_struct *current = &init_task;
struct task_struct *last_task_used_math = NULL;

struct task_struct * task[NR_TASKS] = {&init_task, };

struct kernel_stat kstat = { 0 };

unsigned long itimer_ticks = 0;
unsigned long itimer_next = ~0;

/*
 *  'schedule()' is the scheduler function. It's a very simple and nice
 * scheduler: it's not perfect, but certainly works for most things.
 * The one thing you might take a look at is the signal-handler code here.
 *
 *   NOTE!!  Task 0 is the 'idle' task, which gets called when no other
 * tasks can run. It can not be killed, and it cannot sleep. The 'state'
 * information in task[0] is never used.
 *
 * The "confuse_gcc" goto is used only to get better assembly code..
 * Dijkstra probably hates me.
 */
asmlinkage void schedule(void)
{
	int c;
	struct task_struct * p;
	struct task_struct * next;
	unsigned long ticks;

/* check alarm, wake up any interruptible tasks that have got a signal */

	if (intr_count) {
		printk("Aiee: scheduling in interrupt\n");
		intr_count = 0;
	}
	cli();
	ticks = itimer_ticks;
	itimer_ticks = 0;
	itimer_next = ~0;
	sti();
	need_resched = 0;
	p = &init_task;
	for (;;) {
		if ((p = p->next_task) == &init_task)
			goto confuse_gcc1;
		if (ticks && p->it_real_value) {
			if (p->it_real_value <= ticks) {
				send_sig(SIGALRM, p, 1);
				if (!p->it_real_incr) {
					p->it_real_value = 0;
					goto end_itimer;
				}
				do {
					p->it_real_value += p->it_real_incr;
				} while (p->it_real_value <= ticks);
			}
			p->it_real_value -= ticks;
			if (p->it_real_value < itimer_next)
				itimer_next = p->it_real_value;
		}
end_itimer:
		if (p->state != TASK_INTERRUPTIBLE)
			continue;
		if (p->signal & ~p->blocked) {
			p->state = TASK_RUNNING;
			continue;
		}
		if (p->timeout && p->timeout <= jiffies) {
			p->timeout = 0;
			p->state = TASK_RUNNING;
		}
	}
confuse_gcc1:

/* this is the scheduler proper: */
#if 0
	/* give processes that go to sleep a bit higher priority.. */
	/* This depends on the values for TASK_XXX */
	/* This gives smoother scheduling for some things, but */
	/* can be very unfair under some circumstances, so.. */
 	if (TASK_UNINTERRUPTIBLE >= (unsigned) current->state &&
	    current->counter < current->priority*2) {
		++current->counter;
	}
#endif
	c = -1000;
	next = p = &init_task;
	for (;;) {
		if ((p = p->next_task) == &init_task)
			goto confuse_gcc2;
		if (p->state == TASK_RUNNING && p->counter > c)
			c = p->counter, next = p;
	}
confuse_gcc2:
	if (!c) {
		for_each_task(p)
			p->counter = (p->counter >> 1) + p->priority;
	}
	if (current == next)
		return;
	kstat.context_swtch++;
	switch_to(next);
}

asmlinkage int sys_pause(void)
{
	current->state = TASK_INTERRUPTIBLE;
	schedule();
	return -ERESTARTNOHAND;
}

/*
 * wake_up doesn't wake up stopped processes - they have to be awakened
 * with signals or similar.
 *
 * Note that this doesn't need cli-sti pairs: interrupts may not change
 * the wait-queue structures directly, but only call wake_up() to wake
 * a process. The process itself must remove the queue once it has woken.
 */
void wake_up(struct wait_queue **q)
{
	struct wait_queue *tmp;
	struct task_struct * p;

	if (!q || !(tmp = *q))
		return;
	do {
		if ((p = tmp->task) != NULL) {
			if ((p->state == TASK_UNINTERRUPTIBLE) ||
			    (p->state == TASK_INTERRUPTIBLE)) {
				p->state = TASK_RUNNING;
				if (p->counter > current->counter + 3)
					need_resched = 1;
			}
		}
		if (!tmp->next) {
			printk("wait_queue is bad (eip = %p)\n",
				__builtin_return_address(0));
			printk("        q = %p\n",q);
			printk("       *q = %p\n",*q);
			printk("      tmp = %p\n",tmp);
			break;
		}
		tmp = tmp->next;
	} while (tmp != *q);
}

void wake_up_interruptible(struct wait_queue **q)
{
	struct wait_queue *tmp;
	struct task_struct * p;

	if (!q || !(tmp = *q))
		return;
	do {
		if ((p = tmp->task) != NULL) {
			if (p->state == TASK_INTERRUPTIBLE) {
				p->state = TASK_RUNNING;
				if (p->counter > current->counter + 3)
					need_resched = 1;
			}
		}
		if (!tmp->next) {
			printk("wait_queue is bad (eip = %p)\n",
				__builtin_return_address(0));
			printk("        q = %p\n",q);
			printk("       *q = %p\n",*q);
			printk("      tmp = %p\n",tmp);
			break;
		}
		tmp = tmp->next;
	} while (tmp != *q);
}

void __down(struct semaphore * sem)
{
	struct wait_queue wait = { current, NULL };
	add_wait_queue(&sem->wait, &wait);
	current->state = TASK_UNINTERRUPTIBLE;
	while (sem->count <= 0) {
		schedule();
		current->state = TASK_UNINTERRUPTIBLE;
	}
	current->state = TASK_RUNNING;
	remove_wait_queue(&sem->wait, &wait);
}

static inline void __sleep_on(struct wait_queue **p, int state)
{
	unsigned long flags;
	struct wait_queue wait = { current, NULL };

	if (!p)
		return;
	if (current == task[0])
		panic("task[0] trying to sleep");
	current->state = state;
	add_wait_queue(p, &wait);
	save_flags(flags);
	sti();
	schedule();
	remove_wait_queue(p, &wait);
	restore_flags(flags);
}

void interruptible_sleep_on(struct wait_queue **p)
{
	__sleep_on(p,TASK_INTERRUPTIBLE);
}

void sleep_on(struct wait_queue **p)
{
	__sleep_on(p,TASK_UNINTERRUPTIBLE);
}

/*
 * The head for the timer-list has a "expires" field of MAX_UINT,
 * and the sorting routine counts on this..
 */
static struct timer_list timer_head = { &timer_head, &timer_head, ~0, 0, NULL };
#define SLOW_BUT_DEBUGGING_TIMERS 1

void add_timer(struct timer_list * timer)
{
	unsigned long flags;
	struct timer_list *p;

#if SLOW_BUT_DEBUGGING_TIMERS
	if (timer->next || timer->prev) {
		printk("add_timer() called with non-zero list from %p\n",
			__builtin_return_address(0));
		return;
	}
#endif
	p = &timer_head;
	timer->expires += jiffies;
	save_flags(flags);
	cli();
	do {
		p = p->next;
	} while (timer->expires > p->expires);
	timer->next = p;
	timer->prev = p->prev;
	p->prev = timer;
	timer->prev->next = timer;
	restore_flags(flags);
}

int del_timer(struct timer_list * timer)
{
	unsigned long flags;
#if SLOW_BUT_DEBUGGING_TIMERS
	struct timer_list * p;

	p = &timer_head;
	save_flags(flags);
	cli();
	while ((p = p->next) != &timer_head) {
		if (p == timer) {
			timer->next->prev = timer->prev;
			timer->prev->next = timer->next;
			timer->next = timer->prev = NULL;
			restore_flags(flags);
			timer->expires -= jiffies;
			return 1;
		}
	}
	if (timer->next || timer->prev)
		printk("del_timer() called from %p with timer not initialized\n",
			__builtin_return_address(0));
	restore_flags(flags);
	return 0;
#else	
	save_flags(flags);
	cli();
	if (timer->next) {
		timer->next->prev = timer->prev;
		timer->prev->next = timer->next;
		timer->next = timer->prev = NULL;
		restore_flags(flags);
		timer->expires -= jiffies;
		return 1;
	}
	restore_flags(flags);
	return 0;
#endif
}

unsigned long timer_active = 0;
struct timer_struct timer_table[32];

/*
 * Hmm.. Changed this, as the GNU make sources (load.c) seems to
 * imply that avenrun[] is the standard name for this kind of thing.
 * Nothing else seems to be standardized: the fractional size etc
 * all seem to differ on different machines.
 */
unsigned long avenrun[3] = { 0,0,0 };

/*
 * Nr of active tasks - counted in fixed-point numbers
 */
static unsigned long count_active_tasks(void)
{
	struct task_struct **p;
	unsigned long nr = 0;

	for(p = &LAST_TASK; p > &FIRST_TASK; --p)
		if (*p && ((*p)->state == TASK_RUNNING ||
			   (*p)->state == TASK_UNINTERRUPTIBLE ||
			   (*p)->state == TASK_SWAPPING))
			nr += FIXED_1;
	return nr;
}

static inline void calc_load(void)
{
	unsigned long active_tasks; /* fixed-point */
	static int count = LOAD_FREQ;

	if (count-- > 0)
		return;
	count = LOAD_FREQ;
	active_tasks = count_active_tasks();
	CALC_LOAD(avenrun[0], EXP_1, active_tasks);
	CALC_LOAD(avenrun[1], EXP_5, active_tasks);
	CALC_LOAD(avenrun[2], EXP_15, active_tasks);
}

/*
 * this routine handles the overflow of the microsecond field
 *
 * The tricky bits of code to handle the accurate clock support
 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
 * They were originally developed for SUN and DEC kernels.
 * All the kudos should go to Dave for this stuff.
 *
 * These were ported to Linux by Philip Gladstone.
 */
static void second_overflow(void)
{
	long ltemp;
	/* last time the cmos clock got updated */
	static long last_rtc_update=0;
	extern int set_rtc_mmss(unsigned long);

	/* Bump the maxerror field */
	time_maxerror = (0x70000000-time_maxerror < time_tolerance) ?
	  0x70000000 : (time_maxerror + time_tolerance);

	/* Run the PLL */
	if (time_offset < 0) {
		ltemp = (-(time_offset+1) >> (SHIFT_KG + time_constant)) + 1;
		time_adj = ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE);
		time_offset += (time_adj * HZ) >> (SHIFT_SCALE - SHIFT_UPDATE);
		time_adj = - time_adj;
	} else if (time_offset > 0) {
		ltemp = ((time_offset-1) >> (SHIFT_KG + time_constant)) + 1;
		time_adj = ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE);
		time_offset -= (time_adj * HZ) >> (SHIFT_SCALE - SHIFT_UPDATE);
	} else {
		time_adj = 0;
	}

	time_adj += (time_freq >> (SHIFT_KF + SHIFT_HZ - SHIFT_SCALE))
	    + FINETUNE;

	/* Handle the leap second stuff */
	switch (time_status) {
		case TIME_INS:
		/* ugly divide should be replaced */
		if (xtime.tv_sec % 86400 == 0) {
			xtime.tv_sec--; /* !! */
			time_status = TIME_OOP;
			printk("Clock: inserting leap second 23:59:60 GMT\n");
		}
		break;

		case TIME_DEL:
		/* ugly divide should be replaced */
		if (xtime.tv_sec % 86400 == 86399) {
			xtime.tv_sec++;
			time_status = TIME_OK;
			printk("Clock: deleting leap second 23:59:59 GMT\n");
		}
		break;

		case TIME_OOP:
		time_status = TIME_OK;
		break;
	}
	if (time_status != TIME_BAD && xtime.tv_sec > last_rtc_update + 660)
	  if (set_rtc_mmss(xtime.tv_sec) == 0)
	    last_rtc_update = xtime.tv_sec;
	  else
	    last_rtc_update = xtime.tv_sec - 600; /* do it again in one min */
}

/*
 * disregard lost ticks for now.. We don't care enough.
 */
static void timer_bh(void * unused)
{
	unsigned long mask;
	struct timer_struct *tp;
	struct timer_list * timer;

	cli();
	while ((timer = timer_head.next) != &timer_head && timer->expires < jiffies) {
		void (*fn)(unsigned long) = timer->function;
		unsigned long data = timer->data;
		timer->next->prev = timer->prev;
		timer->prev->next = timer->next;
		timer->next = timer->prev = NULL;
		sti();
		fn(data);
		cli();
	}
	sti();
	
	for (mask = 1, tp = timer_table+0 ; mask ; tp++,mask += mask) {
		if (mask > timer_active)
			break;
		if (!(mask & timer_active))
			continue;
		if (tp->expires > jiffies)
			continue;
		timer_active &= ~mask;
		tp->fn();
		sti();
	}
}

void tqueue_bh(void * unused)
{
	run_task_queue(&tq_timer);
}

void immediate_bh(void * unused)
{
	run_task_queue(&tq_immediate);
}

/*
 * The int argument is really a (struct pt_regs *), in case the
 * interrupt wants to know from where it was called. The timer
 * irq uses this to decide if it should update the user or system
 * times.
 */
static void do_timer(int irq, struct pt_regs * regs)
{
	unsigned long mask;
	struct timer_struct *tp;

	long ltemp, psecs;

	/* Advance the phase, once it gets to one microsecond, then
	 * advance the tick more.
	 */
	time_phase += time_adj;
	if (time_phase < -FINEUSEC) {
		ltemp = -time_phase >> SHIFT_SCALE;
		time_phase += ltemp << SHIFT_SCALE;
		xtime.tv_usec += tick + time_adjust_step - ltemp;
	}
	else if (time_phase > FINEUSEC) {
		ltemp = time_phase >> SHIFT_SCALE;
		time_phase -= ltemp << SHIFT_SCALE;
		xtime.tv_usec += tick + time_adjust_step + ltemp;
	} else
		xtime.tv_usec += tick + time_adjust_step;

	if (time_adjust)
	{
	    /* We are doing an adjtime thing. 
	     *
	     * Modify the value of the tick for next time.
	     * Note that a positive delta means we want the clock
	     * to run fast. This means that the tick should be bigger
	     *
	     * Limit the amount of the step for *next* tick to be
	     * in the range -tickadj .. +tickadj
	     */
	     if (time_adjust > tickadj)
	       time_adjust_step = tickadj;
	     else if (time_adjust < -tickadj)
	       time_adjust_step = -tickadj;
	     else
	       time_adjust_step = time_adjust;
	     
	    /* Reduce by this step the amount of time left  */
	    time_adjust -= time_adjust_step;
	}
	else
	    time_adjust_step = 0;

	if (xtime.tv_usec >= 1000000) {
	    xtime.tv_usec -= 1000000;
	    xtime.tv_sec++;
	    second_overflow();
	}

	jiffies++;
	calc_load();
	if (user_mode(regs)) {
		current->utime++;
		if (current != task[0]) {
			if (current->priority < 15)
				kstat.cpu_nice++;
			else
				kstat.cpu_user++;
		}
		/* Update ITIMER_VIRT for current task if not in a system call */
		if (current->it_virt_value && !(--current->it_virt_value)) {
			current->it_virt_value = current->it_virt_incr;
			send_sig(SIGVTALRM,current,1);
		}
	} else {
		current->stime++;
		if(current != task[0])
			kstat.cpu_system++;
#ifdef CONFIG_PROFILE
		if (prof_buffer && current != task[0]) {
			unsigned long eip = regs->eip;
			eip >>= CONFIG_PROFILE_SHIFT;
			if (eip < prof_len)
				prof_buffer[eip]++;
		}
#endif
	}
	/*
	 * check the cpu time limit on the process.
	 */
	if ((current->rlim[RLIMIT_CPU].rlim_max != RLIM_INFINITY) &&
	    (((current->stime + current->utime) / HZ) >= current->rlim[RLIMIT_CPU].rlim_max))
		send_sig(SIGKILL, current, 1);
	if ((current->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) &&
	    (((current->stime + current->utime) % HZ) == 0)) {
		psecs = (current->stime + current->utime) / HZ;
		/* send when equal */
		if (psecs == current->rlim[RLIMIT_CPU].rlim_cur)
			send_sig(SIGXCPU, current, 1);
		/* and every five seconds thereafter. */
		else if ((psecs > current->rlim[RLIMIT_CPU].rlim_cur) &&
		        ((psecs - current->rlim[RLIMIT_CPU].rlim_cur) % 5) == 0)
			send_sig(SIGXCPU, current, 1);
	}

	if (current != task[0] && 0 > --current->counter) {
		current->counter = 0;
		need_resched = 1;
	}
	/* Update ITIMER_PROF for the current task */
	if (current->it_prof_value && !(--current->it_prof_value)) {
		current->it_prof_value = current->it_prof_incr;
		send_sig(SIGPROF,current,1);
	}
	for (mask = 1, tp = timer_table+0 ; mask ; tp++,mask += mask) {
		if (mask > timer_active)
			break;
		if (!(mask & timer_active))
			continue;
		if (tp->expires > jiffies)
			continue;
		mark_bh(TIMER_BH);
	}
	cli();
	itimer_ticks++;
	if (itimer_ticks > itimer_next)
		need_resched = 1;
	if (timer_head.next->expires < jiffies)
		mark_bh(TIMER_BH);
	if (tq_timer != &tq_last)
		mark_bh(TQUEUE_BH);
	sti();
}

asmlinkage int sys_alarm(long seconds)
{
	struct itimerval it_new, it_old;

	it_new.it_interval.tv_sec = it_new.it_interval.tv_usec = 0;
	it_new.it_value.tv_sec = seconds;
	it_new.it_value.tv_usec = 0;
	_setitimer(ITIMER_REAL, &it_new, &it_old);
	return(it_old.it_value.tv_sec + (it_old.it_value.tv_usec / 1000000));
}

asmlinkage int sys_getpid(void)
{
	return current->pid;
}

asmlinkage int sys_getppid(void)
{
	return current->p_opptr->pid;
}

asmlinkage int sys_getuid(void)
{
	return current->uid;
}

asmlinkage int sys_geteuid(void)
{
	return current->euid;
}

asmlinkage int sys_getgid(void)
{
	return current->gid;
}

asmlinkage int sys_getegid(void)
{
	return current->egid;
}

asmlinkage int sys_nice(long increment)
{
	int newprio;

	if (increment < 0 && !suser())
		return -EPERM;
	newprio = current->priority - increment;
	if (newprio < 1)
		newprio = 1;
	if (newprio > 35)
		newprio = 35;
	current->priority = newprio;
	return 0;
}

static void show_task(int nr,struct task_struct * p)
{
	unsigned long free;
	static char * stat_nam[] = { "R", "S", "D", "Z", "T", "W" };

	printk("%-8s %3d ", p->comm, (p == current) ? -nr : nr);
	if (((unsigned) p->state) < sizeof(stat_nam)/sizeof(char *))
		printk(stat_nam[p->state]);
	else
		printk(" ");
#ifdef __i386__
	if (p == current)
		printk(" current  ");
	else
		printk(" %08lX ", ((unsigned long *)p->tss.esp)[3]);
#endif
	for (free = 1; free < 1024 ; free++) {
		if (((unsigned long *)p->kernel_stack_page)[free])
			break;
	}
	printk("%5lu %5d %6d ", free << 2, p->pid, p->p_pptr->pid);
	if (p->p_cptr)
		printk("%5d ", p->p_cptr->pid);
	else
		printk("      ");
	if (p->p_ysptr)
		printk("%7d", p->p_ysptr->pid);
	else
		printk("       ");
	if (p->p_osptr)
		printk(" %5d\n", p->p_osptr->pid);
	else
		printk("\n");
}

void show_state(void)
{
	int i;

	printk("                         free                        sibling\n");
	printk("  task             PC    stack   pid father child younger older\n");
	for (i=0 ; i<NR_TASKS ; i++)
		if (task[i])
			show_task(i,task[i]);
}

void sched_init(void)
{
	bh_base[TIMER_BH].routine = timer_bh;
	bh_base[TQUEUE_BH].routine = tqueue_bh;
	bh_base[IMMEDIATE_BH].routine = immediate_bh;
	if (request_irq(TIMER_IRQ, do_timer, 0, "timer") != 0)
		panic("Could not allocate timer IRQ!");
	enable_bh(TIMER_BH);
	enable_bh(TQUEUE_BH);
	enable_bh(IMMEDIATE_BH);
}