Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 | /* * linux/kernel/sched.c * * Kernel scheduler and related syscalls * * Copyright (C) 1991, 1992 Linus Torvalds * * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and * make semaphores SMP safe * 1998-11-19 Implemented schedule_timeout() and related stuff * by Andrea Arcangeli * 1998-12-28 Implemented better SMP scheduling by Ingo Molnar */ /* * 'sched.c' is the main kernel file. It contains scheduling primitives * (sleep_on, wakeup, schedule etc) as well as a number of simple system * call functions (type getpid()), which just extract a field from * current-task */ #include <linux/config.h> #include <linux/mm.h> #include <linux/init.h> #include <linux/smp_lock.h> #include <linux/nmi.h> #include <linux/interrupt.h> #include <linux/kernel_stat.h> #include <linux/completion.h> #include <linux/prefetch.h> #include <asm/uaccess.h> #include <asm/mmu_context.h> extern void timer_bh(void); extern void tqueue_bh(void); extern void immediate_bh(void); /* * scheduler variables */ unsigned securebits = SECUREBITS_DEFAULT; /* systemwide security settings */ extern void mem_use(void); /* * Scheduling quanta. * * NOTE! The unix "nice" value influences how long a process * gets. The nice value ranges from -20 to +19, where a -20 * is a "high-priority" task, and a "+10" is a low-priority * task. * * We want the time-slice to be around 50ms or so, so this * calculation depends on the value of HZ. */ #if HZ < 200 #define TICK_SCALE(x) ((x) >> 2) #elif HZ < 400 #define TICK_SCALE(x) ((x) >> 1) #elif HZ < 800 #define TICK_SCALE(x) (x) #elif HZ < 1600 #define TICK_SCALE(x) ((x) << 1) #else #define TICK_SCALE(x) ((x) << 2) #endif #define NICE_TO_TICKS(nice) (TICK_SCALE(20-(nice))+1) /* * Init task must be ok at boot for the ix86 as we will check its signals * via the SMP irq return path. */ struct task_struct * init_tasks[NR_CPUS] = {&init_task, }; /* * The tasklist_lock protects the linked list of processes. * * The runqueue_lock locks the parts that actually access * and change the run-queues, and have to be interrupt-safe. * * If both locks are to be concurrently held, the runqueue_lock * nests inside the tasklist_lock. * * task->alloc_lock nests inside tasklist_lock. */ spinlock_t runqueue_lock __cacheline_aligned = SPIN_LOCK_UNLOCKED; /* inner */ rwlock_t tasklist_lock __cacheline_aligned = RW_LOCK_UNLOCKED; /* outer */ static LIST_HEAD(runqueue_head); /* * We align per-CPU scheduling data on cacheline boundaries, * to prevent cacheline ping-pong. */ static union { struct schedule_data { struct task_struct * curr; cycles_t last_schedule; } schedule_data; char __pad [SMP_CACHE_BYTES]; } aligned_data [NR_CPUS] __cacheline_aligned = { {{&init_task,0}}}; #define cpu_curr(cpu) aligned_data[(cpu)].schedule_data.curr #define last_schedule(cpu) aligned_data[(cpu)].schedule_data.last_schedule struct kernel_stat kstat; extern struct task_struct *child_reaper; #ifdef CONFIG_SMP #define idle_task(cpu) (init_tasks[cpu_number_map(cpu)]) #define can_schedule(p,cpu) ((!(p)->has_cpu) && \ ((p)->cpus_allowed & (1 << cpu))) #else #define idle_task(cpu) (&init_task) #define can_schedule(p,cpu) (1) #endif void scheduling_functions_start_here(void) { } /* * This is the function that decides how desirable a process is.. * You can weigh different processes against each other depending * on what CPU they've run on lately etc to try to handle cache * and TLB miss penalties. * * Return values: * -1000: never select this * 0: out of time, recalculate counters (but it might still be * selected) * +ve: "goodness" value (the larger, the better) * +1000: realtime process, select this. */ static inline int goodness(struct task_struct * p, int this_cpu, struct mm_struct *this_mm) { int weight; /* * select the current process after every other * runnable process, but before the idle thread. * Also, dont trigger a counter recalculation. */ weight = -1; if (p->policy & SCHED_YIELD) goto out; /* * Non-RT process - normal case first. */ if (p->policy == SCHED_OTHER) { /* * Give the process a first-approximation goodness value * according to the number of clock-ticks it has left. * * Don't do any other calculations if the time slice is * over.. */ weight = p->counter; if (!weight) goto out; #ifdef CONFIG_SMP /* Give a largish advantage to the same processor... */ /* (this is equivalent to penalizing other processors) */ if (p->processor == this_cpu) weight += PROC_CHANGE_PENALTY; #endif /* .. and a slight advantage to the current MM */ if (p->mm == this_mm || !p->mm) weight += 1; weight += 20 - p->nice; goto out; } /* * Realtime process, select the first one on the * runqueue (taking priorities within processes * into account). */ weight = 1000 + p->rt_priority; out: return weight; } /* * the 'goodness value' of replacing a process on a given CPU. * positive value means 'replace', zero or negative means 'dont'. */ static inline int preemption_goodness(struct task_struct * prev, struct task_struct * p, int cpu) { return goodness(p, cpu, prev->active_mm) - goodness(prev, cpu, prev->active_mm); } /* * This is ugly, but reschedule_idle() is very timing-critical. * We are called with the runqueue spinlock held and we must * not claim the tasklist_lock. */ static FASTCALL(void reschedule_idle(struct task_struct * p)); static void reschedule_idle(struct task_struct * p) { #ifdef CONFIG_SMP int this_cpu = smp_processor_id(); struct task_struct *tsk, *target_tsk; int cpu, best_cpu, i, max_prio; cycles_t oldest_idle; /* * shortcut if the woken up task's last CPU is * idle now. */ best_cpu = p->processor; if (can_schedule(p, best_cpu)) { tsk = idle_task(best_cpu); if (cpu_curr(best_cpu) == tsk) { int need_resched; send_now_idle: /* * If need_resched == -1 then we can skip sending * the IPI altogether, tsk->need_resched is * actively watched by the idle thread. */ need_resched = tsk->need_resched; tsk->need_resched = 1; if ((best_cpu != this_cpu) && !need_resched) smp_send_reschedule(best_cpu); return; } } /* * We know that the preferred CPU has a cache-affine current * process, lets try to find a new idle CPU for the woken-up * process. Select the least recently active idle CPU. (that * one will have the least active cache context.) Also find * the executing process which has the least priority. */ oldest_idle = (cycles_t) -1; target_tsk = NULL; max_prio = 0; for (i = 0; i < smp_num_cpus; i++) { cpu = cpu_logical_map(i); if (!can_schedule(p, cpu)) continue; tsk = cpu_curr(cpu); /* * We use the first available idle CPU. This creates * a priority list between idle CPUs, but this is not * a problem. */ if (tsk == idle_task(cpu)) { if (last_schedule(cpu) < oldest_idle) { oldest_idle = last_schedule(cpu); target_tsk = tsk; } } else { if (oldest_idle == -1ULL) { int prio = preemption_goodness(tsk, p, cpu); if (prio > max_prio) { max_prio = prio; target_tsk = tsk; } } } } tsk = target_tsk; if (tsk) { if (oldest_idle != -1ULL) { best_cpu = tsk->processor; goto send_now_idle; } tsk->need_resched = 1; if (tsk->processor != this_cpu) smp_send_reschedule(tsk->processor); } return; #else /* UP */ int this_cpu = smp_processor_id(); struct task_struct *tsk; tsk = cpu_curr(this_cpu); if (preemption_goodness(tsk, p, this_cpu) > 0) tsk->need_resched = 1; #endif } /* * Careful! * * This has to add the process to the _beginning_ of the * run-queue, not the end. See the comment about "This is * subtle" in the scheduler proper.. */ static inline void add_to_runqueue(struct task_struct * p) { list_add(&p->run_list, &runqueue_head); nr_running++; } static inline void move_last_runqueue(struct task_struct * p) { list_del(&p->run_list); list_add_tail(&p->run_list, &runqueue_head); } static inline void move_first_runqueue(struct task_struct * p) { list_del(&p->run_list); list_add(&p->run_list, &runqueue_head); } /* * Wake up a process. Put it on the run-queue if it's not * already there. The "current" process is always on the * run-queue (except when the actual re-schedule is in * progress), and as such you're allowed to do the simpler * "current->state = TASK_RUNNING" to mark yourself runnable * without the overhead of this. */ static inline int try_to_wake_up(struct task_struct * p, int synchronous) { unsigned long flags; int success = 0; /* * We want the common case fall through straight, thus the goto. */ spin_lock_irqsave(&runqueue_lock, flags); p->state = TASK_RUNNING; if (task_on_runqueue(p)) goto out; add_to_runqueue(p); if (!synchronous || !(p->cpus_allowed & (1 << smp_processor_id()))) reschedule_idle(p); success = 1; out: spin_unlock_irqrestore(&runqueue_lock, flags); return success; } inline int wake_up_process(struct task_struct * p) { return try_to_wake_up(p, 0); } static void process_timeout(unsigned long __data) { struct task_struct * p = (struct task_struct *) __data; wake_up_process(p); } /** * schedule_timeout - sleep until timeout * @timeout: timeout value in jiffies * * Make the current task sleep until @timeout jiffies have * elapsed. The routine will return immediately unless * the current task state has been set (see set_current_state()). * * You can set the task state as follows - * * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to * pass before the routine returns. The routine will return 0 * * %TASK_INTERRUPTIBLE - the routine may return early if a signal is * delivered to the current task. In this case the remaining time * in jiffies will be returned, or 0 if the timer expired in time * * The current task state is guaranteed to be TASK_RUNNING when this * routine returns. * * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule * the CPU away without a bound on the timeout. In this case the return * value will be %MAX_SCHEDULE_TIMEOUT. * * In all cases the return value is guaranteed to be non-negative. */ signed long schedule_timeout(signed long timeout) { struct timer_list timer; unsigned long expire; switch (timeout) { case MAX_SCHEDULE_TIMEOUT: /* * These two special cases are useful to be comfortable * in the caller. Nothing more. We could take * MAX_SCHEDULE_TIMEOUT from one of the negative value * but I' d like to return a valid offset (>=0) to allow * the caller to do everything it want with the retval. */ schedule(); goto out; default: /* * Another bit of PARANOID. Note that the retval will be * 0 since no piece of kernel is supposed to do a check * for a negative retval of schedule_timeout() (since it * should never happens anyway). You just have the printk() * that will tell you if something is gone wrong and where. */ if (timeout < 0) { printk(KERN_ERR "schedule_timeout: wrong timeout " "value %lx from %p\n", timeout, __builtin_return_address(0)); current->state = TASK_RUNNING; goto out; } } expire = timeout + jiffies; init_timer(&timer); timer.expires = expire; timer.data = (unsigned long) current; timer.function = process_timeout; add_timer(&timer); schedule(); del_timer_sync(&timer); timeout = expire - jiffies; out: return timeout < 0 ? 0 : timeout; } /* * schedule_tail() is getting called from the fork return path. This * cleans up all remaining scheduler things, without impacting the * common case. */ static inline void __schedule_tail(struct task_struct *prev) { #ifdef CONFIG_SMP int policy; /* * prev->policy can be written from here only before `prev' * can be scheduled (before setting prev->has_cpu to zero). * Of course it must also be read before allowing prev * to be rescheduled, but since the write depends on the read * to complete, wmb() is enough. (the spin_lock() acquired * before setting has_cpu is not enough because the spin_lock() * common code semantics allows code outside the critical section * to enter inside the critical section) */ policy = prev->policy; prev->policy = policy & ~SCHED_YIELD; wmb(); /* * fast path falls through. We have to clear has_cpu before * checking prev->state to avoid a wakeup race - thus we * also have to protect against the task exiting early. */ task_lock(prev); prev->has_cpu = 0; mb(); if (prev->state == TASK_RUNNING) goto needs_resched; out_unlock: task_unlock(prev); /* Synchronise here with release_task() if prev is TASK_ZOMBIE */ return; /* * Slow path - we 'push' the previous process and * reschedule_idle() will attempt to find a new * processor for it. (but it might preempt the * current process as well.) We must take the runqueue * lock and re-check prev->state to be correct. It might * still happen that this process has a preemption * 'in progress' already - but this is not a problem and * might happen in other circumstances as well. */ needs_resched: { unsigned long flags; /* * Avoid taking the runqueue lock in cases where * no preemption-check is necessery: */ if ((prev == idle_task(smp_processor_id())) || (policy & SCHED_YIELD)) goto out_unlock; spin_lock_irqsave(&runqueue_lock, flags); if ((prev->state == TASK_RUNNING) && !prev->has_cpu) reschedule_idle(prev); spin_unlock_irqrestore(&runqueue_lock, flags); goto out_unlock; } #else prev->policy &= ~SCHED_YIELD; #endif /* CONFIG_SMP */ } void schedule_tail(struct task_struct *prev) { __schedule_tail(prev); } /* * 'schedule()' is the scheduler function. It's a very simple and nice * scheduler: it's not perfect, but certainly works for most things. * * The goto is "interesting". * * NOTE!! Task 0 is the 'idle' task, which gets called when no other * tasks can run. It can not be killed, and it cannot sleep. The 'state' * information in task[0] is never used. */ asmlinkage void schedule(void) { struct schedule_data * sched_data; struct task_struct *prev, *next, *p; struct list_head *tmp; int this_cpu, c; spin_lock_prefetch(&runqueue_lock); if (!current->active_mm) BUG(); need_resched_back: prev = current; this_cpu = prev->processor; if (in_interrupt()) goto scheduling_in_interrupt; release_kernel_lock(prev, this_cpu); /* * 'sched_data' is protected by the fact that we can run * only one process per CPU. */ sched_data = & aligned_data[this_cpu].schedule_data; spin_lock_irq(&runqueue_lock); /* move an exhausted RR process to be last.. */ if (prev->policy == SCHED_RR) goto move_rr_last; move_rr_back: switch (prev->state) { case TASK_INTERRUPTIBLE: if (signal_pending(prev)) { prev->state = TASK_RUNNING; break; } default: del_from_runqueue(prev); case TASK_RUNNING:; } prev->need_resched = 0; /* * this is the scheduler proper: */ repeat_schedule: /* * Default process to select.. */ next = idle_task(this_cpu); c = -1000; if (prev->state == TASK_RUNNING) goto still_running; still_running_back: list_for_each(tmp, &runqueue_head) { p = list_entry(tmp, struct task_struct, run_list); if (can_schedule(p, this_cpu)) { int weight = goodness(p, this_cpu, prev->active_mm); if (weight > c) c = weight, next = p; } } /* Do we need to re-calculate counters? */ if (!c) goto recalculate; /* * from this point on nothing can prevent us from * switching to the next task, save this fact in * sched_data. */ sched_data->curr = next; #ifdef CONFIG_SMP next->has_cpu = 1; next->processor = this_cpu; #endif spin_unlock_irq(&runqueue_lock); if (prev == next) { /* We won't go through the normal tail, so do this by hand */ prev->policy &= ~SCHED_YIELD; goto same_process; } #ifdef CONFIG_SMP /* * maintain the per-process 'last schedule' value. * (this has to be recalculated even if we reschedule to * the same process) Currently this is only used on SMP, * and it's approximate, so we do not have to maintain * it while holding the runqueue spinlock. */ sched_data->last_schedule = get_cycles(); /* * We drop the scheduler lock early (it's a global spinlock), * thus we have to lock the previous process from getting * rescheduled during switch_to(). */ #endif /* CONFIG_SMP */ kstat.context_swtch++; /* * there are 3 processes which are affected by a context switch: * * prev == .... ==> (last => next) * * It's the 'much more previous' 'prev' that is on next's stack, * but prev is set to (the just run) 'last' process by switch_to(). * This might sound slightly confusing but makes tons of sense. */ prepare_to_switch(); { struct mm_struct *mm = next->mm; struct mm_struct *oldmm = prev->active_mm; if (!mm) { if (next->active_mm) BUG(); next->active_mm = oldmm; atomic_inc(&oldmm->mm_count); enter_lazy_tlb(oldmm, next, this_cpu); } else { if (next->active_mm != mm) BUG(); switch_mm(oldmm, mm, next, this_cpu); } if (!prev->mm) { prev->active_mm = NULL; mmdrop(oldmm); } } /* * This just switches the register state and the * stack. */ switch_to(prev, next, prev); __schedule_tail(prev); same_process: reacquire_kernel_lock(current); if (current->need_resched) goto need_resched_back; return; recalculate: { struct task_struct *p; spin_unlock_irq(&runqueue_lock); read_lock(&tasklist_lock); for_each_task(p) p->counter = (p->counter >> 1) + NICE_TO_TICKS(p->nice); read_unlock(&tasklist_lock); spin_lock_irq(&runqueue_lock); } goto repeat_schedule; still_running: if (!(prev->cpus_allowed & (1UL << this_cpu))) goto still_running_back; c = goodness(prev, this_cpu, prev->active_mm); next = prev; goto still_running_back; move_rr_last: if (!prev->counter) { prev->counter = NICE_TO_TICKS(prev->nice); move_last_runqueue(prev); } goto move_rr_back; scheduling_in_interrupt: printk("Scheduling in interrupt\n"); BUG(); return; } /* * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just wake everything * up. If it's an exclusive wakeup (nr_exclusive == small +ve number) then we wake all the * non-exclusive tasks and one exclusive task. * * There are circumstances in which we can try to wake a task which has already * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns zero * in this (rare) case, and we handle it by contonuing to scan the queue. */ static inline void __wake_up_common (wait_queue_head_t *q, unsigned int mode, int nr_exclusive, const int sync) { struct list_head *tmp; struct task_struct *p; CHECK_MAGIC_WQHEAD(q); WQ_CHECK_LIST_HEAD(&q->task_list); list_for_each(tmp,&q->task_list) { unsigned int state; wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list); CHECK_MAGIC(curr->__magic); p = curr->task; state = p->state; if (state & mode) { WQ_NOTE_WAKER(curr); if (try_to_wake_up(p, sync) && (curr->flags&WQ_FLAG_EXCLUSIVE) && !--nr_exclusive) break; } } } void __wake_up(wait_queue_head_t *q, unsigned int mode, int nr) { if (q) { unsigned long flags; wq_read_lock_irqsave(&q->lock, flags); __wake_up_common(q, mode, nr, 0); wq_read_unlock_irqrestore(&q->lock, flags); } } void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr) { if (q) { unsigned long flags; wq_read_lock_irqsave(&q->lock, flags); __wake_up_common(q, mode, nr, 1); wq_read_unlock_irqrestore(&q->lock, flags); } } void complete(struct completion *x) { unsigned long flags; spin_lock_irqsave(&x->wait.lock, flags); x->done++; __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE, 1, 0); spin_unlock_irqrestore(&x->wait.lock, flags); } void wait_for_completion(struct completion *x) { spin_lock_irq(&x->wait.lock); if (!x->done) { DECLARE_WAITQUEUE(wait, current); wait.flags |= WQ_FLAG_EXCLUSIVE; __add_wait_queue_tail(&x->wait, &wait); do { __set_current_state(TASK_UNINTERRUPTIBLE); spin_unlock_irq(&x->wait.lock); schedule(); spin_lock_irq(&x->wait.lock); } while (!x->done); __remove_wait_queue(&x->wait, &wait); } x->done--; spin_unlock_irq(&x->wait.lock); } #define SLEEP_ON_VAR \ unsigned long flags; \ wait_queue_t wait; \ init_waitqueue_entry(&wait, current); #define SLEEP_ON_HEAD \ wq_write_lock_irqsave(&q->lock,flags); \ __add_wait_queue(q, &wait); \ wq_write_unlock(&q->lock); #define SLEEP_ON_TAIL \ wq_write_lock_irq(&q->lock); \ __remove_wait_queue(q, &wait); \ wq_write_unlock_irqrestore(&q->lock,flags); void interruptible_sleep_on(wait_queue_head_t *q) { SLEEP_ON_VAR current->state = TASK_INTERRUPTIBLE; SLEEP_ON_HEAD schedule(); SLEEP_ON_TAIL } long interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout) { SLEEP_ON_VAR current->state = TASK_INTERRUPTIBLE; SLEEP_ON_HEAD timeout = schedule_timeout(timeout); SLEEP_ON_TAIL return timeout; } void sleep_on(wait_queue_head_t *q) { SLEEP_ON_VAR current->state = TASK_UNINTERRUPTIBLE; SLEEP_ON_HEAD schedule(); SLEEP_ON_TAIL } long sleep_on_timeout(wait_queue_head_t *q, long timeout) { SLEEP_ON_VAR current->state = TASK_UNINTERRUPTIBLE; SLEEP_ON_HEAD timeout = schedule_timeout(timeout); SLEEP_ON_TAIL return timeout; } void scheduling_functions_end_here(void) { } #ifndef __alpha__ /* * This has been replaced by sys_setpriority. Maybe it should be * moved into the arch dependent tree for those ports that require * it for backward compatibility? */ asmlinkage long sys_nice(int increment) { long newprio; /* * Setpriority might change our priority at the same moment. * We don't have to worry. Conceptually one call occurs first * and we have a single winner. */ if (increment < 0) { if (!capable(CAP_SYS_NICE)) return -EPERM; if (increment < -40) increment = -40; } if (increment > 40) increment = 40; newprio = current->nice + increment; if (newprio < -20) newprio = -20; if (newprio > 19) newprio = 19; current->nice = newprio; return 0; } #endif static inline struct task_struct *find_process_by_pid(pid_t pid) { struct task_struct *tsk = current; if (pid) tsk = find_task_by_pid(pid); return tsk; } static int setscheduler(pid_t pid, int policy, struct sched_param *param) { struct sched_param lp; struct task_struct *p; int retval; retval = -EINVAL; if (!param || pid < 0) goto out_nounlock; retval = -EFAULT; if (copy_from_user(&lp, param, sizeof(struct sched_param))) goto out_nounlock; /* * We play safe to avoid deadlocks. */ read_lock_irq(&tasklist_lock); spin_lock(&runqueue_lock); p = find_process_by_pid(pid); retval = -ESRCH; if (!p) goto out_unlock; if (policy < 0) policy = p->policy; else { retval = -EINVAL; if (policy != SCHED_FIFO && policy != SCHED_RR && policy != SCHED_OTHER) goto out_unlock; } /* * Valid priorities for SCHED_FIFO and SCHED_RR are 1..99, valid * priority for SCHED_OTHER is 0. */ retval = -EINVAL; if (lp.sched_priority < 0 || lp.sched_priority > 99) goto out_unlock; if ((policy == SCHED_OTHER) != (lp.sched_priority == 0)) goto out_unlock; retval = -EPERM; if ((policy == SCHED_FIFO || policy == SCHED_RR) && !capable(CAP_SYS_NICE)) goto out_unlock; if ((current->euid != p->euid) && (current->euid != p->uid) && !capable(CAP_SYS_NICE)) goto out_unlock; retval = 0; p->policy = policy; p->rt_priority = lp.sched_priority; if (task_on_runqueue(p)) move_first_runqueue(p); current->need_resched = 1; out_unlock: spin_unlock(&runqueue_lock); read_unlock_irq(&tasklist_lock); out_nounlock: return retval; } asmlinkage long sys_sched_setscheduler(pid_t pid, int policy, struct sched_param *param) { return setscheduler(pid, policy, param); } asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param *param) { return setscheduler(pid, -1, param); } asmlinkage long sys_sched_getscheduler(pid_t pid) { struct task_struct *p; int retval; retval = -EINVAL; if (pid < 0) goto out_nounlock; retval = -ESRCH; read_lock(&tasklist_lock); p = find_process_by_pid(pid); if (p) retval = p->policy & ~SCHED_YIELD; read_unlock(&tasklist_lock); out_nounlock: return retval; } asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param *param) { struct task_struct *p; struct sched_param lp; int retval; retval = -EINVAL; if (!param || pid < 0) goto out_nounlock; read_lock(&tasklist_lock); p = find_process_by_pid(pid); retval = -ESRCH; if (!p) goto out_unlock; lp.sched_priority = p->rt_priority; read_unlock(&tasklist_lock); /* * This one might sleep, we cannot do it with a spinlock held ... */ retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; out_nounlock: return retval; out_unlock: read_unlock(&tasklist_lock); return retval; } asmlinkage long sys_sched_yield(void) { /* * Trick. sched_yield() first counts the number of truly * 'pending' runnable processes, then returns if it's * only the current processes. (This test does not have * to be atomic.) In threaded applications this optimization * gets triggered quite often. */ int nr_pending = nr_running; #if CONFIG_SMP int i; // Subtract non-idle processes running on other CPUs. for (i = 0; i < smp_num_cpus; i++) { int cpu = cpu_logical_map(i); if (aligned_data[cpu].schedule_data.curr != idle_task(cpu)) nr_pending--; } #else // on UP this process is on the runqueue as well nr_pending--; #endif if (nr_pending) { /* * This process can only be rescheduled by us, * so this is safe without any locking. */ if (current->policy == SCHED_OTHER) current->policy |= SCHED_YIELD; current->need_resched = 1; } return 0; } asmlinkage long sys_sched_get_priority_max(int policy) { int ret = -EINVAL; switch (policy) { case SCHED_FIFO: case SCHED_RR: ret = 99; break; case SCHED_OTHER: ret = 0; break; } return ret; } asmlinkage long sys_sched_get_priority_min(int policy) { int ret = -EINVAL; switch (policy) { case SCHED_FIFO: case SCHED_RR: ret = 1; break; case SCHED_OTHER: ret = 0; } return ret; } asmlinkage long sys_sched_rr_get_interval(pid_t pid, struct timespec *interval) { struct timespec t; struct task_struct *p; int retval = -EINVAL; if (pid < 0) goto out_nounlock; retval = -ESRCH; read_lock(&tasklist_lock); p = find_process_by_pid(pid); if (p) jiffies_to_timespec(p->policy & SCHED_FIFO ? 0 : NICE_TO_TICKS(p->nice), &t); read_unlock(&tasklist_lock); if (p) retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; out_nounlock: return retval; } static void show_task(struct task_struct * p) { unsigned long free = 0; int state; static const char * stat_nam[] = { "R", "S", "D", "Z", "T", "W" }; printk("%-13.13s ", p->comm); state = p->state ? ffz(~p->state) + 1 : 0; if (((unsigned) state) < sizeof(stat_nam)/sizeof(char *)) printk(stat_nam[state]); else printk(" "); #if (BITS_PER_LONG == 32) if (p == current) printk(" current "); else printk(" %08lX ", thread_saved_pc(&p->thread)); #else if (p == current) printk(" current task "); else printk(" %016lx ", thread_saved_pc(&p->thread)); #endif { unsigned long * n = (unsigned long *) (p+1); while (!*n) n++; free = (unsigned long) n - (unsigned long)(p+1); } printk("%5lu %5d %6d ", free, p->pid, p->p_pptr->pid); if (p->p_cptr) printk("%5d ", p->p_cptr->pid); else printk(" "); if (p->p_ysptr) printk("%7d", p->p_ysptr->pid); else printk(" "); if (p->p_osptr) printk(" %5d", p->p_osptr->pid); else printk(" "); if (!p->mm) printk(" (L-TLB)\n"); else printk(" (NOTLB)\n"); #if defined(CONFIG_X86) || defined(CONFIG_SPARC64) || defined(CONFIG_ARM) || defined(CONFIG_ALPHA) /* This is very useful, but only works on ARM, x86 and sparc64 right now */ { extern void show_trace_task(struct task_struct *tsk); show_trace_task(p); } #endif } char * render_sigset_t(sigset_t *set, char *buffer) { int i = _NSIG, x; do { i -= 4, x = 0; if (sigismember(set, i+1)) x |= 1; if (sigismember(set, i+2)) x |= 2; if (sigismember(set, i+3)) x |= 4; if (sigismember(set, i+4)) x |= 8; *buffer++ = (x < 10 ? '0' : 'a' - 10) + x; } while (i >= 4); *buffer = 0; return buffer; } void show_state(void) { struct task_struct *p; #if (BITS_PER_LONG == 32) printk("\n" " free sibling\n"); printk(" task PC stack pid father child younger older\n"); #else printk("\n" " free sibling\n"); printk(" task PC stack pid father child younger older\n"); #endif read_lock(&tasklist_lock); for_each_task(p) { /* * reset the NMI-timeout, listing all files on a slow * console might take alot of time: */ touch_nmi_watchdog(); show_task(p); } read_unlock(&tasklist_lock); } /** * reparent_to_init() - Reparent the calling kernel thread to the init task. * * If a kernel thread is launched as a result of a system call, or if * it ever exits, it should generally reparent itself to init so that * it is correctly cleaned up on exit. * * The various task state such as scheduling policy and priority may have * been inherited fro a user process, so we reset them to sane values here. * * NOTE that reparent_to_init() gives the caller full capabilities. */ void reparent_to_init(void) { struct task_struct *this_task = current; write_lock_irq(&tasklist_lock); /* Reparent to init */ REMOVE_LINKS(this_task); this_task->p_pptr = child_reaper; this_task->p_opptr = child_reaper; SET_LINKS(this_task); /* Set the exit signal to SIGCHLD so we signal init on exit */ if (this_task->exit_signal != 0) { printk(KERN_ERR "task `%s' exit_signal %d in " __FUNCTION__ "\n", this_task->comm, this_task->exit_signal); } this_task->exit_signal = SIGCHLD; /* We also take the runqueue_lock while altering task fields * which affect scheduling decisions */ spin_lock(&runqueue_lock); this_task->ptrace = 0; this_task->nice = DEF_NICE; this_task->policy = SCHED_OTHER; /* cpus_allowed? */ /* rt_priority? */ /* signals? */ this_task->cap_effective = CAP_INIT_EFF_SET; this_task->cap_inheritable = CAP_INIT_INH_SET; this_task->cap_permitted = CAP_FULL_SET; this_task->keep_capabilities = 0; memcpy(this_task->rlim, init_task.rlim, sizeof(*(this_task->rlim))); this_task->user = INIT_USER; spin_unlock(&runqueue_lock); write_unlock_irq(&tasklist_lock); } /* * Put all the gunge required to become a kernel thread without * attached user resources in one place where it belongs. */ void daemonize(void) { struct fs_struct *fs; /* * If we were started as result of loading a module, close all of the * user space pages. We don't need them, and if we didn't close them * they would be locked into memory. */ exit_mm(current); current->session = 1; current->pgrp = 1; /* Become as one with the init task */ exit_fs(current); /* current->fs->count--; */ fs = init_task.fs; current->fs = fs; atomic_inc(&fs->count); exit_files(current); current->files = init_task.files; atomic_inc(¤t->files->count); } extern unsigned long wait_init_idle; void __init init_idle(void) { struct schedule_data * sched_data; sched_data = &aligned_data[smp_processor_id()].schedule_data; if (current != &init_task && task_on_runqueue(current)) { printk("UGH! (%d:%d) was on the runqueue, removing.\n", smp_processor_id(), current->pid); del_from_runqueue(current); } sched_data->curr = current; sched_data->last_schedule = get_cycles(); clear_bit(current->processor, &wait_init_idle); } extern void init_timervecs (void); void __init sched_init(void) { /* * We have to do a little magic to get the first * process right in SMP mode. */ int cpu = smp_processor_id(); int nr; init_task.processor = cpu; for(nr = 0; nr < PIDHASH_SZ; nr++) pidhash[nr] = NULL; init_timervecs(); init_bh(TIMER_BH, timer_bh); init_bh(TQUEUE_BH, tqueue_bh); init_bh(IMMEDIATE_BH, immediate_bh); /* * The boot idle thread does lazy MMU switching as well: */ atomic_inc(&init_mm.mm_count); enter_lazy_tlb(&init_mm, current, cpu); } |