Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
/*
 *  linux/kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *              make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  1998-12-28  Implemented better SMP scheduling by Ingo Molnar
 */

/*
 * 'sched.c' is the main kernel file. It contains scheduling primitives
 * (sleep_on, wakeup, schedule etc) as well as a number of simple system
 * call functions (type getpid()), which just extract a field from
 * current-task
 */

#include <linux/mm.h>
#include <linux/init.h>
#include <linux/smp_lock.h>
#include <linux/interrupt.h>
#include <linux/kernel_stat.h>

#include <asm/uaccess.h>
#include <asm/mmu_context.h>


extern void timer_bh(void);
extern void tqueue_bh(void);
extern void immediate_bh(void);

/*
 * scheduler variables
 */

unsigned securebits = SECUREBITS_DEFAULT; /* systemwide security settings */

extern void mem_use(void);

/*
 *	Init task must be ok at boot for the ix86 as we will check its signals
 *	via the SMP irq return path.
 */
 
struct task_struct * init_tasks[NR_CPUS] = {&init_task, };

/*
 * The tasklist_lock protects the linked list of processes.
 *
 * The scheduler lock is protecting against multiple entry
 * into the scheduling code, and doesn't need to worry
 * about interrupts (because interrupts cannot call the
 * scheduler).
 *
 * The run-queue lock locks the parts that actually access
 * and change the run-queues, and have to be interrupt-safe.
 */
spinlock_t runqueue_lock = SPIN_LOCK_UNLOCKED;  /* second */
rwlock_t tasklist_lock = RW_LOCK_UNLOCKED;	/* third */

static LIST_HEAD(runqueue_head);

/*
 * We align per-CPU scheduling data on cacheline boundaries,
 * to prevent cacheline ping-pong.
 */
static union {
	struct schedule_data {
		struct task_struct * curr;
		cycles_t last_schedule;
	} schedule_data;
	char __pad [SMP_CACHE_BYTES];
} aligned_data [NR_CPUS] __cacheline_aligned = { {{&init_task,0}}};

#define cpu_curr(cpu) aligned_data[(cpu)].schedule_data.curr

struct kernel_stat kstat = { 0 };

#ifdef __SMP__

#define idle_task(cpu) (init_tasks[cpu_number_map(cpu)])
#define can_schedule(p)	(!(p)->has_cpu)

#else

#define idle_task(cpu) (&init_task)
#define can_schedule(p) (1)

#endif

void scheduling_functions_start_here(void) { }

/*
 * This is the function that decides how desirable a process is..
 * You can weigh different processes against each other depending
 * on what CPU they've run on lately etc to try to handle cache
 * and TLB miss penalties.
 *
 * Return values:
 *	 -1000: never select this
 *	     0: out of time, recalculate counters (but it might still be
 *		selected)
 *	   +ve: "goodness" value (the larger, the better)
 *	 +1000: realtime process, select this.
 */

static inline int goodness(struct task_struct * p, int this_cpu, struct mm_struct *this_mm)
{
	int weight;

	/*
	 * Realtime process, select the first one on the
	 * runqueue (taking priorities within processes
	 * into account).
	 */
	if (p->policy != SCHED_OTHER) {
		weight = 1000 + p->rt_priority;
		goto out;
	}

	/*
	 * Give the process a first-approximation goodness value
	 * according to the number of clock-ticks it has left.
	 *
	 * Don't do any other calculations if the time slice is
	 * over..
	 */
	weight = p->counter;
	if (!weight)
		goto out;
			
#ifdef __SMP__
	/* Give a largish advantage to the same processor...   */
	/* (this is equivalent to penalizing other processors) */
	if (p->processor == this_cpu)
		weight += PROC_CHANGE_PENALTY;
#endif

	/* .. and a slight advantage to the current MM */
	if (p->mm == this_mm)
		weight += 1;
	weight += p->priority;

out:
	return weight;
}

/*
 * subtle. We want to discard a yielded process only if it's being
 * considered for a reschedule. Wakeup-time 'queries' of the scheduling
 * state do not count. Another optimization we do: sched_yield()-ed
 * processes are runnable (and thus will be considered for scheduling)
 * right when they are calling schedule(). So the only place we need
 * to care about SCHED_YIELD is when we calculate the previous process'
 * goodness ...
 */
static inline int prev_goodness(struct task_struct * p, int this_cpu, struct mm_struct *this_mm)
{
	if (p->policy & SCHED_YIELD) {
		p->policy &= ~SCHED_YIELD;
		return 0;
	}
	return goodness(p, this_cpu, this_mm);
}

/*
 * the 'goodness value' of replacing a process on a given CPU.
 * positive value means 'replace', zero or negative means 'dont'.
 */
static inline int preemption_goodness(struct task_struct * prev, struct task_struct * p, int cpu)
{
	return goodness(p, cpu, prev->mm) - goodness(prev, cpu, prev->mm);
}

/*
 * This is ugly, but reschedule_idle() is very timing-critical.
 * We enter with the runqueue spinlock held, but we might end
 * up unlocking it early, so the caller must not unlock the
 * runqueue, it's always done by reschedule_idle().
 */
static inline void reschedule_idle(struct task_struct * p, unsigned long flags)
{
#ifdef __SMP__
	int this_cpu = smp_processor_id(), target_cpu;
	struct task_struct *tsk;
	int cpu, best_cpu, i;

	/*
	 * shortcut if the woken up task's last CPU is
	 * idle now.
	 */
	best_cpu = p->processor;
	tsk = idle_task(best_cpu);
	if (cpu_curr(best_cpu) == tsk)
		goto send_now;

	/*
	 * We know that the preferred CPU has a cache-affine current
	 * process, lets try to find a new idle CPU for the woken-up
	 * process:
	 */
	for (i = smp_num_cpus - 1; i >= 0; i--) {
		cpu = cpu_logical_map(i);
		if (cpu == best_cpu)
			continue;
		tsk = cpu_curr(cpu);
		/*
		 * We use the last available idle CPU. This creates
		 * a priority list between idle CPUs, but this is not
		 * a problem.
		 */
		if (tsk == idle_task(cpu))
			goto send_now;
	}

	/*
	 * No CPU is idle, but maybe this process has enough priority
	 * to preempt it's preferred CPU.
	 */
	tsk = cpu_curr(best_cpu);
	if (preemption_goodness(tsk, p, best_cpu) > 0)
		goto send_now;

	/*
	 * We will get here often - or in the high CPU contention
	 * case. No CPU is idle and this process is either lowprio or
	 * the preferred CPU is highprio. Try to preemt some other CPU
	 * only if it's RT or if it's iteractive and the preferred
	 * cpu won't reschedule shortly.
	 */
	if ((p->avg_slice < cacheflush_time && cpu_curr(best_cpu)->avg_slice > cacheflush_time) ||
	    p->policy != SCHED_OTHER)
	{
		for (i = smp_num_cpus - 1; i >= 0; i--) {
			cpu = cpu_logical_map(i);
			if (cpu == best_cpu)
				continue;
			tsk = cpu_curr(cpu);
			if (preemption_goodness(tsk, p, cpu) > 0)
				goto send_now;
		}
	}

	spin_unlock_irqrestore(&runqueue_lock, flags);
	return;
		
send_now:
	target_cpu = tsk->processor;
	tsk->need_resched = 1;
	spin_unlock_irqrestore(&runqueue_lock, flags);
	/*
	 * the APIC stuff can go outside of the lock because
	 * it uses no task information, only CPU#.
	 */
	if (target_cpu != this_cpu)
		smp_send_reschedule(target_cpu);
	return;
#else /* UP */
	int this_cpu = smp_processor_id();
	struct task_struct *tsk;

	tsk = cpu_curr(this_cpu);
	if (preemption_goodness(tsk, p, this_cpu) > 0)
		tsk->need_resched = 1;
	spin_unlock_irqrestore(&runqueue_lock, flags);
#endif
}

/*
 * Careful!
 *
 * This has to add the process to the _beginning_ of the
 * run-queue, not the end. See the comment about "This is
 * subtle" in the scheduler proper..
 */
static inline void add_to_runqueue(struct task_struct * p)
{
	list_add(&p->run_list, &runqueue_head);
	nr_running++;
}

static inline void move_last_runqueue(struct task_struct * p)
{
	list_del(&p->run_list);
	list_add_tail(&p->run_list, &runqueue_head);
}

static inline void move_first_runqueue(struct task_struct * p)
{
	list_del(&p->run_list);
	list_add(&p->run_list, &runqueue_head);
}

/*
 * Wake up a process. Put it on the run-queue if it's not
 * already there.  The "current" process is always on the
 * run-queue (except when the actual re-schedule is in
 * progress), and as such you're allowed to do the simpler
 * "current->state = TASK_RUNNING" to mark yourself runnable
 * without the overhead of this.
 */
inline void wake_up_process(struct task_struct * p)
{
	unsigned long flags;

	/*
	 * We want the common case fall through straight, thus the goto.
	 */
	spin_lock_irqsave(&runqueue_lock, flags);
	p->state = TASK_RUNNING;
	if (task_on_runqueue(p))
		goto out;
	add_to_runqueue(p);
	reschedule_idle(p, flags); // spin_unlocks runqueue

	return;
out:
	spin_unlock_irqrestore(&runqueue_lock, flags);
}

static inline void wake_up_process_synchronous(struct task_struct * p)
{
	unsigned long flags;

	/*
	 * We want the common case fall through straight, thus the goto.
	 */
	spin_lock_irqsave(&runqueue_lock, flags);
	p->state = TASK_RUNNING;
	if (task_on_runqueue(p))
		goto out;
	add_to_runqueue(p);
out:
	spin_unlock_irqrestore(&runqueue_lock, flags);
}

static void process_timeout(unsigned long __data)
{
	struct task_struct * p = (struct task_struct *) __data;

	wake_up_process(p);
}

signed long schedule_timeout(signed long timeout)
{
	struct timer_list timer;
	unsigned long expire;

	switch (timeout)
	{
	case MAX_SCHEDULE_TIMEOUT:
		/*
		 * These two special cases are useful to be comfortable
		 * in the caller. Nothing more. We could take
		 * MAX_SCHEDULE_TIMEOUT from one of the negative value
		 * but I' d like to return a valid offset (>=0) to allow
		 * the caller to do everything it want with the retval.
		 */
		schedule();
		goto out;
	default:
		/*
		 * Another bit of PARANOID. Note that the retval will be
		 * 0 since no piece of kernel is supposed to do a check
		 * for a negative retval of schedule_timeout() (since it
		 * should never happens anyway). You just have the printk()
		 * that will tell you if something is gone wrong and where.
		 */
		if (timeout < 0)
		{
			printk(KERN_ERR "schedule_timeout: wrong timeout "
			       "value %lx from %p\n", timeout,
			       __builtin_return_address(0));
			current->state = TASK_RUNNING;
			goto out;
		}
	}

	expire = timeout + jiffies;

	init_timer(&timer);
	timer.expires = expire;
	timer.data = (unsigned long) current;
	timer.function = process_timeout;

	add_timer(&timer);
	schedule();
	del_timer(&timer);
	/* RED-PEN. Timer may be running now on another cpu.
	 * Pray that process will not exit enough fastly.
	 */

	timeout = expire - jiffies;

 out:
	return timeout < 0 ? 0 : timeout;
}

/*
 * schedule_tail() is getting called from the fork return path. This
 * cleans up all remaining scheduler things, without impacting the
 * common case.
 */
static inline void __schedule_tail(struct task_struct *prev)
{
#ifdef __SMP__
	if ((prev->state == TASK_RUNNING) &&
			(prev != idle_task(smp_processor_id()))) {
		unsigned long flags;

		spin_lock_irqsave(&runqueue_lock, flags);
		reschedule_idle(prev, flags); // spin_unlocks runqueue
	}
	wmb();
	prev->has_cpu = 0;
#endif /* __SMP__ */
}

void schedule_tail(struct task_struct *prev)
{
	__schedule_tail(prev);
}

/*
 *  'schedule()' is the scheduler function. It's a very simple and nice
 * scheduler: it's not perfect, but certainly works for most things.
 *
 * The goto is "interesting".
 *
 *   NOTE!!  Task 0 is the 'idle' task, which gets called when no other
 * tasks can run. It can not be killed, and it cannot sleep. The 'state'
 * information in task[0] is never used.
 */
asmlinkage void schedule(void)
{
	struct schedule_data * sched_data;
	struct task_struct *prev, *next, *p;
	struct list_head *tmp;
	int this_cpu, c;

	if (!current->active_mm) BUG();
	if (tq_scheduler)
		goto handle_tq_scheduler;
tq_scheduler_back:

	prev = current;
	this_cpu = prev->processor;

	if (in_interrupt())
		goto scheduling_in_interrupt;

	release_kernel_lock(prev, this_cpu);

	/* Do "administrative" work here while we don't hold any locks */
	if (softirq_state[this_cpu].active & softirq_state[this_cpu].mask)
		goto handle_softirq;
handle_softirq_back:

	/*
	 * 'sched_data' is protected by the fact that we can run
	 * only one process per CPU.
	 */
	sched_data = & aligned_data[this_cpu].schedule_data;

	spin_lock_irq(&runqueue_lock);

	/* move an exhausted RR process to be last.. */
	if (prev->policy == SCHED_RR)
		goto move_rr_last;
move_rr_back:

	switch (prev->state & ~TASK_EXCLUSIVE) {
		case TASK_INTERRUPTIBLE:
			if (signal_pending(prev)) {
				prev->state = TASK_RUNNING;
				break;
			}
		default:
			del_from_runqueue(prev);
		case TASK_RUNNING:
	}
	prev->need_resched = 0;

	/*
	 * this is the scheduler proper:
	 */

repeat_schedule:
	/*
	 * Default process to select..
	 */
	next = idle_task(this_cpu);
	c = -1000;
	if (prev->state == TASK_RUNNING)
		goto still_running;
still_running_back:

	tmp = runqueue_head.next;
	while (tmp != &runqueue_head) {
		p = list_entry(tmp, struct task_struct, run_list);
		if (can_schedule(p)) {
			int weight = goodness(p, this_cpu, prev->active_mm);
			if (weight > c)
				c = weight, next = p;
		}
		tmp = tmp->next;
	}

	/* Do we need to re-calculate counters? */
	if (!c)
		goto recalculate;
	/*
	 * from this point on nothing can prevent us from
	 * switching to the next task, save this fact in
	 * sched_data.
	 */
	sched_data->curr = next;
#ifdef __SMP__
 	next->has_cpu = 1;
	next->processor = this_cpu;
#endif
	spin_unlock_irq(&runqueue_lock);

	if (prev == next)
		goto same_process;

#ifdef __SMP__
 	/*
 	 * maintain the per-process 'average timeslice' value.
 	 * (this has to be recalculated even if we reschedule to
 	 * the same process) Currently this is only used on SMP,
	 * and it's approximate, so we do not have to maintain
	 * it while holding the runqueue spinlock.
 	 */
	{
		cycles_t t, this_slice;

		t = get_cycles();
		this_slice = t - sched_data->last_schedule;
		sched_data->last_schedule = t;

		/*
		 * Exponentially fading average calculation, with
		 * some weight so it doesnt get fooled easily by
		 * smaller irregularities.
		 */
		prev->avg_slice = (this_slice*1 + prev->avg_slice*1)/2;
	}

	/*
	 * We drop the scheduler lock early (it's a global spinlock),
	 * thus we have to lock the previous process from getting
	 * rescheduled during switch_to().
	 */

#endif /* __SMP__ */

	kstat.context_swtch++;
	/*
	 * there are 3 processes which are affected by a context switch:
	 *
	 * prev == .... ==> (last => next)
	 *
	 * It's the 'much more previous' 'prev' that is on next's stack,
	 * but prev is set to (the just run) 'last' process by switch_to().
	 * This might sound slightly confusing but makes tons of sense.
	 */
	prepare_to_switch();
	{
		struct mm_struct *mm = next->mm;
		struct mm_struct *oldmm = prev->active_mm;
		if (!mm) {
			if (next->active_mm) BUG();
			next->active_mm = oldmm;
			atomic_inc(&oldmm->mm_count);
			enter_lazy_tlb(oldmm, next, this_cpu);
		} else {
			if (next->active_mm != mm) BUG();
			switch_mm(oldmm, mm, next, this_cpu);
		}

		if (!prev->mm) {
			prev->active_mm = NULL;
			mmdrop(oldmm);
		}
	}

	/*
	 * This just switches the register state and the
	 * stack.
	 */
	switch_to(prev, next, prev);
	__schedule_tail(prev);

same_process:
	reacquire_kernel_lock(current);
	return;

recalculate:
	{
		struct task_struct *p;
		spin_unlock_irq(&runqueue_lock);
		read_lock(&tasklist_lock);
		for_each_task(p)
			p->counter = (p->counter >> 1) + p->priority;
		read_unlock(&tasklist_lock);
		spin_lock_irq(&runqueue_lock);
	}
	goto repeat_schedule;

still_running:
	c = prev_goodness(prev, this_cpu, prev->active_mm);
	next = prev;
	goto still_running_back;

handle_softirq:
	do_softirq();
	goto handle_softirq_back;

handle_tq_scheduler:
	run_task_queue(&tq_scheduler);
	goto tq_scheduler_back;

move_rr_last:
	if (!prev->counter) {
		prev->counter = prev->priority;
		move_last_runqueue(prev);
	}
	goto move_rr_back;

scheduling_in_interrupt:
	printk("Scheduling in interrupt\n");
	*(int *)0 = 0;
	return;
}

static inline void __wake_up_common(wait_queue_head_t *q, unsigned int mode, const int sync)
{
	struct list_head *tmp, *head;
	struct task_struct *p;
	unsigned long flags;

        if (!q)
		goto out;

	wq_write_lock_irqsave(&q->lock, flags);

#if WAITQUEUE_DEBUG
	CHECK_MAGIC_WQHEAD(q);
#endif

	head = &q->task_list;
#if WAITQUEUE_DEBUG
        if (!head->next || !head->prev)
                WQ_BUG();
#endif
	tmp = head->next;
	while (tmp != head) {
		unsigned int state;
                wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);

		tmp = tmp->next;

#if WAITQUEUE_DEBUG
		CHECK_MAGIC(curr->__magic);
#endif
		p = curr->task;
		state = p->state;
		if (state & (mode & ~TASK_EXCLUSIVE)) {
#if WAITQUEUE_DEBUG
			curr->__waker = (long)__builtin_return_address(0);
#endif
			if (sync)
				wake_up_process_synchronous(p);
			else
				wake_up_process(p);
			if (state & mode & TASK_EXCLUSIVE)
				break;
		}
	}
	wq_write_unlock_irqrestore(&q->lock, flags);
out:
	return;
}

void __wake_up(wait_queue_head_t *q, unsigned int mode)
{
	__wake_up_common(q, mode, 0);
}

void __wake_up_sync(wait_queue_head_t *q, unsigned int mode)
{
	__wake_up_common(q, mode, 1);
}

#define	SLEEP_ON_VAR				\
	unsigned long flags;			\
	wait_queue_t wait;			\
	init_waitqueue_entry(&wait, current);

#define	SLEEP_ON_HEAD					\
	wq_write_lock_irqsave(&q->lock,flags);		\
	__add_wait_queue(q, &wait);			\
	wq_write_unlock(&q->lock);

#define	SLEEP_ON_TAIL						\
	wq_write_lock_irq(&q->lock);				\
	__remove_wait_queue(q, &wait);				\
	wq_write_unlock_irqrestore(&q->lock,flags);

void interruptible_sleep_on(wait_queue_head_t *q)
{
	SLEEP_ON_VAR

	current->state = TASK_INTERRUPTIBLE;

	SLEEP_ON_HEAD
	schedule();
	SLEEP_ON_TAIL
}

long interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
{
	SLEEP_ON_VAR

	current->state = TASK_INTERRUPTIBLE;

	SLEEP_ON_HEAD
	timeout = schedule_timeout(timeout);
	SLEEP_ON_TAIL

	return timeout;
}

void sleep_on(wait_queue_head_t *q)
{
	SLEEP_ON_VAR
	
	current->state = TASK_UNINTERRUPTIBLE;

	SLEEP_ON_HEAD
	schedule();
	SLEEP_ON_TAIL
}

long sleep_on_timeout(wait_queue_head_t *q, long timeout)
{
	SLEEP_ON_VAR
	
	current->state = TASK_UNINTERRUPTIBLE;

	SLEEP_ON_HEAD
	timeout = schedule_timeout(timeout);
	SLEEP_ON_TAIL

	return timeout;
}

void scheduling_functions_end_here(void) { }

#ifndef __alpha__

/*
 * This has been replaced by sys_setpriority.  Maybe it should be
 * moved into the arch dependent tree for those ports that require
 * it for backward compatibility?
 */

asmlinkage long sys_nice(int increment)
{
	unsigned long newprio;
	int increase = 0;

	/*
	 *	Setpriority might change our priority at the same moment.
	 *	We don't have to worry. Conceptually one call occurs first
	 *	and we have a single winner.
	 */
	 
	newprio = increment;
	if (increment < 0) {
		if (!capable(CAP_SYS_NICE))
			return -EPERM;
		newprio = -increment;
		increase = 1;
	}

	if (newprio > 40)
		newprio = 40;
	/*
	 * do a "normalization" of the priority (traditionally
	 * Unix nice values are -20 to 20; Linux doesn't really
	 * use that kind of thing, but uses the length of the
	 * timeslice instead (default 200 ms). The rounding is
	 * why we want to avoid negative values.
	 */
	newprio = (newprio * DEF_PRIORITY + 10) / 20;
	increment = newprio;
	if (increase)
		increment = -increment;
	/*
	 *	Current->priority can change between this point
	 *	and the assignment. We are assigning not doing add/subs
	 *	so thats ok. Conceptually a process might just instantaneously
	 *	read the value we stomp over. I don't think that is an issue
	 *	unless posix makes it one. If so we can loop on changes
	 *	to current->priority.
	 */
	newprio = current->priority - increment;
	if ((signed) newprio < 1)
		newprio = 1;
	if (newprio > DEF_PRIORITY*2)
		newprio = DEF_PRIORITY*2;
	current->priority = newprio;
	return 0;
}

#endif

static inline struct task_struct *find_process_by_pid(pid_t pid)
{
	struct task_struct *tsk = current;

	if (pid)
		tsk = find_task_by_pid(pid);
	return tsk;
}

static int setscheduler(pid_t pid, int policy, 
			struct sched_param *param)
{
	struct sched_param lp;
	struct task_struct *p;
	int retval;

	retval = -EINVAL;
	if (!param || pid < 0)
		goto out_nounlock;

	retval = -EFAULT;
	if (copy_from_user(&lp, param, sizeof(struct sched_param)))
		goto out_nounlock;

	/*
	 * We play safe to avoid deadlocks.
	 */
	spin_lock_irq(&runqueue_lock);
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);

	retval = -ESRCH;
	if (!p)
		goto out_unlock;
			
	if (policy < 0)
		policy = p->policy;
	else {
		retval = -EINVAL;
		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_OTHER)
			goto out_unlock;
	}
	
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are 1..99, valid
	 * priority for SCHED_OTHER is 0.
	 */
	retval = -EINVAL;
	if (lp.sched_priority < 0 || lp.sched_priority > 99)
		goto out_unlock;
	if ((policy == SCHED_OTHER) != (lp.sched_priority == 0))
		goto out_unlock;

	retval = -EPERM;
	if ((policy == SCHED_FIFO || policy == SCHED_RR) && 
	    !capable(CAP_SYS_NICE))
		goto out_unlock;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
	    !capable(CAP_SYS_NICE))
		goto out_unlock;

	retval = 0;
	p->policy = policy;
	p->rt_priority = lp.sched_priority;
	if (task_on_runqueue(p))
		move_first_runqueue(p);

	current->need_resched = 1;

out_unlock:
	read_unlock(&tasklist_lock);
	spin_unlock_irq(&runqueue_lock);

out_nounlock:
	return retval;
}

asmlinkage long sys_sched_setscheduler(pid_t pid, int policy, 
				      struct sched_param *param)
{
	return setscheduler(pid, policy, param);
}

asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param *param)
{
	return setscheduler(pid, -1, param);
}

asmlinkage long sys_sched_getscheduler(pid_t pid)
{
	struct task_struct *p;
	int retval;

	retval = -EINVAL;
	if (pid < 0)
		goto out_nounlock;

	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;
			
	retval = p->policy;

out_unlock:
	read_unlock(&tasklist_lock);

out_nounlock:
	return retval;
}

asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param *param)
{
	struct task_struct *p;
	struct sched_param lp;
	int retval;

	retval = -EINVAL;
	if (!param || pid < 0)
		goto out_nounlock;

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;
	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

out_nounlock:
	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

asmlinkage long sys_sched_yield(void)
{
	spin_lock_irq(&runqueue_lock);
	if (current->policy == SCHED_OTHER)
		current->policy |= SCHED_YIELD;
	current->need_resched = 1;
	move_last_runqueue(current);
	spin_unlock_irq(&runqueue_lock);
	return 0;
}

asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 99;
		break;
	case SCHED_OTHER:
		ret = 0;
		break;
	}
	return ret;
}

asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_OTHER:
		ret = 0;
	}
	return ret;
}

asmlinkage long sys_sched_rr_get_interval(pid_t pid, struct timespec *interval)
{
	struct timespec t;

	t.tv_sec = 0;
	t.tv_nsec = 150000;
	if (copy_to_user(interval, &t, sizeof(struct timespec)))
		return -EFAULT;
	return 0;
}

static void show_task(struct task_struct * p)
{
	unsigned long free = 0;
	int state;
	static const char * stat_nam[] = { "R", "S", "D", "Z", "T", "W" };

	printk("%-8s  ", p->comm);
	state = p->state ? ffz(~p->state) + 1 : 0;
	if (((unsigned) state) < sizeof(stat_nam)/sizeof(char *))
		printk(stat_nam[state]);
	else
		printk(" ");
#if (BITS_PER_LONG == 32)
	if (p == current)
		printk(" current  ");
	else
		printk(" %08lX ", thread_saved_pc(&p->thread));
#else
	if (p == current)
		printk("   current task   ");
	else
		printk(" %016lx ", thread_saved_pc(&p->thread));
#endif
	{
		unsigned long * n = (unsigned long *) (p+1);
		while (!*n)
			n++;
		free = (unsigned long) n - (unsigned long)(p+1);
	}
	printk("%5lu %5d %6d ", free, p->pid, p->p_pptr->pid);
	if (p->p_cptr)
		printk("%5d ", p->p_cptr->pid);
	else
		printk("      ");
	if (!p->mm)
		printk(" (L-TLB) ");
	else
		printk(" (NOTLB) ");
	if (p->p_ysptr)
		printk("%7d", p->p_ysptr->pid);
	else
		printk("       ");
	if (p->p_osptr)
		printk(" %5d\n", p->p_osptr->pid);
	else
		printk("\n");

	{
		struct signal_queue *q;
		char s[sizeof(sigset_t)*2+1], b[sizeof(sigset_t)*2+1]; 

		render_sigset_t(&p->signal, s);
		render_sigset_t(&p->blocked, b);
		printk("   sig: %d %s %s :", signal_pending(p), s, b);
		for (q = p->sigqueue; q ; q = q->next)
			printk(" %d", q->info.si_signo);
		printk(" X\n");
	}
}

char * render_sigset_t(sigset_t *set, char *buffer)
{
	int i = _NSIG, x;
	do {
		i -= 4, x = 0;
		if (sigismember(set, i+1)) x |= 1;
		if (sigismember(set, i+2)) x |= 2;
		if (sigismember(set, i+3)) x |= 4;
		if (sigismember(set, i+4)) x |= 8;
		*buffer++ = (x < 10 ? '0' : 'a' - 10) + x;
	} while (i >= 4);
	*buffer = 0;
	return buffer;
}

void show_state(void)
{
	struct task_struct *p;

#if (BITS_PER_LONG == 32)
	printk("\n"
	       "                         free                        sibling\n");
	printk("  task             PC    stack   pid father child younger older\n");
#else
	printk("\n"
	       "                                 free                        sibling\n");
	printk("  task                 PC        stack   pid father child younger older\n");
#endif
	read_lock(&tasklist_lock);
	for_each_task(p)
		show_task(p);
	read_unlock(&tasklist_lock);
}

/*
 *	Put all the gunge required to become a kernel thread without
 *	attached user resources in one place where it belongs.
 */

void daemonize(void)
{
	struct fs_struct *fs;


	/*
	 * If we were started as result of loading a module, close all of the
	 * user space pages.  We don't need them, and if we didn't close them
	 * they would be locked into memory.
	 */
	exit_mm(current);

	current->session = 1;
	current->pgrp = 1;

	/* Become as one with the init task */

	exit_fs(current);	/* current->fs->count--; */
	fs = init_task.fs;
	current->fs = fs;
	atomic_inc(&fs->count);

}

void __init init_idle(void)
{
	struct schedule_data * sched_data;
	sched_data = &aligned_data[smp_processor_id()].schedule_data;

	if (current != &init_task && task_on_runqueue(current)) {
		printk("UGH! (%d:%d) was on the runqueue, removing.\n",
			smp_processor_id(), current->pid);
		del_from_runqueue(current);
	}
	sched_data->curr = current;
	sched_data->last_schedule = get_cycles();
}

void __init sched_init(void)
{
	/*
	 * We have to do a little magic to get the first
	 * process right in SMP mode.
	 */
	int cpu = smp_processor_id();
	int nr;

	init_task.processor = cpu;

	for(nr = 0; nr < PIDHASH_SZ; nr++)
		pidhash[nr] = NULL;

	init_bh(TIMER_BH, timer_bh);
	init_bh(TQUEUE_BH, tqueue_bh);
	init_bh(IMMEDIATE_BH, immediate_bh);

	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current, cpu);
}