Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
/*
 *  linux/kernel/sched.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 */

/*
 * 'sched.c' is the main kernel file. It contains scheduling primitives
 * (sleep_on, wakeup, schedule etc) as well as a number of simple system
 * call functions (type getpid(), which just extracts a field from
 * current-task
 */

#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/timer.h>
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/fdreg.h>
#include <linux/errno.h>
#include <linux/time.h>
#include <linux/ptrace.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/tqueue.h>
#include <linux/resource.h>
#include <linux/mm.h>
#include <linux/smp.h>

#include <asm/system.h>
#include <asm/io.h>
#include <asm/segment.h>
#include <asm/pgtable.h>
#include <asm/mmu_context.h>

#include <linux/timex.h>

/*
 * kernel variables
 */

int securelevel = 0;			/* system security level */

long tick = 1000000 / HZ;               /* timer interrupt period */
volatile struct timeval xtime;		/* The current time */
int tickadj = 500/HZ;			/* microsecs */

DECLARE_TASK_QUEUE(tq_timer);
DECLARE_TASK_QUEUE(tq_immediate);
DECLARE_TASK_QUEUE(tq_scheduler);

/*
 * phase-lock loop variables
 */
int time_state = TIME_BAD;     /* clock synchronization status */
int time_status = STA_UNSYNC | STA_PLL;	/* clock status bits */
long time_offset = 0;           /* time adjustment (us) */
long time_constant = 2;         /* pll time constant */
long time_tolerance = MAXFREQ;  /* frequency tolerance (ppm) */
long time_precision = 1; 	/* clock precision (us) */
long time_maxerror = 0x70000000;/* maximum error */
long time_esterror = 0x70000000;/* estimated error */
long time_phase = 0;            /* phase offset (scaled us) */
long time_freq = 0;             /* frequency offset (scaled ppm) */
long time_adj = 0;              /* tick adjust (scaled 1 / HZ) */
long time_reftime = 0;          /* time at last adjustment (s) */

long time_adjust = 0;
long time_adjust_step = 0;

int need_resched = 0;
unsigned long event = 0;

extern int _setitimer(int, struct itimerval *, struct itimerval *);
unsigned int * prof_buffer = NULL;
unsigned long prof_len = 0;
unsigned long prof_shift = 0;

#define _S(nr) (1<<((nr)-1))

extern void mem_use(void);

static unsigned long init_kernel_stack[1024] = { STACK_MAGIC, };
unsigned long init_user_stack[1024] = { STACK_MAGIC, };
static struct vm_area_struct init_mmap = INIT_MMAP;
static struct fs_struct init_fs = INIT_FS;
static struct files_struct init_files = INIT_FILES;
static struct signal_struct init_signals = INIT_SIGNALS;

struct mm_struct init_mm = INIT_MM;
struct task_struct init_task = INIT_TASK;

unsigned long volatile jiffies=0;

struct task_struct *current_set[NR_CPUS];
struct task_struct *last_task_used_math = NULL;

struct task_struct * task[NR_TASKS] = {&init_task, };

struct kernel_stat kstat = { 0 };

static inline void add_to_runqueue(struct task_struct * p)
{
#if 1	/* sanity tests */
	if (p->next_run || p->prev_run) {
		printk("task already on run-queue\n");
		return;
	}
#endif
	if (p->counter > current->counter + 3)
		need_resched = 1;
	nr_running++;
	(p->prev_run = init_task.prev_run)->next_run = p;
	p->next_run = &init_task;
	init_task.prev_run = p;
}

static inline void del_from_runqueue(struct task_struct * p)
{
	struct task_struct *next = p->next_run;
	struct task_struct *prev = p->prev_run;

#if 1	/* sanity tests */
	if (!next || !prev) {
		printk("task not on run-queue\n");
		return;
	}
#endif
	if (p == &init_task) {
		static int nr = 0;
		if (nr < 5) {
			nr++;
			printk("idle task may not sleep\n");
		}
		return;
	}
	nr_running--;
	next->prev_run = prev;
	prev->next_run = next;
	p->next_run = NULL;
	p->prev_run = NULL;
}

static inline void move_last_runqueue(struct task_struct * p)
{
	struct task_struct *next = p->next_run;
	struct task_struct *prev = p->prev_run;

	next->prev_run = prev;
	prev->next_run = next;
	(p->prev_run = init_task.prev_run)->next_run = p;
	p->next_run = &init_task;
	init_task.prev_run = p;
}

/*
 * Wake up a process. Put it on the run-queue if it's not
 * already there.  The "current" process is always on the
 * run-queue (except when the actual re-schedule is in
 * progress), and as such you're allowed to do the simpler
 * "current->state = TASK_RUNNING" to mark yourself runnable
 * without the overhead of this.
 */
inline void wake_up_process(struct task_struct * p)
{
	unsigned long flags;

	save_flags(flags);
	cli();
	p->state = TASK_RUNNING;
	if (!p->next_run)
		add_to_runqueue(p);
	restore_flags(flags);
}

static void process_timeout(unsigned long __data)
{
	struct task_struct * p = (struct task_struct *) __data;

	p->timeout = 0;
	wake_up_process(p);
}

/*
 * This is the function that decides how desireable a process is..
 * You can weigh different processes against each other depending
 * on what CPU they've run on lately etc to try to handle cache
 * and TLB miss penalties.
 *
 * Return values:
 *	 -1000: never select this
 *	     0: out of time, recalculate counters (but it might still be
 *		selected)
 *	   +ve: "goodness" value (the larger, the better)
 *	 +1000: realtime process, select this.
 */
static inline int goodness(struct task_struct * p, int this_cpu)
{
	int weight;

#ifdef __SMP__	
	/* We are not permitted to run a task someone else is running */
	if (p->processor != NO_PROC_ID)
		return -1000;
#endif

	/*
	 * Realtime process, select the first one on the
	 * runqueue (taking priorities within processes
	 * into account).
	 */
	if (p->policy != SCHED_OTHER)
		return 1000 + p->rt_priority;

	/*
	 * Give the process a first-approximation goodness value
	 * according to the number of clock-ticks it has left.
	 *
	 * Don't do any other calculations if the time slice is
	 * over..
	 */
	weight = p->counter;
	if (weight) {
			
#ifdef __SMP__
		/* Give a largish advantage to the same processor...   */
		/* (this is equivalent to penalizing other processors) */
		if (p->last_processor == this_cpu)
			weight += PROC_CHANGE_PENALTY;
#endif

		/* .. and a slight advantage to the current process */
		if (p == current)
			weight += 1;
	}

	return weight;
}

/*
 *  'schedule()' is the scheduler function. It's a very simple and nice
 * scheduler: it's not perfect, but certainly works for most things.
 *
 * The goto is "interesting".
 *
 *   NOTE!!  Task 0 is the 'idle' task, which gets called when no other
 * tasks can run. It can not be killed, and it cannot sleep. The 'state'
 * information in task[0] is never used.
 */
asmlinkage void schedule(void)
{
	int c;
	struct task_struct * p;
	struct task_struct * next;
	unsigned long timeout = 0;
	int this_cpu=smp_processor_id();

/* check alarm, wake up any interruptible tasks that have got a signal */

	if (intr_count) {
		printk("Aiee: scheduling in interrupt\n");
		return;
	}
	if (bh_active & bh_mask) {
		intr_count = 1;
		do_bottom_half();
		intr_count = 0;
	}
	run_task_queue(&tq_scheduler);

	need_resched = 0;
	cli();
	/* move an exhausted RR process to be last.. */
	if (!current->counter && current->policy == SCHED_RR) {
		current->counter = current->priority;
		move_last_runqueue(current);
	}
	switch (current->state) {
		case TASK_INTERRUPTIBLE:
			if (current->signal & ~current->blocked)
				goto makerunnable;
			timeout = current->timeout;
			if (timeout && (timeout <= jiffies)) {
				current->timeout = 0;
				timeout = 0;
		makerunnable:
				current->state = TASK_RUNNING;
				break;
			}
		default:
			del_from_runqueue(current);
		case TASK_RUNNING:
	}
	p = init_task.next_run;
	sti();
	
#ifdef __SMP__
	/*
	 *	This is safe as we do not permit re-entry of schedule()
	 */
	current->processor = NO_PROC_ID;	
#endif	

/*
 * Note! there may appear new tasks on the run-queue during this, as
 * interrupts are enabled. However, they will be put on front of the
 * list, so our list starting at "p" is essentially fixed.
 */
/* this is the scheduler proper: */
	c = -1000;
	next = &init_task;
	while (p != &init_task) {
		int weight = goodness(p, this_cpu);
		if (weight > c)
			c = weight, next = p;
		p = p->next_run;
	}

	/* if all runnable processes have "counter == 0", re-calculate counters */
	if (!c) {
		for_each_task(p)
			p->counter = (p->counter >> 1) + p->priority;
	}
#ifdef __SMP__	
	
	/*
	 *	Context switching between two idle threads is pointless.
	 */
	if(!current->pid && !next->pid)
		next=current;
	/*
	 *	Allocate process to CPU
	 */
	 
	 next->processor = this_cpu;
	 next->last_processor = this_cpu;
	 
#endif	 
#ifdef __SMP_PROF__ 
	/* mark processor running an idle thread */
	if (0==next->pid)
		set_bit(this_cpu,&smp_idle_map);
	else
		clear_bit(this_cpu,&smp_idle_map);
#endif
	if (current != next) {
		struct timer_list timer;

		kstat.context_swtch++;
		if (timeout) {
			init_timer(&timer);
			timer.expires = timeout;
			timer.data = (unsigned long) current;
			timer.function = process_timeout;
			add_timer(&timer);
		}
		get_mmu_context(next);
		switch_to(next);
		if (timeout)
			del_timer(&timer);
	}
}

#ifndef __alpha__

/*
 * For backwards compatibility?  This can be done in libc so Alpha
 * and all newer ports shouldn't need it.
 */
asmlinkage int sys_pause(void)
{
	current->state = TASK_INTERRUPTIBLE;
	schedule();
	return -ERESTARTNOHAND;
}

#endif

/*
 * wake_up doesn't wake up stopped processes - they have to be awakened
 * with signals or similar.
 *
 * Note that this doesn't need cli-sti pairs: interrupts may not change
 * the wait-queue structures directly, but only call wake_up() to wake
 * a process. The process itself must remove the queue once it has woken.
 */
void wake_up(struct wait_queue **q)
{
	struct wait_queue *tmp;
	struct task_struct * p;

	if (!q || !(tmp = *q))
		return;
	do {
		if ((p = tmp->task) != NULL) {
			if ((p->state == TASK_UNINTERRUPTIBLE) ||
			    (p->state == TASK_INTERRUPTIBLE))
				wake_up_process(p);
		}
		if (!tmp->next) {
			printk("wait_queue is bad (eip = %p)\n",
				__builtin_return_address(0));
			printk("        q = %p\n",q);
			printk("       *q = %p\n",*q);
			printk("      tmp = %p\n",tmp);
			break;
		}
		tmp = tmp->next;
	} while (tmp != *q);
}

void wake_up_interruptible(struct wait_queue **q)
{
	struct wait_queue *tmp;
	struct task_struct * p;

	if (!q || !(tmp = *q))
		return;
	do {
		if ((p = tmp->task) != NULL) {
			if (p->state == TASK_INTERRUPTIBLE)
				wake_up_process(p);
		}
		if (!tmp->next) {
			printk("wait_queue is bad (eip = %p)\n",
				__builtin_return_address(0));
			printk("        q = %p\n",q);
			printk("       *q = %p\n",*q);
			printk("      tmp = %p\n",tmp);
			break;
		}
		tmp = tmp->next;
	} while (tmp != *q);
}

void __down(struct semaphore * sem)
{
	struct wait_queue wait = { current, NULL };
	add_wait_queue(&sem->wait, &wait);
	current->state = TASK_UNINTERRUPTIBLE;
	while (sem->count <= 0) {
		schedule();
		current->state = TASK_UNINTERRUPTIBLE;
	}
	current->state = TASK_RUNNING;
	remove_wait_queue(&sem->wait, &wait);
}

static inline void __sleep_on(struct wait_queue **p, int state)
{
	unsigned long flags;
	struct wait_queue wait = { current, NULL };

	if (!p)
		return;
	if (current == task[0])
		panic("task[0] trying to sleep");
	current->state = state;
	add_wait_queue(p, &wait);
	save_flags(flags);
	sti();
	schedule();
	remove_wait_queue(p, &wait);
	restore_flags(flags);
}

void interruptible_sleep_on(struct wait_queue **p)
{
	__sleep_on(p,TASK_INTERRUPTIBLE);
}

void sleep_on(struct wait_queue **p)
{
	__sleep_on(p,TASK_UNINTERRUPTIBLE);
}

/*
 * The head for the timer-list has a "expires" field of MAX_UINT,
 * and the sorting routine counts on this..
 */
static struct timer_list timer_head = { &timer_head, &timer_head, ~0, 0, NULL };
#define SLOW_BUT_DEBUGGING_TIMERS 0

void add_timer(struct timer_list * timer)
{
	unsigned long flags;
	struct timer_list *p;

#if SLOW_BUT_DEBUGGING_TIMERS
	if (timer->next || timer->prev) {
		printk("add_timer() called with non-zero list from %p\n",
			__builtin_return_address(0));
		return;
	}
#endif
	p = &timer_head;
	save_flags(flags);
	cli();
	do {
		p = p->next;
	} while (timer->expires > p->expires);
	timer->next = p;
	timer->prev = p->prev;
	p->prev = timer;
	timer->prev->next = timer;
	restore_flags(flags);
}

int del_timer(struct timer_list * timer)
{
	unsigned long flags;
#if SLOW_BUT_DEBUGGING_TIMERS
	struct timer_list * p;

	p = &timer_head;
	save_flags(flags);
	cli();
	while ((p = p->next) != &timer_head) {
		if (p == timer) {
			timer->next->prev = timer->prev;
			timer->prev->next = timer->next;
			timer->next = timer->prev = NULL;
			restore_flags(flags);
			return 1;
		}
	}
	if (timer->next || timer->prev)
		printk("del_timer() called from %p with timer not initialized\n",
			__builtin_return_address(0));
	restore_flags(flags);
	return 0;
#else
	struct timer_list * next;
	int ret = 0;
	save_flags(flags);
	cli();
	if ((next = timer->next) != NULL) {
		(next->prev = timer->prev)->next = next;
		timer->next = timer->prev = NULL;
		ret = 1;
	}
	restore_flags(flags);
	return ret;
#endif
}

unsigned long timer_active = 0;
struct timer_struct timer_table[32];

/*
 * Hmm.. Changed this, as the GNU make sources (load.c) seems to
 * imply that avenrun[] is the standard name for this kind of thing.
 * Nothing else seems to be standardized: the fractional size etc
 * all seem to differ on different machines.
 */
unsigned long avenrun[3] = { 0,0,0 };

/*
 * Nr of active tasks - counted in fixed-point numbers
 */
static unsigned long count_active_tasks(void)
{
	struct task_struct **p;
	unsigned long nr = 0;

	for(p = &LAST_TASK; p > &FIRST_TASK; --p)
		if (*p && ((*p)->state == TASK_RUNNING ||
			   (*p)->state == TASK_UNINTERRUPTIBLE ||
			   (*p)->state == TASK_SWAPPING))
			nr += FIXED_1;
#ifdef __SMP__
	nr-=(smp_num_cpus-1)*FIXED_1;
#endif			
	return nr;
}

static inline void calc_load(void)
{
	unsigned long active_tasks; /* fixed-point */
	static int count = LOAD_FREQ;

	if (count-- > 0)
		return;
	count = LOAD_FREQ;
	active_tasks = count_active_tasks();
	CALC_LOAD(avenrun[0], EXP_1, active_tasks);
	CALC_LOAD(avenrun[1], EXP_5, active_tasks);
	CALC_LOAD(avenrun[2], EXP_15, active_tasks);
}

/*
 * this routine handles the overflow of the microsecond field
 *
 * The tricky bits of code to handle the accurate clock support
 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
 * They were originally developed for SUN and DEC kernels.
 * All the kudos should go to Dave for this stuff.
 *
 */
static void second_overflow(void)
{
    long ltemp;

    /* Bump the maxerror field */
    time_maxerror = (0x70000000-time_maxerror <
		     time_tolerance >> SHIFT_USEC) ?
	0x70000000 : (time_maxerror + (time_tolerance >> SHIFT_USEC));

    /*
     * Leap second processing. If in leap-insert state at
     * the end of the day, the system clock is set back one
     * second; if in leap-delete state, the system clock is
     * set ahead one second. The microtime() routine or
     * external clock driver will insure that reported time
     * is always monotonic. The ugly divides should be
     * replaced.
     */
    switch (time_state) {

    case TIME_OK:
	if (time_status & STA_INS)
	    time_state = TIME_INS;
	else if (time_status & STA_DEL)
	    time_state = TIME_DEL;
	break;

    case TIME_INS:
	if (xtime.tv_sec % 86400 == 0) {
	    xtime.tv_sec--;
	    time_state = TIME_OOP;
	    printk("Clock: inserting leap second 23:59:60 UTC\n");
	}
	break;

    case TIME_DEL:
	if ((xtime.tv_sec + 1) % 86400 == 0) {
	    xtime.tv_sec++;
	    time_state = TIME_WAIT;
	    printk("Clock: deleting leap second 23:59:59 UTC\n");
	}
	break;

    case TIME_OOP:

	time_state = TIME_WAIT;
	break;

    case TIME_WAIT:
	if (!(time_status & (STA_INS | STA_DEL)))
	    time_state = TIME_OK;
    }

    /*
     * Compute the phase adjustment for the next second. In
     * PLL mode, the offset is reduced by a fixed factor
     * times the time constant. In FLL mode the offset is
     * used directly. In either mode, the maximum phase
     * adjustment for each second is clamped so as to spread
     * the adjustment over not more than the number of
     * seconds between updates.
     */
    if (time_offset < 0) {
	ltemp = -time_offset;
	if (!(time_status & STA_FLL))
	    ltemp >>= SHIFT_KG + time_constant;
	if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
	    ltemp = (MAXPHASE / MINSEC) <<
		SHIFT_UPDATE;
	time_offset += ltemp;
	time_adj = -ltemp << (SHIFT_SCALE - SHIFT_HZ -
			      SHIFT_UPDATE);
    } else {
	ltemp = time_offset;
	if (!(time_status & STA_FLL))
	    ltemp >>= SHIFT_KG + time_constant;
	if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
	    ltemp = (MAXPHASE / MINSEC) <<
		SHIFT_UPDATE;
	time_offset -= ltemp;
	time_adj = ltemp << (SHIFT_SCALE - SHIFT_HZ -
			     SHIFT_UPDATE);
    }

    /*
     * Compute the frequency estimate and additional phase
     * adjustment due to frequency error for the next
     * second. When the PPS signal is engaged, gnaw on the
     * watchdog counter and update the frequency computed by
     * the pll and the PPS signal.
     */
    pps_valid++;
    if (pps_valid == PPS_VALID) {
	pps_jitter = MAXTIME;
	pps_stabil = MAXFREQ;
	time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
			 STA_PPSWANDER | STA_PPSERROR);
    }
    ltemp = time_freq + pps_freq;
    if (ltemp < 0)
	time_adj -= -ltemp >>
	    (SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE);
    else
	time_adj += ltemp >>
	    (SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE);

#if HZ == 100
    /* compensate for (HZ==100) != 128. Add 25% to get 125; => only 3% error */
    if (time_adj < 0)
	time_adj -= -time_adj >> 2;
    else
	time_adj += time_adj >> 2;
#endif
}

/*
 * disregard lost ticks for now.. We don't care enough.
 */
static void timer_bh(void * unused)
{
	unsigned long mask;
	struct timer_struct *tp;
	struct timer_list * timer;

	cli();
	while ((timer = timer_head.next) != &timer_head && timer->expires <= jiffies) {
		void (*fn)(unsigned long) = timer->function;
		unsigned long data = timer->data;
		timer->next->prev = timer->prev;
		timer->prev->next = timer->next;
		timer->next = timer->prev = NULL;
		sti();
		fn(data);
		cli();
	}
	sti();
	
	for (mask = 1, tp = timer_table+0 ; mask ; tp++,mask += mask) {
		if (mask > timer_active)
			break;
		if (!(mask & timer_active))
			continue;
		if (tp->expires > jiffies)
			continue;
		timer_active &= ~mask;
		tp->fn();
		sti();
	}
}

void tqueue_bh(void * unused)
{
	run_task_queue(&tq_timer);
}

void immediate_bh(void * unused)
{
	run_task_queue(&tq_immediate);
}

void do_timer(struct pt_regs * regs)
{
	unsigned long mask;
	struct timer_struct *tp;
	long ltemp, psecs;
#ifdef  __SMP_PROF__
	int cpu,i;
#endif

	/* Advance the phase, once it gets to one microsecond, then
	 * advance the tick more.
	 */
	time_phase += time_adj;
	if (time_phase <= -FINEUSEC) {
		ltemp = -time_phase >> SHIFT_SCALE;
		time_phase += ltemp << SHIFT_SCALE;
		xtime.tv_usec += tick + time_adjust_step - ltemp;
	}
	else if (time_phase >= FINEUSEC) {
		ltemp = time_phase >> SHIFT_SCALE;
		time_phase -= ltemp << SHIFT_SCALE;
		xtime.tv_usec += tick + time_adjust_step + ltemp;
	} else
		xtime.tv_usec += tick + time_adjust_step;

	if (time_adjust) {
	    /* We are doing an adjtime thing. 
	     *
	     * Modify the value of the tick for next time.
	     * Note that a positive delta means we want the clock
	     * to run fast. This means that the tick should be bigger
	     *
	     * Limit the amount of the step for *next* tick to be
	     * in the range -tickadj .. +tickadj
	     */
	     if (time_adjust > tickadj)
	       time_adjust_step = tickadj;
	     else if (time_adjust < -tickadj)
	       time_adjust_step = -tickadj;
	     else
	       time_adjust_step = time_adjust;
	     
	    /* Reduce by this step the amount of time left  */
	    time_adjust -= time_adjust_step;
	}
	else
	    time_adjust_step = 0;

	if (xtime.tv_usec >= 1000000) {
	    xtime.tv_usec -= 1000000;
	    xtime.tv_sec++;
	    second_overflow();
	}

	jiffies++;
	calc_load();
#ifdef  __SMP_PROF__
	smp_idle_count[NR_CPUS]++;    /* count timer ticks */
	cpu = smp_processor_id();
	for (i=0;i<(0==smp_num_cpus?1:smp_num_cpus);i++) 
		if (test_bit(i,&smp_idle_map)) smp_idle_count[i]++;
#endif
	if (user_mode(regs)) {
		current->utime++;
		if (current->pid) {
			if (current->priority < DEF_PRIORITY)
				kstat.cpu_nice++;
			else
				kstat.cpu_user++;
		}
		/* Update ITIMER_VIRT for current task if not in a system call */
		if (current->it_virt_value && !(--current->it_virt_value)) {
			current->it_virt_value = current->it_virt_incr;
			send_sig(SIGVTALRM,current,1);
		}
	} else {
		current->stime++;
		if(current->pid)
			kstat.cpu_system++;
		if (prof_buffer && current->pid) {
			extern int _stext;
			unsigned long ip = instruction_pointer(regs);
			ip -= (unsigned long) &_stext;
			ip >>= prof_shift;
			if (ip < prof_len)
				prof_buffer[ip]++;
		}
	}
	/*
	 * check the cpu time limit on the process.
	 */
	if ((current->rlim[RLIMIT_CPU].rlim_max != RLIM_INFINITY) &&
	    (((current->stime + current->utime) / HZ) >= current->rlim[RLIMIT_CPU].rlim_max))
		send_sig(SIGKILL, current, 1);
	if ((current->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) &&
	    (((current->stime + current->utime) % HZ) == 0)) {
		psecs = (current->stime + current->utime) / HZ;
		/* send when equal */
		if (psecs == current->rlim[RLIMIT_CPU].rlim_cur)
			send_sig(SIGXCPU, current, 1);
		/* and every five seconds thereafter. */
		else if ((psecs > current->rlim[RLIMIT_CPU].rlim_cur) &&
			((psecs - current->rlim[RLIMIT_CPU].rlim_cur) % 5) == 0)
			send_sig(SIGXCPU, current, 1);
	}

	if (current->pid && 0 > --current->counter) {
		current->counter = 0;
		need_resched = 1;
	}
	/* Update ITIMER_PROF for the current task */
	if (current->it_prof_value && !(--current->it_prof_value)) {
		current->it_prof_value = current->it_prof_incr;
		send_sig(SIGPROF,current,1);
	}
	for (mask = 1, tp = timer_table+0 ; mask ; tp++,mask += mask) {
		if (mask > timer_active)
			break;
		if (!(mask & timer_active))
			continue;
		if (tp->expires > jiffies)
			continue;
		mark_bh(TIMER_BH);
	}
	cli();
	if (timer_head.next->expires <= jiffies)
		mark_bh(TIMER_BH);
	if (tq_timer != &tq_last)
		mark_bh(TQUEUE_BH);
	sti();
}

#ifndef __alpha__

/*
 * For backwards compatibility?  This can be done in libc so Alpha
 * and all newer ports shouldn't need it.
 */
asmlinkage unsigned int sys_alarm(unsigned int seconds)
{
	struct itimerval it_new, it_old;
	unsigned int oldalarm;

	it_new.it_interval.tv_sec = it_new.it_interval.tv_usec = 0;
	it_new.it_value.tv_sec = seconds;
	it_new.it_value.tv_usec = 0;
	_setitimer(ITIMER_REAL, &it_new, &it_old);
	oldalarm = it_old.it_value.tv_sec;
	/* ehhh.. We can't return 0 if we have an alarm pending.. */
	/* And we'd better return too much than too little anyway */
	if (it_old.it_value.tv_usec)
		oldalarm++;
	return oldalarm;
}

/*
 * The Alpha uses getxpid, getxuid, and getxgid instead.  Maybe this
 * should be moved into arch/i386 instead?
 */
asmlinkage int sys_getpid(void)
{
	return current->pid;
}

asmlinkage int sys_getppid(void)
{
	return current->p_opptr->pid;
}

asmlinkage int sys_getuid(void)
{
	return current->uid;
}

asmlinkage int sys_geteuid(void)
{
	return current->euid;
}

asmlinkage int sys_getgid(void)
{
	return current->gid;
}

asmlinkage int sys_getegid(void)
{
	return current->egid;
}

/*
 * This has been replaced by sys_setpriority.  Maybe it should be
 * moved into the arch depedent tree for those ports that require
 * it for backward compatibility?
 */
asmlinkage int sys_nice(int increment)
{
	unsigned long newprio;
	int increase = 0;

	newprio = increment;
	if (increment < 0) {
		if (!suser())
			return -EPERM;
		newprio = -increment;
		increase = 1;
	}
	if (newprio > 40)
		newprio = 40;
	/*
	 * do a "normalization" of the priority (traditionally
	 * unix nice values are -20..20, linux doesn't really
	 * use that kind of thing, but uses the length of the
	 * timeslice instead (default 150 msec). The rounding is
	 * why we want to avoid negative values.
	 */
	newprio = (newprio * DEF_PRIORITY + 10) / 20;
	increment = newprio;
	if (increase)
		increment = -increment;
	newprio = current->priority - increment;
	if (newprio < 1)
		newprio = 1;
	if (newprio > DEF_PRIORITY*2)
		newprio = DEF_PRIORITY*2;
	current->priority = newprio;
	return 0;
}

#endif

static struct task_struct *find_process_by_pid(pid_t pid) {
	struct task_struct *p, *q;

	if (pid == 0)
		p = current;
	else {
		p = 0;
		for_each_task(q) {
			if (q && q->pid == pid) {
				p = q;
				break;
			}
		}
	}
	return p;
}

static int setscheduler(pid_t pid, int policy, 
			struct sched_param *param)
{
	int error;
	struct sched_param lp;
	struct task_struct *p;

	if (!param || pid < 0)
		return -EINVAL;

	error = verify_area(VERIFY_READ, param, sizeof(struct sched_param));
	if (error)
		return error;
	memcpy_fromfs(&lp, param, sizeof(struct sched_param));

	p = find_process_by_pid(pid);
	if (!p)
		return -ESRCH;
			
	if (policy < 0)
		policy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
		 policy != SCHED_OTHER)
		return -EINVAL;
	
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are 1..99, valid
	 * priority for SCHED_OTHER is 0.
	 */
	if (lp.sched_priority < 0 || lp.sched_priority > 99)
		return -EINVAL;
	if ((policy == SCHED_OTHER) != (lp.sched_priority == 0))
		return -EINVAL;

	if ((policy == SCHED_FIFO || policy == SCHED_RR) && !suser())
		return -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
	    !suser())
		return -EPERM;

	p->policy = policy;
	p->rt_priority = lp.sched_priority;
	if (p->next_run)
		move_last_runqueue(p);
	schedule();

	return 0;
}

asmlinkage int sys_sched_setscheduler(pid_t pid, int policy, 
				      struct sched_param *param)
{
	return setscheduler(pid, policy, param);
}

asmlinkage int sys_sched_setparam(pid_t pid, struct sched_param *param)
{
	return setscheduler(pid, -1, param);
}

asmlinkage int sys_sched_getscheduler(pid_t pid)
{
	struct task_struct *p;

	if (pid < 0)
		return -EINVAL;

	p = find_process_by_pid(pid);
	if (!p)
		return -ESRCH;
			
	return p->policy;
}

asmlinkage int sys_sched_getparam(pid_t pid, struct sched_param *param)
{
	int error;
	struct task_struct *p;
	struct sched_param lp;

	if (!param || pid < 0)
		return -EINVAL;

	error = verify_area(VERIFY_WRITE, param, sizeof(struct sched_param));
	if (error)
		return error;

	p = find_process_by_pid(pid);
	if (!p)
		return -ESRCH;

	lp.sched_priority = p->rt_priority;
	memcpy_tofs(param, &lp, sizeof(struct sched_param));

	return 0;
}

asmlinkage int sys_sched_yield(void)
{
	move_last_runqueue(current);

	return 0;
}

asmlinkage int sys_sched_get_priority_max(int policy)
{
	switch (policy) {
	      case SCHED_FIFO:
	      case SCHED_RR:
		return 99;
	      case SCHED_OTHER:
		return 0;
	}

	return -EINVAL;
}

asmlinkage int sys_sched_get_priority_min(int policy)
{
	switch (policy) {
	      case SCHED_FIFO:
	      case SCHED_RR:
		return 1;
	      case SCHED_OTHER:
		return 0;
	}

	return -EINVAL;
}

asmlinkage int sys_sched_rr_get_interval(pid_t pid, struct timespec *interval)
{
	int error;
	struct timespec t;

	error = verify_area(VERIFY_WRITE, interval, sizeof(struct timespec));
	if (error)
		return error;
	
	t.tv_sec = 0;
	t.tv_nsec = 0;   /* <-- Linus, please fill correct value in here */
	return -ENOSYS;  /* and then delete this line. Thanks!           */
	memcpy_tofs(interval, &t, sizeof(struct timespec));

	return 0;
}

/*
 * change timeval to jiffies, trying to avoid the 
 * most obvious overflows..
 */
static unsigned long timespectojiffies(struct timespec *value)
{
	unsigned long sec = (unsigned) value->tv_sec;
	long nsec = value->tv_nsec;

	if (sec > (LONG_MAX / HZ))
		return LONG_MAX;
	nsec += 1000000000L / HZ - 1;
	nsec /= 1000000000L / HZ;
	return HZ * sec + nsec;
}

static void jiffiestotimespec(unsigned long jiffies, struct timespec *value)
{
	value->tv_nsec = (jiffies % HZ) * (1000000000L / HZ);
	value->tv_sec = jiffies / HZ;
	return;
}

asmlinkage int sys_nanosleep(struct timespec *rqtp, struct timespec *rmtp)
{
	int error;
	struct timespec t;
	unsigned long expire;

	error = verify_area(VERIFY_READ, rqtp, sizeof(struct timespec));
	if (error)
		return error;
	memcpy_fromfs(&t, rqtp, sizeof(struct timespec));
	if (rmtp) {
		error = verify_area(VERIFY_WRITE, rmtp,
				    sizeof(struct timespec));
		if (error)
			return error;
	}

	if (t.tv_nsec >= 1000000000L || t.tv_nsec < 0 || t.tv_sec < 0)
		return -EINVAL;

	if (t.tv_sec == 0 && t.tv_nsec <= 2000000L &&
	    current->policy != SCHED_OTHER) {
		/*
		 * Short delay requests up to 2 ms will be handled with
		 * high precision by a busy wait for all real-time processes.
		 */
		udelay((t.tv_nsec + 999) / 1000);
		return 0;
	}

	expire = timespectojiffies(&t) + (t.tv_sec || t.tv_nsec) + jiffies;
	current->timeout = expire;
	current->state = TASK_INTERRUPTIBLE;
	schedule();

	if (expire > jiffies) {
		if (rmtp) {
			jiffiestotimespec(expire - jiffies -
					  (expire > jiffies + 1), &t);
			memcpy_tofs(rmtp, &t, sizeof(struct timespec));
		}
		return -EINTR;
	}

	return 0;
}

static void show_task(int nr,struct task_struct * p)
{
	unsigned long free;
	static const char * stat_nam[] = { "R", "S", "D", "Z", "T", "W" };

	printk("%-8s %3d ", p->comm, (p == current) ? -nr : nr);
	if (((unsigned) p->state) < sizeof(stat_nam)/sizeof(char *))
		printk(stat_nam[p->state]);
	else
		printk(" ");
#if ((~0UL) == 0xffffffff)
	if (p == current)
		printk(" current  ");
	else
		printk(" %08lX ", thread_saved_pc(&p->tss));
#else
	if (p == current)
		printk("   current task   ");
	else
		printk(" %016lx ", thread_saved_pc(&p->tss));
#endif
	for (free = 1; free < PAGE_SIZE/sizeof(long) ; free++) {
		if (((unsigned long *)p->kernel_stack_page)[free])
			break;
	}
	printk("%5lu %5d %6d ", free*sizeof(long), p->pid, p->p_pptr->pid);
	if (p->p_cptr)
		printk("%5d ", p->p_cptr->pid);
	else
		printk("      ");
	if (p->p_ysptr)
		printk("%7d", p->p_ysptr->pid);
	else
		printk("       ");
	if (p->p_osptr)
		printk(" %5d\n", p->p_osptr->pid);
	else
		printk("\n");
}

void show_state(void)
{
	int i;

#if ((~0UL) == 0xffffffff)
	printk("\n"
	       "                         free                        sibling\n");
	printk("  task             PC    stack   pid father child younger older\n");
#else
	printk("\n"
	       "                                 free                        sibling\n");
	printk("  task                 PC        stack   pid father child younger older\n");
#endif
	for (i=0 ; i<NR_TASKS ; i++)
		if (task[i])
			show_task(i,task[i]);
}

void sched_init(void)
{
	/*
	 *	We have to do a little magic to get the first
	 *	process right in SMP mode.
	 */
	int cpu=smp_processor_id();
	current_set[cpu]=&init_task;
#ifdef __SMP__	
	init_task.processor=cpu;
#endif
	bh_base[TIMER_BH].routine = timer_bh;
	bh_base[TQUEUE_BH].routine = tqueue_bh;
	bh_base[IMMEDIATE_BH].routine = immediate_bh;
	enable_bh(TIMER_BH);
	enable_bh(TQUEUE_BH);
	enable_bh(IMMEDIATE_BH);
}