Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
/*
 *  linux/kernel/sched.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *              make semaphores SMP safe
 *  1997-01-28  Modified by Finn Arne Gangstad to make timers scale better.
 *  1997-09-10	Updated NTP code according to technical memorandum Jan '96
 *		"A Kernel Model for Precision Timekeeping" by Dave Mills
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  1998-12-24	Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
 *		serialize accesses to xtime/lost_ticks).
 *				Copyright (C) 1998  Andrea Arcangeli
 *  1998-12-28  Implemented better SMP scheduling by Ingo Molnar
 *  1999-03-10	Improved NTP compatibility by Ulrich Windl
 */

/*
 * 'sched.c' is the main kernel file. It contains scheduling primitives
 * (sleep_on, wakeup, schedule etc) as well as a number of simple system
 * call functions (type getpid()), which just extract a field from
 * current-task
 */

#include <linux/mm.h>
#include <linux/kernel_stat.h>
#include <linux/fdreg.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/smp_lock.h>
#include <linux/init.h>

#include <asm/io.h>
#include <asm/uaccess.h>
#include <asm/pgtable.h>
#include <asm/mmu_context.h>
#include <asm/semaphore-helper.h>

#include <linux/timex.h>

/*
 * kernel variables
 */

unsigned securebits = SECUREBITS_DEFAULT; /* systemwide security settings */

long tick = (1000000 + HZ/2) / HZ;	/* timer interrupt period */

/* The current time */
volatile struct timeval xtime __attribute__ ((aligned (16)));

/* Don't completely fail for HZ > 500.  */
int tickadj = 500/HZ ? : 1;		/* microsecs */

DECLARE_TASK_QUEUE(tq_timer);
DECLARE_TASK_QUEUE(tq_immediate);
DECLARE_TASK_QUEUE(tq_scheduler);

/*
 * phase-lock loop variables
 */
/* TIME_ERROR prevents overwriting the CMOS clock */
int time_state = TIME_OK;	/* clock synchronization status */
int time_status = STA_UNSYNC;	/* clock status bits */
long time_offset = 0;		/* time adjustment (us) */
long time_constant = 2;		/* pll time constant */
long time_tolerance = MAXFREQ;	/* frequency tolerance (ppm) */
long time_precision = 1;	/* clock precision (us) */
long time_maxerror = NTP_PHASE_LIMIT;	/* maximum error (us) */
long time_esterror = NTP_PHASE_LIMIT;	/* estimated error (us) */
long time_phase = 0;		/* phase offset (scaled us) */
long time_freq = ((1000000 + HZ/2) % HZ - HZ/2) << SHIFT_USEC;	/* frequency offset (scaled ppm) */
long time_adj = 0;		/* tick adjust (scaled 1 / HZ) */
long time_reftime = 0;		/* time at last adjustment (s) */

long time_adjust = 0;
long time_adjust_step = 0;

unsigned long global_event = 0;

extern int do_setitimer(int, struct itimerval *, struct itimerval *);
unsigned int * prof_buffer = NULL;
unsigned long prof_len = 0;
unsigned long prof_shift = 0;

extern void mem_use(void);

unsigned long volatile jiffies=0;

/*
 *	Init task must be ok at boot for the ix86 as we will check its signals
 *	via the SMP irq return path.
 */
 
struct task_struct * task[NR_TASKS] = {&init_task, };

/*
 * We align per-CPU scheduling data on cacheline boundaries,
 * to prevent cacheline ping-pong.
 */
static union {
	struct schedule_data {
		struct task_struct * curr;
		cycles_t last_schedule;
	} schedule_data;
	char __pad [SMP_CACHE_BYTES];
} aligned_data [NR_CPUS] __cacheline_aligned = { {{&init_task,0}}};

#define cpu_curr(cpu) aligned_data[(cpu)].schedule_data.curr

struct kernel_stat kstat = { 0 };

#ifdef __SMP__

#define idle_task(cpu) (task[cpu_number_map[(cpu)]])
#define can_schedule(p)	(!(p)->has_cpu)

#else

#define idle_task(cpu) (&init_task)
#define can_schedule(p) (1)

#endif

void scheduling_functions_start_here(void) { }

/*
 * This is the function that decides how desirable a process is..
 * You can weigh different processes against each other depending
 * on what CPU they've run on lately etc to try to handle cache
 * and TLB miss penalties.
 *
 * Return values:
 *	 -1000: never select this
 *	     0: out of time, recalculate counters (but it might still be
 *		selected)
 *	   +ve: "goodness" value (the larger, the better)
 *	 +1000: realtime process, select this.
 */

static inline int goodness (struct task_struct * prev,
				 struct task_struct * p, int this_cpu)
{
	int weight;

	/*
	 * Realtime process, select the first one on the
	 * runqueue (taking priorities within processes
	 * into account).
	 */
	if (p->policy != SCHED_OTHER) {
		weight = 1000 + p->rt_priority;
		goto out;
	}

	/*
	 * Give the process a first-approximation goodness value
	 * according to the number of clock-ticks it has left.
	 *
	 * Don't do any other calculations if the time slice is
	 * over..
	 */
	weight = p->counter;
	if (!weight)
		goto out;
			
#ifdef __SMP__
	/* Give a largish advantage to the same processor...   */
	/* (this is equivalent to penalizing other processors) */
	if (p->processor == this_cpu)
		weight += PROC_CHANGE_PENALTY;
#endif

	/* .. and a slight advantage to the current MM */
	if (p->mm == prev->mm)
		weight += 1;
	weight += p->priority;

out:
	return weight;
}

/*
 * subtle. We want to discard a yielded process only if it's being
 * considered for a reschedule. Wakeup-time 'queries' of the scheduling
 * state do not count. Another optimization we do: sched_yield()-ed
 * processes are runnable (and thus will be considered for scheduling)
 * right when they are calling schedule(). So the only place we need
 * to care about SCHED_YIELD is when we calculate the previous process'
 * goodness ...
 */
static inline int prev_goodness (struct task_struct * prev,
					struct task_struct * p, int this_cpu)
{
	if (p->policy & SCHED_YIELD) {
		p->policy &= ~SCHED_YIELD;
		return 0;
	}
	return goodness(prev, p, this_cpu);
}

/*
 * the 'goodness value' of replacing a process on a given CPU.
 * positive value means 'replace', zero or negative means 'dont'.
 */
static inline int preemption_goodness (struct task_struct * prev,
				struct task_struct * p, int cpu)
{
	return goodness(prev, p, cpu) - goodness(prev, prev, cpu);
}

/*
 * If there is a dependency between p1 and p2,
 * don't be too eager to go into the slow schedule.
 * In particular, if p1 and p2 both want the kernel
 * lock, there is no point in trying to make them
 * extremely parallel..
 *
 * (No lock - lock_depth < 0)
 *
 * There are two additional metrics here:
 *
 * first, a 'cutoff' interval, currently 0-200 usecs on
 * x86 CPUs, depending on the size of the 'SMP-local cache'.
 * If the current process has longer average timeslices than
 * this, then we utilize the idle CPU.
 *
 * second, if the wakeup comes from a process context,
 * then the two processes are 'related'. (they form a
 * 'gang')
 *
 * An idle CPU is almost always a bad thing, thus we skip
 * the idle-CPU utilization only if both these conditions
 * are true. (ie. a 'process-gang' rescheduling with rather
 * high frequency should stay on the same CPU).
 *
 * [We can switch to something more finegrained in 2.3.]
 *
 * do not 'guess' if the to-be-scheduled task is RT.
 */
#define related(p1,p2) (((p1)->lock_depth >= 0) && (p2)->lock_depth >= 0) && \
	(((p2)->policy == SCHED_OTHER) && ((p1)->avg_slice < cacheflush_time))

static inline void reschedule_idle_slow(struct task_struct * p)
{
#ifdef __SMP__
/*
 * (see reschedule_idle() for an explanation first ...)
 *
 * Pass #2
 *
 * We try to find another (idle) CPU for this woken-up process.
 *
 * On SMP, we mostly try to see if the CPU the task used
 * to run on is idle.. but we will use another idle CPU too,
 * at this point we already know that this CPU is not
 * willing to reschedule in the near future.
 *
 * An idle CPU is definitely wasted, especially if this CPU is
 * running long-timeslice processes. The following algorithm is
 * pretty good at finding the best idle CPU to send this process
 * to.
 *
 * [We can try to preempt low-priority processes on other CPUs in
 * 2.3. Also we can try to use the avg_slice value to predict
 * 'likely reschedule' events even on other CPUs.]
 */
	int this_cpu = smp_processor_id(), target_cpu;
	struct task_struct *tsk, *target_tsk;
	int cpu, best_cpu, weight, best_weight, i;
	unsigned long flags;

	best_weight = 0; /* prevents negative weight */

	spin_lock_irqsave(&runqueue_lock, flags);

	/*
	 * shortcut if the woken up task's last CPU is
	 * idle now.
	 */
	best_cpu = p->processor;
	target_tsk = idle_task(best_cpu);
	if (cpu_curr(best_cpu) == target_tsk)
		goto send_now;

	target_tsk = NULL;
	for (i = 0; i < smp_num_cpus; i++) {
		cpu = cpu_logical_map(i);
		tsk = cpu_curr(cpu);
		if (related(tsk, p))
			goto out_no_target;
		weight = preemption_goodness(tsk, p, cpu);
		if (weight > best_weight) {
			best_weight = weight;
			target_tsk = tsk;
		}
	}

	/*
	 * found any suitable CPU?
	 */
	if (!target_tsk)
		goto out_no_target;
		
send_now:
	target_cpu = target_tsk->processor;
	target_tsk->need_resched = 1;
	spin_unlock_irqrestore(&runqueue_lock, flags);
	/*
	 * the APIC stuff can go outside of the lock because
	 * it uses no task information, only CPU#.
	 */
	if (target_cpu != this_cpu)
		smp_send_reschedule(target_cpu);
	return;
out_no_target:
	spin_unlock_irqrestore(&runqueue_lock, flags);
	return;
#else /* UP */
	int this_cpu = smp_processor_id();
	struct task_struct *tsk;

	tsk = current;
	if (preemption_goodness(tsk, p, this_cpu) > 0)
		tsk->need_resched = 1;
#endif
}

static void reschedule_idle(struct task_struct * p)
{
#ifdef __SMP__
	int cpu = smp_processor_id();
	/*
	 * ("wakeup()" should not be called before we've initialized
	 * SMP completely.
	 * Basically a not-yet initialized SMP subsystem can be
	 * considered as a not-yet working scheduler, simply dont use
	 * it before it's up and running ...)
	 *
	 * SMP rescheduling is done in 2 passes:
	 *  - pass #1: faster: 'quick decisions'
	 *  - pass #2: slower: 'lets try and find a suitable CPU'
	 */

	/*
	 * Pass #1. (subtle. We might be in the middle of __switch_to, so
	 * to preserve scheduling atomicity we have to use cpu_curr)
	 */
	if ((p->processor == cpu) && related(cpu_curr(cpu), p))
		return;
#endif /* __SMP__ */
	/*
	 * Pass #2
	 */
	reschedule_idle_slow(p);
}

/*
 * Careful!
 *
 * This has to add the process to the _beginning_ of the
 * run-queue, not the end. See the comment about "This is
 * subtle" in the scheduler proper..
 */
static inline void add_to_runqueue(struct task_struct * p)
{
	struct task_struct *next = init_task.next_run;

	p->prev_run = &init_task;
	init_task.next_run = p;
	p->next_run = next;
	next->prev_run = p;
	nr_running++;
}

static inline void del_from_runqueue(struct task_struct * p)
{
	struct task_struct *next = p->next_run;
	struct task_struct *prev = p->prev_run;

	nr_running--;
	next->prev_run = prev;
	prev->next_run = next;
	p->next_run = NULL;
	p->prev_run = NULL;
}

static inline void move_last_runqueue(struct task_struct * p)
{
	struct task_struct *next = p->next_run;
	struct task_struct *prev = p->prev_run;

	/* remove from list */
	next->prev_run = prev;
	prev->next_run = next;
	/* add back to list */
	p->next_run = &init_task;
	prev = init_task.prev_run;
	init_task.prev_run = p;
	p->prev_run = prev;
	prev->next_run = p;
}

static inline void move_first_runqueue(struct task_struct * p)
{
	struct task_struct *next = p->next_run;
	struct task_struct *prev = p->prev_run;

	/* remove from list */
	next->prev_run = prev;
	prev->next_run = next;
	/* add back to list */
	p->prev_run = &init_task;
	next = init_task.next_run;
	init_task.next_run = p;
	p->next_run = next;
	next->prev_run = p;
}

/*
 * The tasklist_lock protects the linked list of processes.
 *
 * The scheduler lock is protecting against multiple entry
 * into the scheduling code, and doesn't need to worry
 * about interrupts (because interrupts cannot call the
 * scheduler).
 *
 * The run-queue lock locks the parts that actually access
 * and change the run-queues, and have to be interrupt-safe.
 */
spinlock_t runqueue_lock = SPIN_LOCK_UNLOCKED;  /* second */
rwlock_t tasklist_lock = RW_LOCK_UNLOCKED;	/* third */

/*
 * Wake up a process. Put it on the run-queue if it's not
 * already there.  The "current" process is always on the
 * run-queue (except when the actual re-schedule is in
 * progress), and as such you're allowed to do the simpler
 * "current->state = TASK_RUNNING" to mark yourself runnable
 * without the overhead of this.
 */
void wake_up_process(struct task_struct * p)
{
	unsigned long flags;

	/*
	 * We want the common case fall through straight, thus the goto.
	 */
	spin_lock_irqsave(&runqueue_lock, flags);
	p->state = TASK_RUNNING;
	if (p->next_run)
		goto out;
	add_to_runqueue(p);
	spin_unlock_irqrestore(&runqueue_lock, flags);

	reschedule_idle(p);
	return;
out:
	spin_unlock_irqrestore(&runqueue_lock, flags);
}

static void process_timeout(unsigned long __data)
{
	struct task_struct * p = (struct task_struct *) __data;

	wake_up_process(p);
}

/*
 * Event timer code
 */
#define TVN_BITS 6
#define TVR_BITS 8
#define TVN_SIZE (1 << TVN_BITS)
#define TVR_SIZE (1 << TVR_BITS)
#define TVN_MASK (TVN_SIZE - 1)
#define TVR_MASK (TVR_SIZE - 1)

struct timer_vec {
        int index;
        struct timer_list *vec[TVN_SIZE];
};

struct timer_vec_root {
        int index;
        struct timer_list *vec[TVR_SIZE];
};

static struct timer_vec tv5 = { 0 };
static struct timer_vec tv4 = { 0 };
static struct timer_vec tv3 = { 0 };
static struct timer_vec tv2 = { 0 };
static struct timer_vec_root tv1 = { 0 };

static struct timer_vec * const tvecs[] = {
	(struct timer_vec *)&tv1, &tv2, &tv3, &tv4, &tv5
};

static struct timer_list ** run_timer_list_running;

#define NOOF_TVECS (sizeof(tvecs) / sizeof(tvecs[0]))

static unsigned long timer_jiffies = 0;

static inline void insert_timer(struct timer_list *timer,
				struct timer_list **vec)
{
	if ((timer->next = *vec))
		(*vec)->prev = timer;
	*vec = timer;
	timer->prev = (struct timer_list *)vec;
}

static inline void internal_add_timer(struct timer_list *timer)
{
	/*
	 * must be cli-ed when calling this
	 */
	unsigned long expires = timer->expires;
	unsigned long idx = expires - timer_jiffies;
	struct timer_list ** vec;

	if (run_timer_list_running)
		vec = run_timer_list_running;
	else if (idx < TVR_SIZE) {
		int i = expires & TVR_MASK;
		vec = tv1.vec + i;
	} else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
		int i = (expires >> TVR_BITS) & TVN_MASK;
		vec = tv2.vec + i;
	} else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
		int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
		vec = tv3.vec + i;
	} else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
		int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
		vec = tv4.vec + i;
	} else if ((signed long) idx < 0) {
		/* can happen if you add a timer with expires == jiffies,
		 * or you set a timer to go off in the past
		 */
		vec = tv1.vec + tv1.index;
	} else if (idx <= 0xffffffffUL) {
		int i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
		vec = tv5.vec + i;
	} else {
		/* Can only get here on architectures with 64-bit jiffies */
		timer->next = timer->prev = timer;
		return;
	}
	insert_timer(timer, vec);
}

spinlock_t timerlist_lock = SPIN_LOCK_UNLOCKED;

void add_timer(struct timer_list *timer)
{
	unsigned long flags;

	spin_lock_irqsave(&timerlist_lock, flags);
	if (timer->prev)
		goto bug;
	internal_add_timer(timer);
out:
	spin_unlock_irqrestore(&timerlist_lock, flags);
	return;

bug:
	printk("bug: kernel timer added twice at %p.\n",
			__builtin_return_address(0));
	goto out;
}

static inline int detach_timer(struct timer_list *timer)
{
	struct timer_list *prev = timer->prev;
	if (prev) {
		struct timer_list *next = timer->next;
		prev->next = next;
		if (next)
			next->prev = prev;
		return 1;
	}
	return 0;
}

void mod_timer(struct timer_list *timer, unsigned long expires)
{
	unsigned long flags;

	spin_lock_irqsave(&timerlist_lock, flags);
	timer->expires = expires;
	detach_timer(timer);
	internal_add_timer(timer);
	spin_unlock_irqrestore(&timerlist_lock, flags);
}

int del_timer(struct timer_list * timer)
{
	int ret;
	unsigned long flags;

	spin_lock_irqsave(&timerlist_lock, flags);
	ret = detach_timer(timer);
	timer->next = timer->prev = 0;
	spin_unlock_irqrestore(&timerlist_lock, flags);
	return ret;
}

signed long schedule_timeout(signed long timeout)
{
	struct timer_list timer;
	unsigned long expire;

	switch (timeout)
	{
	case MAX_SCHEDULE_TIMEOUT:
		/*
		 * These two special cases are useful to be comfortable
		 * in the caller. Nothing more. We could take
		 * MAX_SCHEDULE_TIMEOUT from one of the negative value
		 * but I' d like to return a valid offset (>=0) to allow
		 * the caller to do everything it want with the retval.
		 */
		schedule();
		goto out;
	default:
		/*
		 * Another bit of PARANOID. Note that the retval will be
		 * 0 since no piece of kernel is supposed to do a check
		 * for a negative retval of schedule_timeout() (since it
		 * should never happens anyway). You just have the printk()
		 * that will tell you if something is gone wrong and where.
		 */
		if (timeout < 0)
		{
			printk(KERN_ERR "schedule_timeout: wrong timeout "
			       "value %lx from %p\n", timeout,
			       __builtin_return_address(0));
			goto out;
		}
	}

	expire = timeout + jiffies;

	init_timer(&timer);
	timer.expires = expire;
	timer.data = (unsigned long) current;
	timer.function = process_timeout;

	add_timer(&timer);
	schedule();
	del_timer(&timer);

	timeout = expire - jiffies;

 out:
	return timeout < 0 ? 0 : timeout;
}

/*
 * schedule_tail() is getting called from the fork return path. This
 * cleans up all remaining scheduler things, without impacting the
 * common case.
 */
static inline void __schedule_tail (struct task_struct *prev)
{
#ifdef __SMP__
	if ((prev->state == TASK_RUNNING) &&
			(prev != idle_task(smp_processor_id())))
		reschedule_idle(prev);
	wmb();
	prev->has_cpu = 0;
#endif /* __SMP__ */
}

void schedule_tail (struct task_struct *prev)
{
	__schedule_tail(prev);
}

/*
 *  'schedule()' is the scheduler function. It's a very simple and nice
 * scheduler: it's not perfect, but certainly works for most things.
 *
 * The goto is "interesting".
 *
 *   NOTE!!  Task 0 is the 'idle' task, which gets called when no other
 * tasks can run. It can not be killed, and it cannot sleep. The 'state'
 * information in task[0] is never used.
 */
asmlinkage void schedule(void)
{
	struct schedule_data * sched_data;
	struct task_struct *prev, *next, *p;
	int this_cpu, c;

	sti();
	if (tq_scheduler)
		goto handle_tq_scheduler;
tq_scheduler_back:

	prev = current;
	this_cpu = prev->processor;

	if (in_interrupt())
		goto scheduling_in_interrupt;

	release_kernel_lock(prev, this_cpu);

	/* Do "administrative" work here while we don't hold any locks */
	if (bh_mask & bh_active)
		goto handle_bh;
handle_bh_back:

	/*
	 * 'sched_data' is protected by the fact that we can run
	 * only one process per CPU.
	 */
	sched_data = & aligned_data[this_cpu].schedule_data;

	spin_lock_irq(&runqueue_lock);

	/* move an exhausted RR process to be last.. */
	if (prev->policy == SCHED_RR)
		goto move_rr_last;
move_rr_back:

	switch (prev->state) {
		case TASK_INTERRUPTIBLE:
			if (signal_pending(prev)) {
				prev->state = TASK_RUNNING;
				break;
			}
		default:
			del_from_runqueue(prev);
		case TASK_RUNNING:
	}
	prev->need_resched = 0;

repeat_schedule:

	/*
	 * this is the scheduler proper:
	 */

	p = init_task.next_run;
	/* Default process to select.. */
	next = idle_task(this_cpu);
	c = -1000;
	if (prev->state == TASK_RUNNING)
		goto still_running;
still_running_back:

	/*
	 * This is subtle.
	 * Note how we can enable interrupts here, even
	 * though interrupts can add processes to the run-
	 * queue. This is because any new processes will
	 * be added to the front of the queue, so "p" above
	 * is a safe starting point.
	 * run-queue deletion and re-ordering is protected by
	 * the scheduler lock
	 */
/*
 * Note! there may appear new tasks on the run-queue during this, as
 * interrupts are enabled. However, they will be put on front of the
 * list, so our list starting at "p" is essentially fixed.
 */
	while (p != &init_task) {
		if (can_schedule(p)) {
			int weight = goodness(prev, p, this_cpu);
			if (weight > c)
				c = weight, next = p;
		}
		p = p->next_run;
	}

	/* Do we need to re-calculate counters? */
	if (!c)
		goto recalculate;
	/*
	 * from this point on nothing can prevent us from
	 * switching to the next task, save this fact in
	 * sched_data.
	 */
	sched_data->curr = next;
#ifdef __SMP__
 	next->has_cpu = 1;
	next->processor = this_cpu;
#endif
	spin_unlock_irq(&runqueue_lock);

	if (prev == next)
		goto same_process;

#ifdef __SMP__
 	/*
 	 * maintain the per-process 'average timeslice' value.
 	 * (this has to be recalculated even if we reschedule to
 	 * the same process) Currently this is only used on SMP,
	 * and it's approximate, so we do not have to maintain
	 * it while holding the runqueue spinlock.
 	 */
	{
		cycles_t t, this_slice;

		t = get_cycles();
		this_slice = t - sched_data->last_schedule;
		sched_data->last_schedule = t;

		/*
		 * Exponentially fading average calculation, with
		 * some weight so it doesnt get fooled easily by
		 * smaller irregularities.
		 */
		prev->avg_slice = (this_slice*1 + prev->avg_slice*1)/2;
	}

	/*
	 * We drop the scheduler lock early (it's a global spinlock),
	 * thus we have to lock the previous process from getting
	 * rescheduled during switch_to().
	 */

#endif /* __SMP__ */

	kstat.context_swtch++;
	get_mmu_context(next);
	switch_to(prev, next, prev);
	__schedule_tail(prev);

same_process:
  
	reacquire_kernel_lock(current);
	return;

recalculate:
	{
		struct task_struct *p;
		spin_unlock_irq(&runqueue_lock);
		read_lock(&tasklist_lock);
		for_each_task(p)
			p->counter = (p->counter >> 1) + p->priority;
		read_unlock(&tasklist_lock);
		spin_lock_irq(&runqueue_lock);
		goto repeat_schedule;
	}

still_running:
	c = prev_goodness(prev, prev, this_cpu);
	next = prev;
	goto still_running_back;

handle_bh:
	do_bottom_half();
	goto handle_bh_back;

handle_tq_scheduler:
	run_task_queue(&tq_scheduler);
	goto tq_scheduler_back;

move_rr_last:
	if (!prev->counter) {
		prev->counter = prev->priority;
		move_last_runqueue(prev);
	}
	goto move_rr_back;

scheduling_in_interrupt:
	printk("Scheduling in interrupt\n");
#ifdef CONFIG_ARCH_S390
	asm volatile ( ".word 0\n" );
#else
	*(int *)0 = 0;
#endif /* CONFIG_ARCH_S390 */
	return;
}

rwlock_t waitqueue_lock = RW_LOCK_UNLOCKED;

/*
 * wake_up doesn't wake up stopped processes - they have to be awakened
 * with signals or similar.
 *
 * Note that we only need a read lock for the wait queue (and thus do not
 * have to protect against interrupts), as the actual removal from the
 * queue is handled by the process itself.
 */
void __wake_up(struct wait_queue **q, unsigned int mode)
{
	struct task_struct *p, *best_exclusive;
	struct wait_queue *head, *next;
	unsigned int do_exclusive;

        if (!q)
		goto out;
	/*
	 * this is safe to be done before the check because it
	 * means no deference, just pointer operations.
	 */
	head = WAIT_QUEUE_HEAD(q);

	read_lock(&waitqueue_lock);
	next = *q;
	if (!next)
		goto out_unlock;

	best_exclusive = 0;
	do_exclusive = mode & TASK_EXCLUSIVE;
	while (next != head) {
		p = next->task;
		next = next->next;
		if (p->state & mode) {
			if (do_exclusive && p->task_exclusive) {
				if (best_exclusive == NULL)
					best_exclusive = p;
			}
			else {
				wake_up_process(p);
			}
		}
	}
	if (best_exclusive)
		wake_up_process(best_exclusive);
out_unlock:
	read_unlock(&waitqueue_lock);
out:
	return;
}

/*
 * Semaphores are implemented using a two-way counter:
 * The "count" variable is decremented for each process
 * that tries to sleep, while the "waking" variable is
 * incremented when the "up()" code goes to wake up waiting
 * processes.
 *
 * Notably, the inline "up()" and "down()" functions can
 * efficiently test if they need to do any extra work (up
 * needs to do something only if count was negative before
 * the increment operation.
 *
 * waking_non_zero() (from asm/semaphore.h) must execute
 * atomically.
 *
 * When __up() is called, the count was negative before
 * incrementing it, and we need to wake up somebody.
 *
 * This routine adds one to the count of processes that need to
 * wake up and exit.  ALL waiting processes actually wake up but
 * only the one that gets to the "waking" field first will gate
 * through and acquire the semaphore.  The others will go back
 * to sleep.
 *
 * Note that these functions are only called when there is
 * contention on the lock, and as such all this is the
 * "non-critical" part of the whole semaphore business. The
 * critical part is the inline stuff in <asm/semaphore.h>
 * where we want to avoid any extra jumps and calls.
 */
void __up(struct semaphore *sem)
{
	wake_one_more(sem);
	wake_up(&sem->wait);
}

/*
 * Perform the "down" function.  Return zero for semaphore acquired,
 * return negative for signalled out of the function.
 *
 * If called from __down, the return is ignored and the wait loop is
 * not interruptible.  This means that a task waiting on a semaphore
 * using "down()" cannot be killed until someone does an "up()" on
 * the semaphore.
 *
 * If called from __down_interruptible, the return value gets checked
 * upon return.  If the return value is negative then the task continues
 * with the negative value in the return register (it can be tested by
 * the caller).
 *
 * Either form may be used in conjunction with "up()".
 *
 */

#define DOWN_VAR				\
	struct task_struct *tsk = current;	\
	struct wait_queue wait = { tsk, NULL };

#define DOWN_HEAD(task_state)						\
									\
									\
	tsk->state = (task_state);					\
	add_wait_queue(&sem->wait, &wait);				\
									\
	/*								\
	 * Ok, we're set up.  sem->count is known to be less than zero	\
	 * so we must wait.						\
	 *								\
	 * We can let go the lock for purposes of waiting.		\
	 * We re-acquire it after awaking so as to protect		\
	 * all semaphore operations.					\
	 *								\
	 * If "up()" is called before we call waking_non_zero() then	\
	 * we will catch it right away.  If it is called later then	\
	 * we will have to go through a wakeup cycle to catch it.	\
	 *								\
	 * Multiple waiters contend for the semaphore lock to see	\
	 * who gets to gate through and who has to wait some more.	\
	 */								\
	for (;;) {

#define DOWN_TAIL(task_state)			\
		tsk->state = (task_state);	\
	}					\
	tsk->state = TASK_RUNNING;		\
	remove_wait_queue(&sem->wait, &wait);

void __down(struct semaphore * sem)
{
	DOWN_VAR
	DOWN_HEAD(TASK_UNINTERRUPTIBLE)
	if (waking_non_zero(sem))
		break;
	schedule();
	DOWN_TAIL(TASK_UNINTERRUPTIBLE)
}

int __down_interruptible(struct semaphore * sem)
{
	DOWN_VAR
	int ret = 0;
	DOWN_HEAD(TASK_INTERRUPTIBLE)

	ret = waking_non_zero_interruptible(sem, tsk);
	if (ret)
	{
		if (ret == 1)
			/* ret != 0 only if we get interrupted -arca */
			ret = 0;
		break;
	}
	schedule();
	DOWN_TAIL(TASK_INTERRUPTIBLE)
	return ret;
}

int __down_trylock(struct semaphore * sem)
{
	return waking_non_zero_trylock(sem);
}

#define	SLEEP_ON_VAR				\
	unsigned long flags;			\
	struct wait_queue wait;

#define	SLEEP_ON_HEAD					\
	wait.task = current;				\
	write_lock_irqsave(&waitqueue_lock,flags);	\
	__add_wait_queue(p, &wait);			\
	write_unlock(&waitqueue_lock);

#define	SLEEP_ON_TAIL						\
	write_lock_irq(&waitqueue_lock);			\
	__remove_wait_queue(p, &wait);				\
	write_unlock_irqrestore(&waitqueue_lock,flags);

void interruptible_sleep_on(struct wait_queue **p)
{
	SLEEP_ON_VAR

	current->state = TASK_INTERRUPTIBLE;

	SLEEP_ON_HEAD
	schedule();
	SLEEP_ON_TAIL
}

long interruptible_sleep_on_timeout(struct wait_queue **p, long timeout)
{
	SLEEP_ON_VAR

	current->state = TASK_INTERRUPTIBLE;

	SLEEP_ON_HEAD
	timeout = schedule_timeout(timeout);
	SLEEP_ON_TAIL

	return timeout;
}

void sleep_on(struct wait_queue **p)
{
	SLEEP_ON_VAR
	
	current->state = TASK_UNINTERRUPTIBLE;

	SLEEP_ON_HEAD
	schedule();
	SLEEP_ON_TAIL
}

long sleep_on_timeout(struct wait_queue **p, long timeout)
{
	SLEEP_ON_VAR
	
	current->state = TASK_UNINTERRUPTIBLE;

	SLEEP_ON_HEAD
	timeout = schedule_timeout(timeout);
	SLEEP_ON_TAIL

	return timeout;
}

void scheduling_functions_end_here(void) { }

static inline void cascade_timers(struct timer_vec *tv)
{
        /* cascade all the timers from tv up one level */
        struct timer_list *timer;
        timer = tv->vec[tv->index];
        /*
         * We are removing _all_ timers from the list, so we don't  have to
         * detach them individually, just clear the list afterwards.
         */
        while (timer) {
                struct timer_list *tmp = timer;
                timer = timer->next;
                internal_add_timer(tmp);
        }
        tv->vec[tv->index] = NULL;
        tv->index = (tv->index + 1) & TVN_MASK;
}

static inline void run_timer_list(void)
{
	spin_lock_irq(&timerlist_lock);
	while ((long)(jiffies - timer_jiffies) >= 0) {
		struct timer_list *timer, * queued = NULL;
		if (!tv1.index) {
			int n = 1;
			do {
				cascade_timers(tvecs[n]);
			} while (tvecs[n]->index == 1 && ++n < NOOF_TVECS);
		}
		run_timer_list_running = &queued;
		while ((timer = tv1.vec[tv1.index])) {
			void (*fn)(unsigned long) = timer->function;
			unsigned long data = timer->data;
			detach_timer(timer);
			timer->next = timer->prev = NULL;
			spin_unlock_irq(&timerlist_lock);
			fn(data);
			spin_lock_irq(&timerlist_lock);
		}
		run_timer_list_running = NULL;
		++timer_jiffies; 
		tv1.index = (tv1.index + 1) & TVR_MASK;
		while (queued)
		{
			timer = queued;
			queued = queued->next;
			internal_add_timer(timer);
		}			
	}
	spin_unlock_irq(&timerlist_lock);
}


static inline void run_old_timers(void)
{
	struct timer_struct *tp;
	unsigned long mask;

	for (mask = 1, tp = timer_table+0 ; mask ; tp++,mask += mask) {
		if (mask > timer_active)
			break;
		if (!(mask & timer_active))
			continue;
		if (time_after(tp->expires, jiffies))
			continue;
		timer_active &= ~mask;
		tp->fn();
		sti();
	}
}

spinlock_t tqueue_lock;

void tqueue_bh(void)
{
	run_task_queue(&tq_timer);
}

void immediate_bh(void)
{
	run_task_queue(&tq_immediate);
}

unsigned long timer_active = 0;
struct timer_struct timer_table[32];

/*
 * Hmm.. Changed this, as the GNU make sources (load.c) seems to
 * imply that avenrun[] is the standard name for this kind of thing.
 * Nothing else seems to be standardized: the fractional size etc
 * all seem to differ on different machines.
 */
unsigned long avenrun[3] = { 0,0,0 };

/*
 * Nr of active tasks - counted in fixed-point numbers
 */
static unsigned long count_active_tasks(void)
{
	struct task_struct *p;
	unsigned long nr = 0;

	read_lock(&tasklist_lock);
	for_each_task(p) {
		if ((p->state == TASK_RUNNING ||
		     p->state == TASK_UNINTERRUPTIBLE ||
		     p->state == TASK_SWAPPING))
			nr += FIXED_1;
	}
	read_unlock(&tasklist_lock);
	return nr;
}

static inline void calc_load(unsigned long ticks)
{
	unsigned long active_tasks; /* fixed-point */
	static int count = LOAD_FREQ;

	count -= ticks;
	if (count < 0) {
		count += LOAD_FREQ;
		active_tasks = count_active_tasks();
		CALC_LOAD(avenrun[0], EXP_1, active_tasks);
		CALC_LOAD(avenrun[1], EXP_5, active_tasks);
		CALC_LOAD(avenrun[2], EXP_15, active_tasks);
	}
}

/*
 * this routine handles the overflow of the microsecond field
 *
 * The tricky bits of code to handle the accurate clock support
 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
 * They were originally developed for SUN and DEC kernels.
 * All the kudos should go to Dave for this stuff.
 *
 */
static void second_overflow(void)
{
    long ltemp;

    /* Bump the maxerror field */
    time_maxerror += time_tolerance >> SHIFT_USEC;
    if ( time_maxerror > NTP_PHASE_LIMIT ) {
        time_maxerror = NTP_PHASE_LIMIT;
	time_status |= STA_UNSYNC;
    }

    /*
     * Leap second processing. If in leap-insert state at
     * the end of the day, the system clock is set back one
     * second; if in leap-delete state, the system clock is
     * set ahead one second. The microtime() routine or
     * external clock driver will insure that reported time
     * is always monotonic. The ugly divides should be
     * replaced.
     */
    switch (time_state) {

    case TIME_OK:
	if (time_status & STA_INS)
	    time_state = TIME_INS;
	else if (time_status & STA_DEL)
	    time_state = TIME_DEL;
	break;

    case TIME_INS:
	if (xtime.tv_sec % 86400 == 0) {
	    xtime.tv_sec--;
	    time_state = TIME_OOP;
	    printk(KERN_NOTICE "Clock: inserting leap second 23:59:60 UTC\n");
	}
	break;

    case TIME_DEL:
	if ((xtime.tv_sec + 1) % 86400 == 0) {
	    xtime.tv_sec++;
	    time_state = TIME_WAIT;
	    printk(KERN_NOTICE "Clock: deleting leap second 23:59:59 UTC\n");
	}
	break;

    case TIME_OOP:
	time_state = TIME_WAIT;
	break;

    case TIME_WAIT:
	if (!(time_status & (STA_INS | STA_DEL)))
	    time_state = TIME_OK;
    }

    /*
     * Compute the phase adjustment for the next second. In
     * PLL mode, the offset is reduced by a fixed factor
     * times the time constant. In FLL mode the offset is
     * used directly. In either mode, the maximum phase
     * adjustment for each second is clamped so as to spread
     * the adjustment over not more than the number of
     * seconds between updates.
     */
    if (time_offset < 0) {
	ltemp = -time_offset;
	if (!(time_status & STA_FLL))
	    ltemp >>= SHIFT_KG + time_constant;
	if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
	    ltemp = (MAXPHASE / MINSEC) << SHIFT_UPDATE;
	time_offset += ltemp;
	time_adj = -ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE);
    } else {
	ltemp = time_offset;
	if (!(time_status & STA_FLL))
	    ltemp >>= SHIFT_KG + time_constant;
	if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
	    ltemp = (MAXPHASE / MINSEC) << SHIFT_UPDATE;
	time_offset -= ltemp;
	time_adj = ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE);
    }

    /*
     * Compute the frequency estimate and additional phase
     * adjustment due to frequency error for the next
     * second. When the PPS signal is engaged, gnaw on the
     * watchdog counter and update the frequency computed by
     * the pll and the PPS signal.
     */
    pps_valid++;
    if (pps_valid == PPS_VALID) {	/* PPS signal lost */
	pps_jitter = MAXTIME;
	pps_stabil = MAXFREQ;
	time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
			 STA_PPSWANDER | STA_PPSERROR);
    }
    ltemp = time_freq + pps_freq;
    if (ltemp < 0)
	time_adj -= -ltemp >>
	    (SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE);
    else
	time_adj += ltemp >>
	    (SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE);

#if HZ == 100
    /* Compensate for (HZ==100) != (1 << SHIFT_HZ).
     * Add 25% and 3.125% to get 128.125; => only 0.125% error (p. 14)
     */
    if (time_adj < 0)
	time_adj -= (-time_adj >> 2) + (-time_adj >> 5);
    else
	time_adj += (time_adj >> 2) + (time_adj >> 5);
#endif
}

/* in the NTP reference this is called "hardclock()" */
static void update_wall_time_one_tick(void)
{
	if ( (time_adjust_step = time_adjust) != 0 ) {
	    /* We are doing an adjtime thing. 
	     *
	     * Prepare time_adjust_step to be within bounds.
	     * Note that a positive time_adjust means we want the clock
	     * to run faster.
	     *
	     * Limit the amount of the step to be in the range
	     * -tickadj .. +tickadj
	     */
	     if (time_adjust > tickadj)
		time_adjust_step = tickadj;
	     else if (time_adjust < -tickadj)
		time_adjust_step = -tickadj;
	     
	    /* Reduce by this step the amount of time left  */
	    time_adjust -= time_adjust_step;
	}
	xtime.tv_usec += tick + time_adjust_step;
	/*
	 * Advance the phase, once it gets to one microsecond, then
	 * advance the tick more.
	 */
	time_phase += time_adj;
	if (time_phase <= -FINEUSEC) {
		long ltemp = -time_phase >> SHIFT_SCALE;
		time_phase += ltemp << SHIFT_SCALE;
		xtime.tv_usec -= ltemp;
	}
	else if (time_phase >= FINEUSEC) {
		long ltemp = time_phase >> SHIFT_SCALE;
		time_phase -= ltemp << SHIFT_SCALE;
		xtime.tv_usec += ltemp;
	}
}

/*
 * Using a loop looks inefficient, but "ticks" is
 * usually just one (we shouldn't be losing ticks,
 * we're doing this this way mainly for interrupt
 * latency reasons, not because we think we'll
 * have lots of lost timer ticks
 */
static void update_wall_time(unsigned long ticks)
{
	do {
		ticks--;
		update_wall_time_one_tick();
	} while (ticks);

	if (xtime.tv_usec >= 1000000) {
	    xtime.tv_usec -= 1000000;
	    xtime.tv_sec++;
	    second_overflow();
	}
}

static inline void do_process_times(struct task_struct *p,
	unsigned long user, unsigned long system)
{
	long psecs;

	psecs = (p->times.tms_utime += user);
	psecs += (p->times.tms_stime += system);
	if (psecs / HZ > p->rlim[RLIMIT_CPU].rlim_cur) {
		/* Send SIGXCPU every second.. */
		if (!(psecs % HZ))
			send_sig(SIGXCPU, p, 1);
		/* and SIGKILL when we go over max.. */
		if (psecs / HZ > p->rlim[RLIMIT_CPU].rlim_max)
			send_sig(SIGKILL, p, 1);
	}
}

static inline void do_it_virt(struct task_struct * p, unsigned long ticks)
{
	unsigned long it_virt = p->it_virt_value;

	if (it_virt) {
		if (it_virt <= ticks) {
			it_virt = ticks + p->it_virt_incr;
			send_sig(SIGVTALRM, p, 1);
		}
		p->it_virt_value = it_virt - ticks;
	}
}

static inline void do_it_prof(struct task_struct * p, unsigned long ticks)
{
	unsigned long it_prof = p->it_prof_value;

	if (it_prof) {
		if (it_prof <= ticks) {
			it_prof = ticks + p->it_prof_incr;
			send_sig(SIGPROF, p, 1);
		}
		p->it_prof_value = it_prof - ticks;
	}
}

void update_one_process(struct task_struct *p,
	unsigned long ticks, unsigned long user, unsigned long system, int cpu)
{
	p->per_cpu_utime[cpu] += user;
	p->per_cpu_stime[cpu] += system;
	do_process_times(p, user, system);
	do_it_virt(p, user);
	do_it_prof(p, ticks);
}	

static void update_process_times(unsigned long ticks, unsigned long system)
{
/*
 * SMP does this on a per-CPU basis elsewhere
 */
#ifndef  __SMP__
	struct task_struct * p = current;
	unsigned long user = ticks - system;
	if (p->pid) {
		p->counter -= ticks;
		if (p->counter < 0) {
			p->counter = 0;
			p->need_resched = 1;
		}
		if (p->priority < DEF_PRIORITY)
			kstat.cpu_nice += user;
		else
			kstat.cpu_user += user;
		kstat.cpu_system += system;
	}
	update_one_process(p, ticks, user, system, 0);
#endif
}

volatile unsigned long lost_ticks = 0;
static unsigned long lost_ticks_system = 0;

/*
 * This spinlock protect us from races in SMP while playing with xtime. -arca
 */
rwlock_t xtime_lock = RW_LOCK_UNLOCKED;

static inline void update_times(void)
{
	unsigned long ticks;

	/*
	 * update_times() is run from the raw timer_bh handler so we
	 * just know that the irqs are locally enabled and so we don't
	 * need to save/restore the flags of the local CPU here. -arca
	 */
	write_lock_irq(&xtime_lock);

	ticks = lost_ticks;
	lost_ticks = 0;

	if (ticks) {
		unsigned long system;
		system = xchg(&lost_ticks_system, 0);

		calc_load(ticks);
		update_wall_time(ticks);
		write_unlock_irq(&xtime_lock);
		
		update_process_times(ticks, system);

	} else
		write_unlock_irq(&xtime_lock);
}

static void timer_bh(void)
{
	update_times();
	run_old_timers();
	run_timer_list();
}

void do_timer(struct pt_regs * regs)
{
	(*(unsigned long *)&jiffies)++;
	lost_ticks++;
	mark_bh(TIMER_BH);
	if (!user_mode(regs))
		lost_ticks_system++;
	if (tq_timer)
		mark_bh(TQUEUE_BH);
}

#ifndef __alpha__

/*
 * For backwards compatibility?  This can be done in libc so Alpha
 * and all newer ports shouldn't need it.
 */
asmlinkage unsigned int sys_alarm(unsigned int seconds)
{
	struct itimerval it_new, it_old;
	unsigned int oldalarm;

	it_new.it_interval.tv_sec = it_new.it_interval.tv_usec = 0;
	it_new.it_value.tv_sec = seconds;
	it_new.it_value.tv_usec = 0;
	do_setitimer(ITIMER_REAL, &it_new, &it_old);
	oldalarm = it_old.it_value.tv_sec;
	/* ehhh.. We can't return 0 if we have an alarm pending.. */
	/* And we'd better return too much than too little anyway */
	if (it_old.it_value.tv_usec)
		oldalarm++;
	return oldalarm;
}

/*
 * The Alpha uses getxpid, getxuid, and getxgid instead.  Maybe this
 * should be moved into arch/i386 instead?
 */
 
asmlinkage int sys_getpid(void)
{
	/* This is SMP safe - current->pid doesn't change */
	return current->pid;
}

/*
 * This is not strictly SMP safe: p_opptr could change
 * from under us. However, rather than getting any lock
 * we can use an optimistic algorithm: get the parent
 * pid, and go back and check that the parent is still
 * the same. If it has changed (which is extremely unlikely
 * indeed), we just try again..
 *
 * NOTE! This depends on the fact that even if we _do_
 * get an old value of "parent", we can happily dereference
 * the pointer: we just can't necessarily trust the result
 * until we know that the parent pointer is valid.
 *
 * The "mb()" macro is a memory barrier - a synchronizing
 * event. It also makes sure that gcc doesn't optimize
 * away the necessary memory references.. The barrier doesn't
 * have to have all that strong semantics: on x86 we don't
 * really require a synchronizing instruction, for example.
 * The barrier is more important for code generation than
 * for any real memory ordering semantics (even if there is
 * a small window for a race, using the old pointer is
 * harmless for a while).
 */
asmlinkage int sys_getppid(void)
{
	int pid;
	struct task_struct * me = current;
	struct task_struct * parent;

	parent = me->p_opptr;
	for (;;) {
		pid = parent->pid;
#if __SMP__
{
		struct task_struct *old = parent;
		mb();
		parent = me->p_opptr;
		if (old != parent)
			continue;
}
#endif
		break;
	}
	return pid;
}

asmlinkage int sys_getuid(void)
{
	/* Only we change this so SMP safe */
	return current->uid;
}

asmlinkage int sys_geteuid(void)
{
	/* Only we change this so SMP safe */
	return current->euid;
}

asmlinkage int sys_getgid(void)
{
	/* Only we change this so SMP safe */
	return current->gid;
}

asmlinkage int sys_getegid(void)
{
	/* Only we change this so SMP safe */
	return  current->egid;
}

/*
 * This has been replaced by sys_setpriority.  Maybe it should be
 * moved into the arch dependent tree for those ports that require
 * it for backward compatibility?
 */

asmlinkage int sys_nice(int increment)
{
	unsigned long newprio;
	int increase = 0;

	/*
	 *	Setpriority might change our priority at the same moment.
	 *	We don't have to worry. Conceptually one call occurs first
	 *	and we have a single winner.
	 */
	 
	newprio = increment;
	if (increment < 0) {
		if (!capable(CAP_SYS_NICE))
			return -EPERM;
		newprio = -increment;
		increase = 1;
	}

	if (newprio > 40)
		newprio = 40;
	/*
	 * do a "normalization" of the priority (traditionally
	 * Unix nice values are -20 to 20; Linux doesn't really
	 * use that kind of thing, but uses the length of the
	 * timeslice instead (default 210 ms). The rounding is
	 * why we want to avoid negative values.
	 */
	newprio = (newprio * DEF_PRIORITY + 10) / 20;
	increment = newprio;
	if (increase)
		increment = -increment;
	/*
	 *	Current->priority can change between this point
	 *	and the assignment. We are assigning not doing add/subs
	 *	so thats ok. Conceptually a process might just instantaneously
	 *	read the value we stomp over. I don't think that is an issue
	 *	unless posix makes it one. If so we can loop on changes
	 *	to current->priority.
	 */
	newprio = current->priority - increment;
	if ((signed) newprio < 1)
		newprio = 1;
	if (newprio > DEF_PRIORITY*2)
		newprio = DEF_PRIORITY*2;
	current->priority = newprio;
	return 0;
}

#endif

static inline struct task_struct *find_process_by_pid(pid_t pid)
{
	struct task_struct *tsk = current;

	if (pid)
		tsk = find_task_by_pid(pid);
	return tsk;
}

static int setscheduler(pid_t pid, int policy, 
			struct sched_param *param)
{
	struct sched_param lp;
	struct task_struct *p;
	int retval;

	retval = -EINVAL;
	if (!param || pid < 0)
		goto out_nounlock;

	retval = -EFAULT;
	if (copy_from_user(&lp, param, sizeof(struct sched_param)))
		goto out_nounlock;

	/*
	 * We play safe to avoid deadlocks.
	 */
	read_lock_irq(&tasklist_lock);
	spin_lock(&runqueue_lock);

	p = find_process_by_pid(pid);

	retval = -ESRCH;
	if (!p)
		goto out_unlock;
			
	if (policy < 0)
		policy = p->policy;
	else {
		retval = -EINVAL;
		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_OTHER)
			goto out_unlock;
	}
	
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are 1..99, valid
	 * priority for SCHED_OTHER is 0.
	 */
	retval = -EINVAL;
	if (lp.sched_priority < 0 || lp.sched_priority > 99)
		goto out_unlock;
	if ((policy == SCHED_OTHER) != (lp.sched_priority == 0))
		goto out_unlock;

	retval = -EPERM;
	if ((policy == SCHED_FIFO || policy == SCHED_RR) && 
	    !capable(CAP_SYS_NICE))
		goto out_unlock;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
	    !capable(CAP_SYS_NICE))
		goto out_unlock;

	retval = 0;
	p->policy = policy;
	p->rt_priority = lp.sched_priority;
	if (p->next_run)
		move_first_runqueue(p);

	current->need_resched = 1;

out_unlock:
	spin_unlock(&runqueue_lock);
	read_unlock_irq(&tasklist_lock);

out_nounlock:
	return retval;
}

asmlinkage int sys_sched_setscheduler(pid_t pid, int policy, 
				      struct sched_param *param)
{
	return setscheduler(pid, policy, param);
}

asmlinkage int sys_sched_setparam(pid_t pid, struct sched_param *param)
{
	return setscheduler(pid, -1, param);
}

asmlinkage int sys_sched_getscheduler(pid_t pid)
{
	struct task_struct *p;
	int retval;

	retval = -EINVAL;
	if (pid < 0)
		goto out_nounlock;

	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;
			
	retval = p->policy;

out_unlock:
	read_unlock(&tasklist_lock);

out_nounlock:
	return retval;
}

asmlinkage int sys_sched_getparam(pid_t pid, struct sched_param *param)
{
	struct task_struct *p;
	struct sched_param lp;
	int retval;

	retval = -EINVAL;
	if (!param || pid < 0)
		goto out_nounlock;

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;
	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

out_nounlock:
	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

asmlinkage int sys_sched_yield(void)
{
	spin_lock_irq(&runqueue_lock);
	if (current->policy == SCHED_OTHER)
		current->policy |= SCHED_YIELD;
	current->need_resched = 1;
	move_last_runqueue(current);
	spin_unlock_irq(&runqueue_lock);
	return 0;
}

asmlinkage int sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 99;
		break;
	case SCHED_OTHER:
		ret = 0;
		break;
	}
	return ret;
}

asmlinkage int sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_OTHER:
		ret = 0;
	}
	return ret;
}

asmlinkage int sys_sched_rr_get_interval(pid_t pid, struct timespec *interval)
{
	struct timespec t;

	t.tv_sec = 0;
	t.tv_nsec = 150000;
	if (copy_to_user(interval, &t, sizeof(struct timespec)))
		return -EFAULT;
	return 0;
}

asmlinkage int sys_nanosleep(struct timespec *rqtp, struct timespec *rmtp)
{
	struct timespec t;
	unsigned long expire;

	if(copy_from_user(&t, rqtp, sizeof(struct timespec)))
		return -EFAULT;

	if (t.tv_nsec >= 1000000000L || t.tv_nsec < 0 || t.tv_sec < 0)
		return -EINVAL;


	if (t.tv_sec == 0 && t.tv_nsec <= 2000000L &&
	    current->policy != SCHED_OTHER)
	{
		unsigned long delay;
		
		/*
		 * Short delay requests up to 2 ms will be handled with
		 * high precision by a busy wait for all real-time processes.
		 *
		 * Its important on SMP not to do this holding locks.
		 */
		 
		delay=(t.tv_nsec + 999) / 1000;
		
		if(delay>10000)
			mdelay((delay+999)/1000);
		else
			udelay(delay);
		return 0;
	}

	expire = timespec_to_jiffies(&t) + (t.tv_sec || t.tv_nsec);

	current->state = TASK_INTERRUPTIBLE;
	expire = schedule_timeout(expire);

	if (expire) {
		if (rmtp) {
			jiffies_to_timespec(expire, &t);
			if (copy_to_user(rmtp, &t, sizeof(struct timespec)))
				return -EFAULT;
		}
		return -EINTR;
	}
	return 0;
}

static void show_task(int nr,struct task_struct * p)
{
	unsigned long free = 0;
	int state;
	static const char * stat_nam[] = { "R", "S", "D", "Z", "T", "W" };

	printk("%-8s %3d ", p->comm, (p == current) ? -nr : nr);
	state = p->state ? ffz(~p->state) + 1 : 0;
	if (((unsigned) state) < sizeof(stat_nam)/sizeof(char *))
		printk(stat_nam[state]);
	else
		printk(" ");
#if (BITS_PER_LONG == 32)
	if (p == current)
		printk(" current  ");
	else
		printk(" %08lX ", thread_saved_pc(&p->tss));
#else
	if (p == current)
		printk("   current task   ");
	else
		printk(" %016lx ", thread_saved_pc(&p->tss));
#endif
	{
		unsigned long * n = (unsigned long *) (p+1);
		while (!*n)
			n++;
		free = (unsigned long) n - (unsigned long)(p+1);
	}
	printk("%5lu %5d %6d ", free, p->pid, p->p_pptr->pid);
	if (p->p_cptr)
		printk("%5d ", p->p_cptr->pid);
	else
		printk("      ");
	if (p->p_ysptr)
		printk("%7d", p->p_ysptr->pid);
	else
		printk("       ");
	if (p->p_osptr)
		printk(" %5d\n", p->p_osptr->pid);
	else
		printk("\n");

	{
		struct signal_queue *q;
		char s[sizeof(sigset_t)*2+1], b[sizeof(sigset_t)*2+1]; 

		render_sigset_t(&p->signal, s);
		render_sigset_t(&p->blocked, b);
		printk("   sig: %d %s %s :", signal_pending(p), s, b);
		for (q = p->sigqueue; q ; q = q->next)
			printk(" %d", q->info.si_signo);
		printk(" X\n");
	}
}

char * render_sigset_t(sigset_t *set, char *buffer)
{
	int i = _NSIG, x;
	do {
		i -= 4, x = 0;
		if (sigismember(set, i+1)) x |= 1;
		if (sigismember(set, i+2)) x |= 2;
		if (sigismember(set, i+3)) x |= 4;
		if (sigismember(set, i+4)) x |= 8;
		*buffer++ = (x < 10 ? '0' : 'a' - 10) + x;
	} while (i >= 4);
	*buffer = 0;
	return buffer;
}

void show_state(void)
{
	struct task_struct *p;

#if (BITS_PER_LONG == 32)
	printk("\n"
	       "                         free                        sibling\n");
	printk("  task             PC    stack   pid father child younger older\n");
#else
	printk("\n"
	       "                                 free                        sibling\n");
	printk("  task                 PC        stack   pid father child younger older\n");
#endif
	read_lock(&tasklist_lock);
	for_each_task(p)
		show_task((p->tarray_ptr - &task[0]),p);
	read_unlock(&tasklist_lock);
}

/*
 *      Put all the gunge required to become a kernel thread without
 *      attached user resources in one place where it belongs.
 */

void daemonize(void)
{
	struct fs_struct *fs;

	/*
	 * If we were started as result of loading a module, close all of the
	 * user space pages.  We don't need them, and if we didn't close them
	 * they would be locked into memory.
	 */
	exit_mm(current);

	current->session = 1;
	current->pgrp = 1;

	/* Become as one with the init task */

	exit_fs(current);	/* current->fs->count--; */
	fs = init_task.fs;
	current->fs = fs;
	atomic_inc(&fs->count);

}

void __init init_idle(void)
{
	cycles_t t;
	struct schedule_data * sched_data;
	sched_data = &aligned_data[smp_processor_id()].schedule_data;

	t = get_cycles();
	sched_data->curr = current;
	sched_data->last_schedule = t;
}

void __init sched_init(void)
{
	/*
	 * We have to do a little magic to get the first
	 * process right in SMP mode.
	 */
	int cpu=hard_smp_processor_id();
	int nr = NR_TASKS;

	init_task.processor=cpu;

	/* Init task array free list and pidhash table. */
	while(--nr > 0)
		add_free_taskslot(&task[nr]);

	for(nr = 0; nr < PIDHASH_SZ; nr++)
		pidhash[nr] = NULL;

	init_bh(TIMER_BH, timer_bh);
	init_bh(TQUEUE_BH, tqueue_bh);
	init_bh(IMMEDIATE_BH, immediate_bh);
}