Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 | /* * linux/mm/vmscan.c * * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds * * Swap reorganised 29.12.95, Stephen Tweedie. * kswapd added: 7.1.96 sct * Removed kswapd_ctl limits, and swap out as many pages as needed * to bring the system back to freepages.high: 2.4.97, Rik van Riel. * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). * Multiqueue VM started 5.8.00, Rik van Riel. */ #include <linux/mm.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/kernel_stat.h> #include <linux/swap.h> #include <linux/pagemap.h> #include <linux/init.h> #include <linux/highmem.h> #include <linux/file.h> #include <linux/writeback.h> #include <linux/suspend.h> #include <linux/blkdev.h> #include <linux/buffer_head.h> /* for try_to_release_page(), buffer_heads_over_limit */ #include <linux/mm_inline.h> #include <linux/pagevec.h> #include <linux/backing-dev.h> #include <linux/rmap.h> #include <linux/topology.h> #include <linux/cpu.h> #include <linux/notifier.h> #include <asm/pgalloc.h> #include <asm/tlbflush.h> #include <asm/div64.h> #include <linux/swapops.h> /* * From 0 .. 100. Higher means more swappy. */ int vm_swappiness = 60; static long total_memory; #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru)) #ifdef ARCH_HAS_PREFETCH #define prefetch_prev_lru_page(_page, _base, _field) \ do { \ if ((_page)->lru.prev != _base) { \ struct page *prev; \ \ prev = lru_to_page(&(_page->lru)); \ prefetch(&prev->_field); \ } \ } while (0) #else #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) #endif #ifdef ARCH_HAS_PREFETCHW #define prefetchw_prev_lru_page(_page, _base, _field) \ do { \ if ((_page)->lru.prev != _base) { \ struct page *prev; \ \ prev = lru_to_page(&(_page->lru)); \ prefetchw(&prev->_field); \ } \ } while (0) #else #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) #endif /* * The list of shrinker callbacks used by to apply pressure to * ageable caches. */ struct shrinker { shrinker_t shrinker; struct list_head list; int seeks; /* seeks to recreate an obj */ long nr; /* objs pending delete */ }; static LIST_HEAD(shrinker_list); static DECLARE_MUTEX(shrinker_sem); /* * Add a shrinker callback to be called from the vm */ struct shrinker *set_shrinker(int seeks, shrinker_t theshrinker) { struct shrinker *shrinker; shrinker = kmalloc(sizeof(*shrinker), GFP_KERNEL); if (shrinker) { shrinker->shrinker = theshrinker; shrinker->seeks = seeks; shrinker->nr = 0; down(&shrinker_sem); list_add(&shrinker->list, &shrinker_list); up(&shrinker_sem); } return shrinker; } EXPORT_SYMBOL(set_shrinker); /* * Remove one */ void remove_shrinker(struct shrinker *shrinker) { down(&shrinker_sem); list_del(&shrinker->list); up(&shrinker_sem); kfree(shrinker); } EXPORT_SYMBOL(remove_shrinker); #define SHRINK_BATCH 128 /* * Call the shrink functions to age shrinkable caches * * Here we assume it costs one seek to replace a lru page and that it also * takes a seek to recreate a cache object. With this in mind we age equal * percentages of the lru and ageable caches. This should balance the seeks * generated by these structures. * * If the vm encounted mapped pages on the LRU it increase the pressure on * slab to avoid swapping. * * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits. */ static int shrink_slab(unsigned long scanned, unsigned int gfp_mask) { struct shrinker *shrinker; long pages; if (down_trylock(&shrinker_sem)) return 0; pages = nr_used_zone_pages(); list_for_each_entry(shrinker, &shrinker_list, list) { unsigned long long delta; delta = (4 * scanned) / shrinker->seeks; delta *= (*shrinker->shrinker)(0, gfp_mask); do_div(delta, pages + 1); shrinker->nr += delta; if (shrinker->nr < 0) shrinker->nr = LONG_MAX; /* It wrapped! */ if (shrinker->nr <= SHRINK_BATCH) continue; while (shrinker->nr) { long this_scan = shrinker->nr; int shrink_ret; if (this_scan > 128) this_scan = 128; shrink_ret = (*shrinker->shrinker)(this_scan, gfp_mask); mod_page_state(slabs_scanned, this_scan); shrinker->nr -= this_scan; if (shrink_ret == -1) break; cond_resched(); } } up(&shrinker_sem); return 0; } /* Must be called with page's rmap lock held. */ static inline int page_mapping_inuse(struct page *page) { struct address_space *mapping; /* Page is in somebody's page tables. */ if (page_mapped(page)) return 1; /* Be more reluctant to reclaim swapcache than pagecache */ if (PageSwapCache(page)) return 1; mapping = page_mapping(page); if (!mapping) return 0; /* File is mmap'd by somebody? */ return mapping_mapped(mapping); } static inline int is_page_cache_freeable(struct page *page) { return page_count(page) - !!PagePrivate(page) == 2; } static int may_write_to_queue(struct backing_dev_info *bdi) { if (current_is_kswapd()) return 1; if (current_is_pdflush()) /* This is unlikely, but why not... */ return 1; if (!bdi_write_congested(bdi)) return 1; if (bdi == current->backing_dev_info) return 1; return 0; } /* * We detected a synchronous write error writing a page out. Probably * -ENOSPC. We need to propagate that into the address_space for a subsequent * fsync(), msync() or close(). * * The tricky part is that after writepage we cannot touch the mapping: nothing * prevents it from being freed up. But we have a ref on the page and once * that page is locked, the mapping is pinned. * * We're allowed to run sleeping lock_page() here because we know the caller has * __GFP_FS. */ static void handle_write_error(struct address_space *mapping, struct page *page, int error) { lock_page(page); if (page_mapping(page) == mapping) { if (error == -ENOSPC) set_bit(AS_ENOSPC, &mapping->flags); else set_bit(AS_EIO, &mapping->flags); } unlock_page(page); } /* possible outcome of pageout() */ typedef enum { /* failed to write page out, page is locked */ PAGE_KEEP, /* move page to the active list, page is locked */ PAGE_ACTIVATE, /* page has been sent to the disk successfully, page is unlocked */ PAGE_SUCCESS, /* page is clean and locked */ PAGE_CLEAN, } pageout_t; /* * pageout is called by shrink_list() for each dirty page. Calls ->writepage(). */ static pageout_t pageout(struct page *page, struct address_space *mapping) { /* * If the page is dirty, only perform writeback if that write * will be non-blocking. To prevent this allocation from being * stalled by pagecache activity. But note that there may be * stalls if we need to run get_block(). We could test * PagePrivate for that. * * If this process is currently in generic_file_write() against * this page's queue, we can perform writeback even if that * will block. * * If the page is swapcache, write it back even if that would * block, for some throttling. This happens by accident, because * swap_backing_dev_info is bust: it doesn't reflect the * congestion state of the swapdevs. Easy to fix, if needed. * See swapfile.c:page_queue_congested(). */ if (!is_page_cache_freeable(page)) return PAGE_KEEP; if (!mapping) return PAGE_KEEP; if (mapping->a_ops->writepage == NULL) return PAGE_ACTIVATE; if (!may_write_to_queue(mapping->backing_dev_info)) return PAGE_KEEP; if (clear_page_dirty_for_io(page)) { int res; struct writeback_control wbc = { .sync_mode = WB_SYNC_NONE, .nr_to_write = SWAP_CLUSTER_MAX, .nonblocking = 1, .for_reclaim = 1, }; SetPageReclaim(page); res = mapping->a_ops->writepage(page, &wbc); if (res < 0) handle_write_error(mapping, page, res); if (res == WRITEPAGE_ACTIVATE) { ClearPageReclaim(page); return PAGE_ACTIVATE; } if (!PageWriteback(page)) { /* synchronous write or broken a_ops? */ ClearPageReclaim(page); } return PAGE_SUCCESS; } return PAGE_CLEAN; } struct scan_control { /* Ask refill_inactive_zone, or shrink_cache to scan this many pages */ unsigned long nr_to_scan; /* Incremented by the number of inactive pages that were scanned */ unsigned long nr_scanned; /* Incremented by the number of pages reclaimed */ unsigned long nr_reclaimed; unsigned long nr_mapped; /* From page_state */ /* Ask shrink_caches, or shrink_zone to scan at this priority */ unsigned int priority; /* This context's GFP mask */ unsigned int gfp_mask; int may_writepage; }; /* * shrink_list adds the number of reclaimed pages to sc->nr_reclaimed */ static int shrink_list(struct list_head *page_list, struct scan_control *sc) { LIST_HEAD(ret_pages); struct pagevec freed_pvec; int pgactivate = 0; int reclaimed = 0; cond_resched(); pagevec_init(&freed_pvec, 1); while (!list_empty(page_list)) { struct address_space *mapping; struct page *page; int may_enter_fs; int referenced; page = lru_to_page(page_list); list_del(&page->lru); if (TestSetPageLocked(page)) goto keep; BUG_ON(PageActive(page)); if (PageWriteback(page)) goto keep_locked; sc->nr_scanned++; /* Double the slab pressure for mapped and swapcache pages */ if (page_mapped(page) || PageSwapCache(page)) sc->nr_scanned++; page_map_lock(page); referenced = page_referenced(page); if (referenced && page_mapping_inuse(page)) { /* In active use or really unfreeable. Activate it. */ page_map_unlock(page); goto activate_locked; } #ifdef CONFIG_SWAP /* * Anonymous process memory has backing store? * Try to allocate it some swap space here. * * XXX: implement swap clustering ? */ if (PageAnon(page) && !PageSwapCache(page)) { page_map_unlock(page); if (!add_to_swap(page)) goto activate_locked; page_map_lock(page); } #endif /* CONFIG_SWAP */ mapping = page_mapping(page); may_enter_fs = (sc->gfp_mask & __GFP_FS) || (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); /* * The page is mapped into the page tables of one or more * processes. Try to unmap it here. */ if (page_mapped(page) && mapping) { switch (try_to_unmap(page)) { case SWAP_FAIL: page_map_unlock(page); goto activate_locked; case SWAP_AGAIN: page_map_unlock(page); goto keep_locked; case SWAP_SUCCESS: ; /* try to free the page below */ } } page_map_unlock(page); if (PageDirty(page)) { if (referenced) goto keep_locked; if (!may_enter_fs) goto keep_locked; if (laptop_mode && !sc->may_writepage) goto keep_locked; /* Page is dirty, try to write it out here */ switch(pageout(page, mapping)) { case PAGE_KEEP: goto keep_locked; case PAGE_ACTIVATE: goto activate_locked; case PAGE_SUCCESS: if (PageWriteback(page) || PageDirty(page)) goto keep; /* * A synchronous write - probably a ramdisk. Go * ahead and try to reclaim the page. */ if (TestSetPageLocked(page)) goto keep; if (PageDirty(page) || PageWriteback(page)) goto keep_locked; mapping = page_mapping(page); case PAGE_CLEAN: ; /* try to free the page below */ } } /* * If the page has buffers, try to free the buffer mappings * associated with this page. If we succeed we try to free * the page as well. * * We do this even if the page is PageDirty(). * try_to_release_page() does not perform I/O, but it is * possible for a page to have PageDirty set, but it is actually * clean (all its buffers are clean). This happens if the * buffers were written out directly, with submit_bh(). ext3 * will do this, as well as the blockdev mapping. * try_to_release_page() will discover that cleanness and will * drop the buffers and mark the page clean - it can be freed. * * Rarely, pages can have buffers and no ->mapping. These are * the pages which were not successfully invalidated in * truncate_complete_page(). We try to drop those buffers here * and if that worked, and the page is no longer mapped into * process address space (page_count == 1) it can be freed. * Otherwise, leave the page on the LRU so it is swappable. */ if (PagePrivate(page)) { if (!try_to_release_page(page, sc->gfp_mask)) goto activate_locked; if (!mapping && page_count(page) == 1) goto free_it; } if (!mapping) goto keep_locked; /* truncate got there first */ spin_lock_irq(&mapping->tree_lock); /* * The non-racy check for busy page. It is critical to check * PageDirty _after_ making sure that the page is freeable and * not in use by anybody. (pagecache + us == 2) */ if (page_count(page) != 2 || PageDirty(page)) { spin_unlock_irq(&mapping->tree_lock); goto keep_locked; } #ifdef CONFIG_SWAP if (PageSwapCache(page)) { swp_entry_t swap = { .val = page->private }; __delete_from_swap_cache(page); spin_unlock_irq(&mapping->tree_lock); swap_free(swap); __put_page(page); /* The pagecache ref */ goto free_it; } #endif /* CONFIG_SWAP */ __remove_from_page_cache(page); spin_unlock_irq(&mapping->tree_lock); __put_page(page); free_it: unlock_page(page); reclaimed++; if (!pagevec_add(&freed_pvec, page)) __pagevec_release_nonlru(&freed_pvec); continue; activate_locked: SetPageActive(page); pgactivate++; keep_locked: unlock_page(page); keep: list_add(&page->lru, &ret_pages); BUG_ON(PageLRU(page)); } list_splice(&ret_pages, page_list); if (pagevec_count(&freed_pvec)) __pagevec_release_nonlru(&freed_pvec); mod_page_state(pgactivate, pgactivate); sc->nr_reclaimed += reclaimed; return reclaimed; } /* * zone->lru_lock is heavily contented. We relieve it by quickly privatising * a batch of pages and working on them outside the lock. Any pages which were * not freed will be added back to the LRU. * * shrink_cache() adds the number of pages reclaimed to sc->nr_reclaimed * * For pagecache intensive workloads, the first loop here is the hottest spot * in the kernel (apart from the copy_*_user functions). */ static void shrink_cache(struct zone *zone, struct scan_control *sc) { LIST_HEAD(page_list); struct pagevec pvec; int max_scan = sc->nr_to_scan; pagevec_init(&pvec, 1); lru_add_drain(); spin_lock_irq(&zone->lru_lock); while (max_scan > 0) { struct page *page; int nr_taken = 0; int nr_scan = 0; int nr_freed; while (nr_scan++ < SWAP_CLUSTER_MAX && !list_empty(&zone->inactive_list)) { page = lru_to_page(&zone->inactive_list); prefetchw_prev_lru_page(page, &zone->inactive_list, flags); if (!TestClearPageLRU(page)) BUG(); list_del(&page->lru); if (get_page_testone(page)) { /* * It is being freed elsewhere */ __put_page(page); SetPageLRU(page); list_add(&page->lru, &zone->inactive_list); continue; } list_add(&page->lru, &page_list); nr_taken++; } zone->nr_inactive -= nr_taken; zone->pages_scanned += nr_taken; spin_unlock_irq(&zone->lru_lock); if (nr_taken == 0) goto done; max_scan -= nr_scan; if (current_is_kswapd()) mod_page_state_zone(zone, pgscan_kswapd, nr_scan); else mod_page_state_zone(zone, pgscan_direct, nr_scan); nr_freed = shrink_list(&page_list, sc); if (current_is_kswapd()) mod_page_state(kswapd_steal, nr_freed); mod_page_state_zone(zone, pgsteal, nr_freed); spin_lock_irq(&zone->lru_lock); /* * Put back any unfreeable pages. */ while (!list_empty(&page_list)) { page = lru_to_page(&page_list); if (TestSetPageLRU(page)) BUG(); list_del(&page->lru); if (PageActive(page)) add_page_to_active_list(zone, page); else add_page_to_inactive_list(zone, page); if (!pagevec_add(&pvec, page)) { spin_unlock_irq(&zone->lru_lock); __pagevec_release(&pvec); spin_lock_irq(&zone->lru_lock); } } } spin_unlock_irq(&zone->lru_lock); done: pagevec_release(&pvec); } /* * This moves pages from the active list to the inactive list. * * We move them the other way if the page is referenced by one or more * processes, from rmap. * * If the pages are mostly unmapped, the processing is fast and it is * appropriate to hold zone->lru_lock across the whole operation. But if * the pages are mapped, the processing is slow (page_referenced()) so we * should drop zone->lru_lock around each page. It's impossible to balance * this, so instead we remove the pages from the LRU while processing them. * It is safe to rely on PG_active against the non-LRU pages in here because * nobody will play with that bit on a non-LRU page. * * The downside is that we have to touch page->_count against each page. * But we had to alter page->flags anyway. */ static void refill_inactive_zone(struct zone *zone, struct scan_control *sc) { int pgmoved; int pgdeactivate = 0; int pgscanned = 0; int nr_pages = sc->nr_to_scan; LIST_HEAD(l_hold); /* The pages which were snipped off */ LIST_HEAD(l_inactive); /* Pages to go onto the inactive_list */ LIST_HEAD(l_active); /* Pages to go onto the active_list */ struct page *page; struct pagevec pvec; int reclaim_mapped = 0; long mapped_ratio; long distress; long swap_tendency; lru_add_drain(); pgmoved = 0; spin_lock_irq(&zone->lru_lock); while (pgscanned < nr_pages && !list_empty(&zone->active_list)) { page = lru_to_page(&zone->active_list); prefetchw_prev_lru_page(page, &zone->active_list, flags); if (!TestClearPageLRU(page)) BUG(); list_del(&page->lru); if (get_page_testone(page)) { /* * It was already free! release_pages() or put_page() * are about to remove it from the LRU and free it. So * put the refcount back and put the page back on the * LRU */ __put_page(page); SetPageLRU(page); list_add(&page->lru, &zone->active_list); } else { list_add(&page->lru, &l_hold); pgmoved++; } pgscanned++; } zone->nr_active -= pgmoved; spin_unlock_irq(&zone->lru_lock); /* * `distress' is a measure of how much trouble we're having reclaiming * pages. 0 -> no problems. 100 -> great trouble. */ distress = 100 >> zone->prev_priority; /* * The point of this algorithm is to decide when to start reclaiming * mapped memory instead of just pagecache. Work out how much memory * is mapped. */ mapped_ratio = (sc->nr_mapped * 100) / total_memory; /* * Now decide how much we really want to unmap some pages. The mapped * ratio is downgraded - just because there's a lot of mapped memory * doesn't necessarily mean that page reclaim isn't succeeding. * * The distress ratio is important - we don't want to start going oom. * * A 100% value of vm_swappiness overrides this algorithm altogether. */ swap_tendency = mapped_ratio / 2 + distress + vm_swappiness; /* * Now use this metric to decide whether to start moving mapped memory * onto the inactive list. */ if (swap_tendency >= 100) reclaim_mapped = 1; while (!list_empty(&l_hold)) { page = lru_to_page(&l_hold); list_del(&page->lru); if (page_mapped(page)) { if (!reclaim_mapped) { list_add(&page->lru, &l_active); continue; } page_map_lock(page); if (page_referenced(page)) { page_map_unlock(page); list_add(&page->lru, &l_active); continue; } page_map_unlock(page); } /* * FIXME: need to consider page_count(page) here if/when we * reap orphaned pages via the LRU (Daniel's locking stuff) */ if (total_swap_pages == 0 && PageAnon(page)) { list_add(&page->lru, &l_active); continue; } list_add(&page->lru, &l_inactive); } pagevec_init(&pvec, 1); pgmoved = 0; spin_lock_irq(&zone->lru_lock); while (!list_empty(&l_inactive)) { page = lru_to_page(&l_inactive); prefetchw_prev_lru_page(page, &l_inactive, flags); if (TestSetPageLRU(page)) BUG(); if (!TestClearPageActive(page)) BUG(); list_move(&page->lru, &zone->inactive_list); pgmoved++; if (!pagevec_add(&pvec, page)) { zone->nr_inactive += pgmoved; spin_unlock_irq(&zone->lru_lock); pgdeactivate += pgmoved; pgmoved = 0; if (buffer_heads_over_limit) pagevec_strip(&pvec); __pagevec_release(&pvec); spin_lock_irq(&zone->lru_lock); } } zone->nr_inactive += pgmoved; pgdeactivate += pgmoved; if (buffer_heads_over_limit) { spin_unlock_irq(&zone->lru_lock); pagevec_strip(&pvec); spin_lock_irq(&zone->lru_lock); } pgmoved = 0; while (!list_empty(&l_active)) { page = lru_to_page(&l_active); prefetchw_prev_lru_page(page, &l_active, flags); if (TestSetPageLRU(page)) BUG(); BUG_ON(!PageActive(page)); list_move(&page->lru, &zone->active_list); pgmoved++; if (!pagevec_add(&pvec, page)) { zone->nr_active += pgmoved; pgmoved = 0; spin_unlock_irq(&zone->lru_lock); __pagevec_release(&pvec); spin_lock_irq(&zone->lru_lock); } } zone->nr_active += pgmoved; spin_unlock_irq(&zone->lru_lock); pagevec_release(&pvec); mod_page_state_zone(zone, pgrefill, pgscanned); mod_page_state(pgdeactivate, pgdeactivate); } /* * Scan `nr_pages' from this zone. Returns the number of reclaimed pages. * This is a basic per-zone page freer. Used by both kswapd and direct reclaim. */ static void shrink_zone(struct zone *zone, struct scan_control *sc) { unsigned long scan_active, scan_inactive; int count; scan_inactive = (zone->nr_active + zone->nr_inactive) >> sc->priority; /* * Try to keep the active list 2/3 of the size of the cache. And * make sure that refill_inactive is given a decent number of pages. * * The "scan_active + 1" here is important. With pagecache-intensive * workloads the inactive list is huge, and `ratio' evaluates to zero * all the time. Which pins the active list memory. So we add one to * `scan_active' just to make sure that the kernel will slowly sift * through the active list. */ if (zone->nr_active >= 4*(zone->nr_inactive*2 + 1)) { /* Don't scan more than 4 times the inactive list scan size */ scan_active = 4*scan_inactive; } else { unsigned long long tmp; /* Cast to long long so the multiply doesn't overflow */ tmp = (unsigned long long)scan_inactive * zone->nr_active; do_div(tmp, zone->nr_inactive*2 + 1); scan_active = (unsigned long)tmp; } atomic_add(scan_active + 1, &zone->nr_scan_active); count = atomic_read(&zone->nr_scan_active); if (count >= SWAP_CLUSTER_MAX) { atomic_set(&zone->nr_scan_active, 0); sc->nr_to_scan = count; refill_inactive_zone(zone, sc); } atomic_add(scan_inactive, &zone->nr_scan_inactive); count = atomic_read(&zone->nr_scan_inactive); if (count >= SWAP_CLUSTER_MAX) { atomic_set(&zone->nr_scan_inactive, 0); sc->nr_to_scan = count; shrink_cache(zone, sc); } } /* * This is the direct reclaim path, for page-allocating processes. We only * try to reclaim pages from zones which will satisfy the caller's allocation * request. * * We reclaim from a zone even if that zone is over pages_high. Because: * a) The caller may be trying to free *extra* pages to satisfy a higher-order * allocation or * b) The zones may be over pages_high but they must go *over* pages_high to * satisfy the `incremental min' zone defense algorithm. * * Returns the number of reclaimed pages. * * If a zone is deemed to be full of pinned pages then just give it a light * scan then give up on it. */ static void shrink_caches(struct zone **zones, struct scan_control *sc) { int i; for (i = 0; zones[i] != NULL; i++) { struct zone *zone = zones[i]; zone->temp_priority = sc->priority; if (zone->prev_priority > sc->priority) zone->prev_priority = sc->priority; if (zone->all_unreclaimable && sc->priority != DEF_PRIORITY) continue; /* Let kswapd poll it */ shrink_zone(zone, sc); } } /* * This is the main entry point to direct page reclaim. * * If a full scan of the inactive list fails to free enough memory then we * are "out of memory" and something needs to be killed. * * If the caller is !__GFP_FS then the probability of a failure is reasonably * high - the zone may be full of dirty or under-writeback pages, which this * caller can't do much about. We kick pdflush and take explicit naps in the * hope that some of these pages can be written. But if the allocating task * holds filesystem locks which prevent writeout this might not work, and the * allocation attempt will fail. */ int try_to_free_pages(struct zone **zones, unsigned int gfp_mask, unsigned int order) { int priority; int ret = 0; int total_scanned = 0, total_reclaimed = 0; struct reclaim_state *reclaim_state = current->reclaim_state; struct scan_control sc; int i; sc.gfp_mask = gfp_mask; sc.may_writepage = 0; inc_page_state(allocstall); for (i = 0; zones[i] != 0; i++) zones[i]->temp_priority = DEF_PRIORITY; for (priority = DEF_PRIORITY; priority >= 0; priority--) { sc.nr_mapped = read_page_state(nr_mapped); sc.nr_scanned = 0; sc.nr_reclaimed = 0; sc.priority = priority; shrink_caches(zones, &sc); shrink_slab(sc.nr_scanned, gfp_mask); if (reclaim_state) { sc.nr_reclaimed += reclaim_state->reclaimed_slab; reclaim_state->reclaimed_slab = 0; } if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX) { ret = 1; goto out; } total_scanned += sc.nr_scanned; total_reclaimed += sc.nr_reclaimed; /* * Try to write back as many pages as we just scanned. This * tends to cause slow streaming writers to write data to the * disk smoothly, at the dirtying rate, which is nice. But * that's undesirable in laptop mode, where we *want* lumpy * writeout. So in laptop mode, write out the whole world. */ if (total_scanned > SWAP_CLUSTER_MAX + SWAP_CLUSTER_MAX/2) { wakeup_bdflush(laptop_mode ? 0 : total_scanned); sc.may_writepage = 1; } /* Take a nap, wait for some writeback to complete */ if (sc.nr_scanned && priority < DEF_PRIORITY - 2) blk_congestion_wait(WRITE, HZ/10); } if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) out_of_memory(); out: for (i = 0; zones[i] != 0; i++) zones[i]->prev_priority = zones[i]->temp_priority; return ret; } /* * For kswapd, balance_pgdat() will work across all this node's zones until * they are all at pages_high. * * If `nr_pages' is non-zero then it is the number of pages which are to be * reclaimed, regardless of the zone occupancies. This is a software suspend * special. * * Returns the number of pages which were actually freed. * * There is special handling here for zones which are full of pinned pages. * This can happen if the pages are all mlocked, or if they are all used by * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb. * What we do is to detect the case where all pages in the zone have been * scanned twice and there has been zero successful reclaim. Mark the zone as * dead and from now on, only perform a short scan. Basically we're polling * the zone for when the problem goes away. * * kswapd scans the zones in the highmem->normal->dma direction. It skips * zones which have free_pages > pages_high, but once a zone is found to have * free_pages <= pages_high, we scan that zone and the lower zones regardless * of the number of free pages in the lower zones. This interoperates with * the page allocator fallback scheme to ensure that aging of pages is balanced * across the zones. */ static int balance_pgdat(pg_data_t *pgdat, int nr_pages) { int to_free = nr_pages; int priority; int i; int total_scanned = 0, total_reclaimed = 0; struct reclaim_state *reclaim_state = current->reclaim_state; struct scan_control sc; sc.gfp_mask = GFP_KERNEL; sc.may_writepage = 0; sc.nr_mapped = read_page_state(nr_mapped); inc_page_state(pageoutrun); for (i = 0; i < pgdat->nr_zones; i++) { struct zone *zone = pgdat->node_zones + i; zone->temp_priority = DEF_PRIORITY; } for (priority = DEF_PRIORITY; priority >= 0; priority--) { int all_zones_ok = 1; int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */ if (nr_pages == 0) { /* * Scan in the highmem->dma direction for the highest * zone which needs scanning */ for (i = pgdat->nr_zones - 1; i >= 0; i--) { struct zone *zone = pgdat->node_zones + i; if (zone->all_unreclaimable && priority != DEF_PRIORITY) continue; if (zone->free_pages <= zone->pages_high) { end_zone = i; goto scan; } } goto out; } else { end_zone = pgdat->nr_zones - 1; } scan: /* * Now scan the zone in the dma->highmem direction, stopping * at the last zone which needs scanning. * * We do this because the page allocator works in the opposite * direction. This prevents the page allocator from allocating * pages behind kswapd's direction of progress, which would * cause too much scanning of the lower zones. */ for (i = 0; i <= end_zone; i++) { struct zone *zone = pgdat->node_zones + i; if (zone->all_unreclaimable && priority != DEF_PRIORITY) continue; if (nr_pages == 0) { /* Not software suspend */ if (zone->free_pages <= zone->pages_high) all_zones_ok = 0; } zone->temp_priority = priority; if (zone->prev_priority > priority) zone->prev_priority = priority; sc.nr_scanned = 0; sc.nr_reclaimed = 0; sc.priority = priority; shrink_zone(zone, &sc); reclaim_state->reclaimed_slab = 0; shrink_slab(sc.nr_scanned, GFP_KERNEL); sc.nr_reclaimed += reclaim_state->reclaimed_slab; total_reclaimed += sc.nr_reclaimed; if (zone->all_unreclaimable) continue; if (zone->pages_scanned > zone->present_pages * 2) zone->all_unreclaimable = 1; /* * If we've done a decent amount of scanning and * the reclaim ratio is low, start doing writepage * even in laptop mode */ if (total_scanned > SWAP_CLUSTER_MAX * 2 && total_scanned > total_reclaimed+total_reclaimed/2) sc.may_writepage = 1; } if (nr_pages && to_free > total_reclaimed) continue; /* swsusp: need to do more work */ if (all_zones_ok) break; /* kswapd: all done */ /* * OK, kswapd is getting into trouble. Take a nap, then take * another pass across the zones. */ if (total_scanned && priority < DEF_PRIORITY - 2) blk_congestion_wait(WRITE, HZ/10); } out: for (i = 0; i < pgdat->nr_zones; i++) { struct zone *zone = pgdat->node_zones + i; zone->prev_priority = zone->temp_priority; } return total_reclaimed; } /* * The background pageout daemon, started as a kernel thread * from the init process. * * This basically trickles out pages so that we have _some_ * free memory available even if there is no other activity * that frees anything up. This is needed for things like routing * etc, where we otherwise might have all activity going on in * asynchronous contexts that cannot page things out. * * If there are applications that are active memory-allocators * (most normal use), this basically shouldn't matter. */ int kswapd(void *p) { pg_data_t *pgdat = (pg_data_t*)p; struct task_struct *tsk = current; DEFINE_WAIT(wait); struct reclaim_state reclaim_state = { .reclaimed_slab = 0, }; cpumask_t cpumask; daemonize("kswapd%d", pgdat->node_id); cpumask = node_to_cpumask(pgdat->node_id); if (!cpus_empty(cpumask)) set_cpus_allowed(tsk, cpumask); current->reclaim_state = &reclaim_state; /* * Tell the memory management that we're a "memory allocator", * and that if we need more memory we should get access to it * regardless (see "__alloc_pages()"). "kswapd" should * never get caught in the normal page freeing logic. * * (Kswapd normally doesn't need memory anyway, but sometimes * you need a small amount of memory in order to be able to * page out something else, and this flag essentially protects * us from recursively trying to free more memory as we're * trying to free the first piece of memory in the first place). */ tsk->flags |= PF_MEMALLOC|PF_KSWAPD; for ( ; ; ) { if (current->flags & PF_FREEZE) refrigerator(PF_FREEZE); prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); schedule(); finish_wait(&pgdat->kswapd_wait, &wait); balance_pgdat(pgdat, 0); } } /* * A zone is low on free memory, so wake its kswapd task to service it. */ void wakeup_kswapd(struct zone *zone) { if (zone->free_pages > zone->pages_low) return; if (!waitqueue_active(&zone->zone_pgdat->kswapd_wait)) return; wake_up_interruptible(&zone->zone_pgdat->kswapd_wait); } #ifdef CONFIG_PM /* * Try to free `nr_pages' of memory, system-wide. Returns the number of freed * pages. */ int shrink_all_memory(int nr_pages) { pg_data_t *pgdat; int nr_to_free = nr_pages; int ret = 0; struct reclaim_state reclaim_state = { .reclaimed_slab = 0, }; current->reclaim_state = &reclaim_state; for_each_pgdat(pgdat) { int freed; freed = balance_pgdat(pgdat, nr_to_free); ret += freed; nr_to_free -= freed; if (nr_to_free <= 0) break; } current->reclaim_state = NULL; return ret; } #endif #ifdef CONFIG_HOTPLUG_CPU /* It's optimal to keep kswapds on the same CPUs as their memory, but not required for correctness. So if the last cpu in a node goes away, we get changed to run anywhere: as the first one comes back, restore their cpu bindings. */ static int __devinit cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu) { pg_data_t *pgdat; cpumask_t mask; if (action == CPU_ONLINE) { for_each_pgdat(pgdat) { mask = node_to_cpumask(pgdat->node_id); if (any_online_cpu(mask) != NR_CPUS) /* One of our CPUs online: restore mask */ set_cpus_allowed(pgdat->kswapd, mask); } } return NOTIFY_OK; } #endif /* CONFIG_HOTPLUG_CPU */ static int __init kswapd_init(void) { pg_data_t *pgdat; swap_setup(); for_each_pgdat(pgdat) pgdat->kswapd = find_task_by_pid(kernel_thread(kswapd, pgdat, CLONE_KERNEL)); total_memory = nr_free_pagecache_pages(); hotcpu_notifier(cpu_callback, 0); return 0; } module_init(kswapd_init) |