Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 | /* * linux/mm/vmscan.c * * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds * * Swap reorganised 29.12.95, Stephen Tweedie. * kswapd added: 7.1.96 sct * Removed kswapd_ctl limits, and swap out as many pages as needed * to bring the system back to free_pages_high: 2.4.97, Rik van Riel. * Version: $Id: vmscan.c,v 1.23 1997/04/12 04:31:05 davem Exp $ */ #include <linux/mm.h> #include <linux/sched.h> #include <linux/head.h> #include <linux/kernel.h> #include <linux/kernel_stat.h> #include <linux/errno.h> #include <linux/string.h> #include <linux/swap.h> #include <linux/swapctl.h> #include <linux/smp_lock.h> #include <linux/slab.h> #include <linux/dcache.h> #include <asm/bitops.h> #include <asm/pgtable.h> /* * When are we next due for a page scan? */ static int next_swap_jiffies = 0; /* * How often do we do a pageout scan during normal conditions? * Default is four times a second. */ int swapout_interval = HZ / 4; /* * The wait queue for waking up the pageout daemon: */ static struct wait_queue * kswapd_wait = NULL; /* * We avoid doing a reschedule if the pageout daemon is already awake; */ static int kswapd_awake = 0; static void init_swap_timer(void); /* * The swap-out functions return 1 if they successfully * threw something out, and we got a free page. It returns * zero if it couldn't do anything, and any other value * indicates it decreased rss, but the page was shared. * * NOTE! If it sleeps, it *must* return 1 to make sure we * don't continue with the swap-out. Otherwise we may be * using a process that no longer actually exists (it might * have died while we slept). */ static inline int try_to_swap_out(struct task_struct * tsk, struct vm_area_struct* vma, unsigned long address, pte_t * page_table, int dma, int wait) { pte_t pte; unsigned long entry; unsigned long page; struct page * page_map; pte = *page_table; if (!pte_present(pte)) return 0; page = pte_page(pte); if (MAP_NR(page) >= max_mapnr) return 0; page_map = mem_map + MAP_NR(page); if (PageReserved(page_map) || PageLocked(page_map) || (dma && !PageDMA(page_map))) return 0; /* Deal with page aging. Pages age from being unused; they * rejuvenate on being accessed. Only swap old pages (age==0 * is oldest). */ if ((pte_dirty(pte) && delete_from_swap_cache(page_map)) || pte_young(pte)) { set_pte(page_table, pte_mkold(pte)); touch_page(page_map); return 0; } age_page(page_map); if (page_map->age) return 0; if (pte_dirty(pte)) { if (vma->vm_ops && vma->vm_ops->swapout) { pid_t pid = tsk->pid; vma->vm_mm->rss--; if (vma->vm_ops->swapout(vma, address - vma->vm_start + vma->vm_offset, page_table)) kill_proc(pid, SIGBUS, 1); } else { if (atomic_read(&page_map->count) != 1) return 0; if (!(entry = get_swap_page())) return 0; vma->vm_mm->rss--; flush_cache_page(vma, address); set_pte(page_table, __pte(entry)); flush_tlb_page(vma, address); tsk->nswap++; rw_swap_page(WRITE, entry, (char *) page, wait); } free_page(page); return 1; /* we slept: the process may not exist any more */ } if ((entry = find_in_swap_cache(page_map))) { if (atomic_read(&page_map->count) != 1) { set_pte(page_table, pte_mkdirty(pte)); printk("Aiee.. duplicated cached swap-cache entry\n"); return 0; } vma->vm_mm->rss--; flush_cache_page(vma, address); set_pte(page_table, __pte(entry)); flush_tlb_page(vma, address); free_page(page); return 1; } vma->vm_mm->rss--; flush_cache_page(vma, address); pte_clear(page_table); flush_tlb_page(vma, address); entry = page_unuse(page); free_page(page); return entry; } /* * A new implementation of swap_out(). We do not swap complete processes, * but only a small number of blocks, before we continue with the next * process. The number of blocks actually swapped is determined on the * number of page faults, that this process actually had in the last time, * so we won't swap heavily used processes all the time ... * * Note: the priority argument is a hint on much CPU to waste with the * swap block search, not a hint, of how much blocks to swap with * each process. * * (C) 1993 Kai Petzke, wpp@marie.physik.tu-berlin.de */ static inline int swap_out_pmd(struct task_struct * tsk, struct vm_area_struct * vma, pmd_t *dir, unsigned long address, unsigned long end, int dma, int wait) { pte_t * pte; unsigned long pmd_end; if (pmd_none(*dir)) return 0; if (pmd_bad(*dir)) { printk("swap_out_pmd: bad pmd (%08lx)\n", pmd_val(*dir)); pmd_clear(dir); return 0; } pte = pte_offset(dir, address); pmd_end = (address + PMD_SIZE) & PMD_MASK; if (end > pmd_end) end = pmd_end; do { int result; tsk->swap_address = address + PAGE_SIZE; result = try_to_swap_out(tsk, vma, address, pte, dma, wait); if (result) return result; address += PAGE_SIZE; pte++; } while (address < end); return 0; } static inline int swap_out_pgd(struct task_struct * tsk, struct vm_area_struct * vma, pgd_t *dir, unsigned long address, unsigned long end, int dma, int wait) { pmd_t * pmd; unsigned long pgd_end; if (pgd_none(*dir)) return 0; if (pgd_bad(*dir)) { printk("swap_out_pgd: bad pgd (%08lx)\n", pgd_val(*dir)); pgd_clear(dir); return 0; } pmd = pmd_offset(dir, address); pgd_end = (address + PGDIR_SIZE) & PGDIR_MASK; if (end > pgd_end) end = pgd_end; do { int result = swap_out_pmd(tsk, vma, pmd, address, end, dma, wait); if (result) return result; address = (address + PMD_SIZE) & PMD_MASK; pmd++; } while (address < end); return 0; } static int swap_out_vma(struct task_struct * tsk, struct vm_area_struct * vma, pgd_t *pgdir, unsigned long start, int dma, int wait) { unsigned long end; /* Don't swap out areas like shared memory which have their own separate swapping mechanism or areas which are locked down */ if (vma->vm_flags & (VM_SHM | VM_LOCKED)) return 0; end = vma->vm_end; while (start < end) { int result = swap_out_pgd(tsk, vma, pgdir, start, end, dma, wait); if (result) return result; start = (start + PGDIR_SIZE) & PGDIR_MASK; pgdir++; } return 0; } static int swap_out_process(struct task_struct * p, int dma, int wait) { unsigned long address; struct vm_area_struct* vma; /* * Go through process' page directory. */ address = p->swap_address; p->swap_address = 0; /* * Find the proper vm-area */ vma = find_vma(p->mm, address); if (!vma) return 0; if (address < vma->vm_start) address = vma->vm_start; for (;;) { int result = swap_out_vma(p, vma, pgd_offset(p->mm, address), address, dma, wait); if (result) return result; vma = vma->vm_next; if (!vma) break; address = vma->vm_start; } p->swap_address = 0; return 0; } /* * Select the task with maximal swap_cnt and try to swap out a page. * N.B. This function returns only 0 or 1. Return values != 1 from * the lower level routines result in continued processing. */ static int swap_out(unsigned int priority, int dma, int wait) { struct task_struct * p, * pbest; int counter, assign, max_cnt; /* * We make one or two passes through the task list, indexed by * assign = {0, 1}: * Pass 1: select the swappable task with maximal swap_cnt. * Pass 2: assign new swap_cnt values, then select as above. * With this approach, there's no need to remember the last task * swapped out. If the swap-out fails, we clear swap_cnt so the * task won't be selected again until all others have been tried. */ counter = ((PAGEOUT_WEIGHT * nr_tasks) >> 10) >> priority; for (; counter >= 0; counter--) { assign = 0; max_cnt = 0; pbest = NULL; select: read_lock(&tasklist_lock); p = init_task.next_task; for (; p != &init_task; p = p->next_task) { if (!p->swappable) continue; if (p->mm->rss <= 0) continue; if (assign) { /* * If we didn't select a task on pass 1, * assign each task a new swap_cnt. * Normalise the number of pages swapped * by multiplying by (RSS / 1MB) */ p->swap_cnt = AGE_CLUSTER_SIZE(p->mm->rss); } if (p->swap_cnt > max_cnt) { max_cnt = p->swap_cnt; pbest = p; } } read_unlock(&tasklist_lock); if (!pbest) { if (!assign) { assign = 1; goto select; } goto out; } pbest->swap_cnt--; switch (swap_out_process(pbest, dma, wait)) { case 0: /* * Clear swap_cnt so we don't look at this task * again until we've tried all of the others. * (We didn't block, so the task is still here.) */ pbest->swap_cnt = 0; break; case 1: return 1; default: break; }; } out: return 0; } /* * We are much more aggressive about trying to swap out than we used * to be. This works out OK, because we now do proper aging on page * contents. */ static inline int do_try_to_free_page(int priority, int dma, int wait) { static int state = 0; int i=6; int stop; /* Let the dcache know we're looking for memory ... */ shrink_dcache_memory(); /* Always trim SLAB caches when memory gets low. */ (void) kmem_cache_reap(0, dma, wait); /* we don't try as hard if we're not waiting.. */ stop = 3; if (wait) stop = 0; switch (state) { do { case 0: if (shrink_mmap(i, dma)) return 1; state = 1; case 1: if (shm_swap(i, dma)) return 1; state = 2; default: if (swap_out(i, dma, wait)) return 1; state = 0; i--; } while ((i - stop) >= 0); } return 0; } /* * This is REALLY ugly. * * We need to make the locks finer granularity, but right * now we need this so that we can do page allocations * without holding the kernel lock etc. */ int try_to_free_page(int priority, int dma, int wait) { int retval; lock_kernel(); retval = do_try_to_free_page(priority,dma,wait); unlock_kernel(); return retval; } /* * Before we start the kernel thread, print out the * kswapd initialization message (otherwise the init message * may be printed in the middle of another driver's init * message). It looks very bad when that happens. */ void kswapd_setup(void) { int i; char *revision="$Revision: 1.23 $", *s, *e; if ((s = strchr(revision, ':')) && (e = strchr(s, '$'))) s++, i = e - s; else s = revision, i = -1; printk ("Starting kswapd v%.*s\n", i, s); } #define MAX_SWAP_FAIL 3 /* * The background pageout daemon. * Started as a kernel thread from the init process. */ int kswapd(void *unused) { current->session = 1; current->pgrp = 1; sprintf(current->comm, "kswapd"); sigfillset(¤t->blocked); /* * As a kernel thread we want to tamper with system buffers * and other internals and thus be subject to the SMP locking * rules. (On a uniprocessor box this does nothing). */ lock_kernel(); /* Give kswapd a realtime priority. */ current->policy = SCHED_FIFO; current->priority = 32; /* Fixme --- we need to standardise our namings for POSIX.4 realtime scheduling priorities. */ init_swap_timer(); while (1) { int fail; kswapd_awake = 0; flush_signals(current); run_task_queue(&tq_disk); interruptible_sleep_on(&kswapd_wait); kswapd_awake = 1; swapstats.wakeups++; /* Do the background pageout: * We now only swap out as many pages as needed. * When we are truly low on memory, we swap out * synchronously (WAIT == 1). -- Rik. * If we've had too many consecutive failures, * go back to sleep to let other tasks run. */ for (fail = 0; fail++ < MAX_SWAP_FAIL;) { int pages, wait; pages = nr_free_pages; if (nr_free_pages >= min_free_pages) pages += atomic_read(&nr_async_pages); if (pages >= free_pages_high) break; wait = (pages < free_pages_low); if (try_to_free_page(GFP_KERNEL, 0, wait)) fail = 0; } /* * Report failure if we couldn't reach the minimum goal. */ if (nr_free_pages < min_free_pages) printk("kswapd: failed, got %d of %d\n", nr_free_pages, min_free_pages); } } /* * The swap_tick function gets called on every clock tick. */ void swap_tick(void) { int want_wakeup = 0, memory_low = 0; int pages = nr_free_pages + atomic_read(&nr_async_pages); if (pages < free_pages_low) memory_low = want_wakeup = 1; else if (pages < free_pages_high && jiffies >= next_swap_jiffies) want_wakeup = 1; if (want_wakeup) { if (!kswapd_awake) { wake_up(&kswapd_wait); need_resched = 1; } /* Set the next wake-up time */ next_swap_jiffies = jiffies; if (!memory_low) next_swap_jiffies += swapout_interval; } timer_active |= (1<<SWAP_TIMER); } /* * Initialise the swap timer */ void init_swap_timer(void) { timer_table[SWAP_TIMER].expires = 0; timer_table[SWAP_TIMER].fn = swap_tick; timer_active |= (1<<SWAP_TIMER); } |