Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Version: $Id: vmscan.c,v 1.5 1998/02/23 22:14:28 sct Exp $
 */

#include <linux/mm.h>
#include <linux/sched.h>
#include <linux/head.h>
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/swap.h>
#include <linux/swapctl.h>
#include <linux/smp_lock.h>
#include <linux/slab.h>
#include <linux/dcache.h>
#include <linux/fs.h>
#include <linux/pagemap.h>

#include <asm/bitops.h>
#include <asm/pgtable.h>

/* 
 * When are we next due for a page scan? 
 */
static unsigned long next_swap_jiffies = 0;

/* 
 * How often do we do a pageout scan during normal conditions?
 * Default is four times a second.
 */
int swapout_interval = HZ / 4;

/* 
 * The wait queue for waking up the pageout daemon:
 */
static struct wait_queue * kswapd_wait = NULL;

static void init_swap_timer(void);

/*
 * The swap-out functions return 1 if they successfully
 * threw something out, and we got a free page. It returns
 * zero if it couldn't do anything, and any other value
 * indicates it decreased rss, but the page was shared.
 *
 * NOTE! If it sleeps, it *must* return 1 to make sure we
 * don't continue with the swap-out. Otherwise we may be
 * using a process that no longer actually exists (it might
 * have died while we slept).
 */
static inline int try_to_swap_out(struct task_struct * tsk, struct vm_area_struct* vma,
	unsigned long address, pte_t * page_table, int gfp_mask)
{
	pte_t pte;
	unsigned long entry;
	unsigned long page;
	struct page * page_map;

	pte = *page_table;
	if (!pte_present(pte))
		return 0;
	page = pte_page(pte);
	if (MAP_NR(page) >= max_mapnr)
		return 0;

	page_map = mem_map + MAP_NR(page);
	if (PageReserved(page_map)
	    || PageLocked(page_map)
	    || ((gfp_mask & __GFP_DMA) && !PageDMA(page_map)))
		return 0;

	/* 
	 * Deal with page aging.  There are several special cases to
	 * consider:
	 * 
	 * Page has been accessed, but is swap cached.  If the page is
	 * getting sufficiently "interesting" --- its age is getting
	 * high --- then if we are sufficiently short of free swap
	 * pages, then delete the swap cache.  We can only do this if
	 * the swap page's reference count is one: ie. there are no
	 * other references to it beyond the swap cache (as there must
	 * still be PTEs pointing to it if count > 1).
	 * 
	 * If the page has NOT been touched, and its age reaches zero,
	 * then we are swapping it out:
	 *
	 *   If there is already a swap cache page for this page, then
	 *   another process has already allocated swap space, so just
	 *   dereference the physical page and copy in the swap entry
	 *   from the swap cache.  
	 * 
	 * Note, we rely on all pages read in from swap either having
	 * the swap cache flag set, OR being marked writable in the pte,
	 * but NEVER BOTH.  (It IS legal to be neither cached nor dirty,
	 * however.)
	 *
	 * -- Stephen Tweedie 1998 */

	if (PageSwapCache(page_map)) {
		if (pte_write(pte)) {
			struct page *found;
			printk ("VM: Found a writable swap-cached page!\n");
			/* Try to diagnose the problem ... */
			found = find_page(&swapper_inode, page_map->offset);
			if (found) {
				printk("page=%p@%08lx, found=%p, count=%d\n",
					page_map, page_map->offset,
					found, atomic_read(&found->count));
				__free_page(found);
			} else 
				printk ("Spurious, page not in cache\n");
			return 0;
		}
	}
	
	if (pte_young(pte)) {
		set_pte(page_table, pte_mkold(pte));
		touch_page(page_map);
		/* 
		 * We should test here to see if we want to recover any
		 * swap cache page here.  We do this if the page seeing
		 * enough activity, AND we are sufficiently low on swap
		 *
		 * We need to track both the number of available swap
		 * pages and the total number present before we can do
		 * this...  
		 */
		return 0;
	}

	age_page(page_map);
	if (page_map->age)
		return 0;

	if (pte_dirty(pte)) {
		if (vma->vm_ops && vma->vm_ops->swapout) {
			pid_t pid = tsk->pid;
			vma->vm_mm->rss--;
			if (vma->vm_ops->swapout(vma, address - vma->vm_start + vma->vm_offset, page_table))
				kill_proc(pid, SIGBUS, 1);
		} else {
			/*
			 * This is a dirty, swappable page.  First of all,
			 * get a suitable swap entry for it, and make sure
			 * we have the swap cache set up to associate the
			 * page with that swap entry.
			 */
        		entry = in_swap_cache(page_map);
			if (!entry) {
				entry = get_swap_page();
				if (!entry)
					return 0; /* No swap space left */
			}
			
			vma->vm_mm->rss--;
			tsk->nswap++;
			flush_cache_page(vma, address);
			set_pte(page_table, __pte(entry));
			flush_tlb_page(vma, address);
			swap_duplicate(entry);

			/* Now to write back the page.  We have two
			 * cases: if the page is already part of the
			 * swap cache, then it is already on disk.  Just
			 * free the page and return (we release the swap
			 * cache on the last accessor too).
			 *
			 * If we have made a new swap entry, then we
			 * start the write out to disk.  If the page is
			 * shared, however, we still need to keep the
			 * copy in memory, so we add it to the swap
			 * cache. */
			if (PageSwapCache(page_map)) {
				free_page_and_swap_cache(page);
				return (atomic_read(&page_map->count) == 0);
			}
			add_to_swap_cache(page_map, entry);
			/* We checked we were unlocked way up above, and we
			   have been careful not to stall until here */
			set_bit(PG_locked, &page_map->flags);
			/* OK, do a physical write to swap.  */
			rw_swap_page(WRITE, entry, (char *) page, (gfp_mask & __GFP_WAIT));
		}
		/* Now we can free the current physical page.  We also
		 * free up the swap cache if this is the last use of the
		 * page.  Note that there is a race here: the page may
		 * still be shared COW by another process, but that
		 * process may exit while we are writing out the page
		 * asynchronously.  That's no problem, shrink_mmap() can
		 * correctly clean up the occassional unshared page
		 * which gets left behind in the swap cache. */
		free_page_and_swap_cache(page);
		return 1;	/* we slept: the process may not exist any more */
	}

	/* The page was _not_ dirty, but still has a zero age.  It must
	 * already be uptodate on disk.  If it is in the swap cache,
	 * then we can just unlink the page now.  Remove the swap cache
	 * too if this is the last user.  */
        if ((entry = in_swap_cache(page_map)))  {
		vma->vm_mm->rss--;
		flush_cache_page(vma, address);
		set_pte(page_table, __pte(entry));
		flush_tlb_page(vma, address);
		swap_duplicate(entry);
		free_page_and_swap_cache(page);
		return (atomic_read(&page_map->count) == 0);
	} 
	/* 
	 * A clean page to be discarded?  Must be mmap()ed from
	 * somewhere.  Unlink the pte, and tell the filemap code to
	 * discard any cached backing page if this is the last user.
	 */
	if (PageSwapCache(page_map)) {
		printk ("VM: How can this page _still_ be cached?");
		return 0;
	}
	vma->vm_mm->rss--;
	flush_cache_page(vma, address);
	pte_clear(page_table);
	flush_tlb_page(vma, address);
	entry = page_unuse(page_map);
	__free_page(page_map);
	return entry;
}

/*
 * A new implementation of swap_out().  We do not swap complete processes,
 * but only a small number of blocks, before we continue with the next
 * process.  The number of blocks actually swapped is determined on the
 * number of page faults, that this process actually had in the last time,
 * so we won't swap heavily used processes all the time ...
 *
 * Note: the priority argument is a hint on much CPU to waste with the
 *       swap block search, not a hint, of how much blocks to swap with
 *       each process.
 *
 * (C) 1993 Kai Petzke, wpp@marie.physik.tu-berlin.de
 */

static inline int swap_out_pmd(struct task_struct * tsk, struct vm_area_struct * vma,
	pmd_t *dir, unsigned long address, unsigned long end, int gfp_mask)
{
	pte_t * pte;
	unsigned long pmd_end;

	if (pmd_none(*dir))
		return 0;
	if (pmd_bad(*dir)) {
		printk("swap_out_pmd: bad pmd (%08lx)\n", pmd_val(*dir));
		pmd_clear(dir);
		return 0;
	}
	
	pte = pte_offset(dir, address);
	
	pmd_end = (address + PMD_SIZE) & PMD_MASK;
	if (end > pmd_end)
		end = pmd_end;

	do {
		int result;
		tsk->swap_address = address + PAGE_SIZE;
		result = try_to_swap_out(tsk, vma, address, pte, gfp_mask);
		if (result)
			return result;
		address += PAGE_SIZE;
		pte++;
	} while (address < end);
	return 0;
}

static inline int swap_out_pgd(struct task_struct * tsk, struct vm_area_struct * vma,
	pgd_t *dir, unsigned long address, unsigned long end, int gfp_mask)
{
	pmd_t * pmd;
	unsigned long pgd_end;

	if (pgd_none(*dir))
		return 0;
	if (pgd_bad(*dir)) {
		printk("swap_out_pgd: bad pgd (%08lx)\n", pgd_val(*dir));
		pgd_clear(dir);
		return 0;
	}

	pmd = pmd_offset(dir, address);

	pgd_end = (address + PGDIR_SIZE) & PGDIR_MASK;	
	if (end > pgd_end)
		end = pgd_end;
	
	do {
		int result = swap_out_pmd(tsk, vma, pmd, address, end, gfp_mask);
		if (result)
			return result;
		address = (address + PMD_SIZE) & PMD_MASK;
		pmd++;
	} while (address < end);
	return 0;
}

static int swap_out_vma(struct task_struct * tsk, struct vm_area_struct * vma,
	pgd_t *pgdir, unsigned long start, int gfp_mask)
{
	unsigned long end;

	/* Don't swap out areas like shared memory which have their
	    own separate swapping mechanism or areas which are locked down */
	if (vma->vm_flags & (VM_SHM | VM_LOCKED))
		return 0;

	end = vma->vm_end;
	while (start < end) {
		int result = swap_out_pgd(tsk, vma, pgdir, start, end, gfp_mask);
		if (result)
			return result;
		start = (start + PGDIR_SIZE) & PGDIR_MASK;
		pgdir++;
	}
	return 0;
}

static int swap_out_process(struct task_struct * p, int gfp_mask)
{
	unsigned long address;
	struct vm_area_struct* vma;

	/*
	 * Go through process' page directory.
	 */
	address = p->swap_address;

	/*
	 * Find the proper vm-area
	 */
	vma = find_vma(p->mm, address);
	if (!vma) {
		p->swap_address = 0;
		return 0;
	}
	if (address < vma->vm_start)
		address = vma->vm_start;

	for (;;) {
		int result = swap_out_vma(p, vma, pgd_offset(p->mm, address), address, gfp_mask);
		if (result)
			return result;
		vma = vma->vm_next;
		if (!vma)
			break;
		address = vma->vm_start;
	}
	p->swap_address = 0;
	return 0;
}

/*
 * Select the task with maximal swap_cnt and try to swap out a page.
 * N.B. This function returns only 0 or 1.  Return values != 1 from
 * the lower level routines result in continued processing.
 */
static int swap_out(unsigned int priority, int gfp_mask)
{
	struct task_struct * p, * pbest;
	int counter, assign, max_cnt;

	/* 
	 * We make one or two passes through the task list, indexed by 
	 * assign = {0, 1}:
	 *   Pass 1: select the swappable task with maximal swap_cnt.
	 *   Pass 2: assign new swap_cnt values, then select as above.
	 * With this approach, there's no need to remember the last task
	 * swapped out.  If the swap-out fails, we clear swap_cnt so the 
	 * task won't be selected again until all others have been tried.
	 */
	counter = ((PAGEOUT_WEIGHT * nr_tasks) >> 10) >> priority;
	for (; counter >= 0; counter--) {
		assign = 0;
		max_cnt = 0;
		pbest = NULL;
	select:
		read_lock(&tasklist_lock);
		p = init_task.next_task;
		for (; p != &init_task; p = p->next_task) {
			if (!p->swappable)
				continue;
	 		if (p->mm->rss <= 0)
				continue;
			if (assign) {
				/* 
				 * If we didn't select a task on pass 1, 
				 * assign each task a new swap_cnt.
				 * Normalise the number of pages swapped
				 * by multiplying by (RSS / 1MB)
				 */
				p->swap_cnt = AGE_CLUSTER_SIZE(p->mm->rss);
			}
			if (p->swap_cnt > max_cnt) {
				max_cnt = p->swap_cnt;
				pbest = p;
			}
		}
		read_unlock(&tasklist_lock);
		if (!pbest) {
			if (!assign) {
				assign = 1;
				goto select;
			}
			goto out;
		}
		pbest->swap_cnt--;

		switch (swap_out_process(pbest, gfp_mask)) {
		case 0:
			/*
			 * Clear swap_cnt so we don't look at this task
			 * again until we've tried all of the others.
			 * (We didn't block, so the task is still here.)
			 */
			pbest->swap_cnt = 0;
			break;
		case 1:
			return 1;
		default:
			break;
		};
	}
out:
	return 0;
}

/*
 * We are much more aggressive about trying to swap out than we used
 * to be.  This works out OK, because we now do proper aging on page
 * contents. 
 */
static int do_try_to_free_page(int gfp_mask)
{
	static int state = 0;
	int i=6;
	int stop;

	/* Always trim SLAB caches when memory gets low. */
	kmem_cache_reap(gfp_mask);

	/* We try harder if we are waiting .. */
	stop = 3;
	if (gfp_mask & __GFP_WAIT)
		stop = 0;

	if (((buffermem >> PAGE_SHIFT) * 100 > buffer_mem.borrow_percent * num_physpages)
		   || (page_cache_size * 100 > page_cache.borrow_percent * num_physpages))
		shrink_mmap(i, gfp_mask);

	switch (state) {
		do {
		case 0:
			if (shrink_mmap(i, gfp_mask))
				return 1;
			state = 1;
		case 1:
			if ((gfp_mask & __GFP_IO) && shm_swap(i, gfp_mask))
				return 1;
			state = 2;
		case 2:
			if (swap_out(i, gfp_mask))
				return 1;
			state = 3;
		case 3:
			shrink_dcache_memory(i, gfp_mask);
			state = 0;
		i--;
		} while ((i - stop) >= 0);
	}
	return 0;
}

/*
 * Before we start the kernel thread, print out the 
 * kswapd initialization message (otherwise the init message 
 * may be printed in the middle of another driver's init 
 * message).  It looks very bad when that happens.
 */
void kswapd_setup(void)
{
       int i;
       char *revision="$Revision: 1.5 $", *s, *e;

       if ((s = strchr(revision, ':')) &&
           (e = strchr(s, '$')))
               s++, i = e - s;
       else
               s = revision, i = -1;
       printk ("Starting kswapd v%.*s\n", i, s);
}

/*
 * The background pageout daemon.
 * Started as a kernel thread from the init process.
 */
int kswapd(void *unused)
{
	struct wait_queue wait = { current, NULL };
	current->session = 1;
	current->pgrp = 1;
	sprintf(current->comm, "kswapd");
	sigfillset(&current->blocked);
	
	/*
	 *	As a kernel thread we want to tamper with system buffers
	 *	and other internals and thus be subject to the SMP locking
	 *	rules. (On a uniprocessor box this does nothing).
	 */
	lock_kernel();

	/* Give kswapd a realtime priority. */
	current->policy = SCHED_FIFO;
	current->priority = 32;  /* Fixme --- we need to standardise our
				    namings for POSIX.4 realtime scheduling
				    priorities.  */

	init_swap_timer();
	add_wait_queue(&kswapd_wait, &wait);
	while (1) {
		int tries;

		current->state = TASK_INTERRUPTIBLE;
		flush_signals(current);
		run_task_queue(&tq_disk);
		schedule();
		swapstats.wakeups++;

		/*
		 * Do the background pageout: be
		 * more aggressive if we're really
		 * low on free memory.
		 *
		 * We try page_daemon.tries_base times, divided by
		 * an 'urgency factor'. In practice this will mean
		 * a value of pager_daemon.tries_base / 8 or 4 = 64
		 * or 128 pages at a time.
		 * This gives us 64 (or 128) * 4k * 4 (times/sec) =
		 * 1 (or 2) MB/s swapping bandwidth in low-priority
		 * background paging. This number rises to 8 MB/s
		 * when the priority is highest (but then we'll be
		 * woken up more often and the rate will be even
		 * higher).
		 */
		tries = pager_daemon.tries_base;
		tries >>= 4*free_memory_available();
	
		while (tries--) {
			int gfp_mask;

			if (free_memory_available() > 1)
				break;
			gfp_mask = __GFP_IO;
			do_try_to_free_page(gfp_mask);
			/*
			 * Syncing large chunks is faster than swapping
			 * synchronously (less head movement). -- Rik.
			 */
			if (atomic_read(&nr_async_pages) >= pager_daemon.swap_cluster)
				run_task_queue(&tq_disk);

		}
	}
	/* As if we could ever get here - maybe we want to make this killable */
	remove_wait_queue(&kswapd_wait, &wait);
	unlock_kernel();
	return 0;
}

/*
 * This is REALLY ugly.
 *
 * We need to make the locks finer granularity, but right
 * now we need this so that we can do page allocations
 * without holding the kernel lock etc.
 */
int try_to_free_pages(unsigned int gfp_mask, int count)
{
	int retval;

	lock_kernel();
	do {
		retval = do_try_to_free_page(gfp_mask);
		if (!retval)
			break;
		count--;
	} while (count > 0);
	unlock_kernel();
	return retval;
}

/* 
 * The swap_tick function gets called on every clock tick.
 */
void swap_tick(void)
{
	unsigned long now, want;
	int want_wakeup = 0;

	want = next_swap_jiffies;
	now = jiffies;

	/*
	 * Examine the memory queues. Mark memory low
	 * if there is nothing available in the three
	 * highest queues.
	 *
	 * Schedule for wakeup if there isn't lots
	 * of free memory.
	 */
	switch (free_memory_available()) {
	case 0:
		want = now;
		/* Fall through */
	case 1:
		want_wakeup = 1;
	default:
	}
 
	if ((long) (now - want) >= 0) {
		if (want_wakeup || (num_physpages * buffer_mem.max_percent) < (buffermem >> PAGE_SHIFT) * 100
				|| (num_physpages * page_cache.max_percent < page_cache_size * 100)) {
			/* Set the next wake-up time */
			next_swap_jiffies = now + swapout_interval;
			wake_up(&kswapd_wait);
		}
	}
	timer_active |= (1<<SWAP_TIMER);
}

/* 
 * Initialise the swap timer
 */

void init_swap_timer(void)
{
	timer_table[SWAP_TIMER].expires = 0;
	timer_table[SWAP_TIMER].fn = swap_tick;
	timer_active |= (1<<SWAP_TIMER);
}