Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 | /* * linux/mm/vmscan.c * * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds * * Swap reorganised 29.12.95, Stephen Tweedie. * kswapd added: 7.1.96 sct * Removed kswapd_ctl limits, and swap out as many pages as needed * to bring the system back to freepages.high: 2.4.97, Rik van Riel. * Version: $Id: vmscan.c,v 1.5 1998/02/23 22:14:28 sct Exp $ */ #include <linux/slab.h> #include <linux/kernel_stat.h> #include <linux/swap.h> #include <linux/swapctl.h> #include <linux/smp_lock.h> #include <linux/pagemap.h> #include <linux/init.h> #include <linux/highmem.h> #include <linux/file.h> #include <asm/pgalloc.h> /* * The swap-out functions return 1 if they successfully * threw something out, and we got a free page. It returns * zero if it couldn't do anything, and any other value * indicates it decreased rss, but the page was shared. * * NOTE! If it sleeps, it *must* return 1 to make sure we * don't continue with the swap-out. Otherwise we may be * using a process that no longer actually exists (it might * have died while we slept). */ static int try_to_swap_out(struct vm_area_struct* vma, unsigned long address, pte_t * page_table, int gfp_mask, zone_t *zone) { pte_t pte; swp_entry_t entry; struct page * page; int (*swapout)(struct page *, struct file *); pte = *page_table; if (!pte_present(pte)) goto out_failed; page = pte_page(pte); if (page-mem_map >= max_mapnr) goto out_failed; /* Don't look at this pte if it's been accessed recently. */ if (pte_young(pte)) { /* * Transfer the "accessed" bit from the page * tables to the global page map. */ set_pte(page_table, pte_mkold(pte)); set_bit(PG_referenced, &page->flags); goto out_failed; } if (PageReserved(page) || PageLocked(page) || (zone && (!memclass(page->zone, zone)))) goto out_failed; /* * Is the page already in the swap cache? If so, then * we can just drop our reference to it without doing * any IO - it's already up-to-date on disk. * * Return 0, as we didn't actually free any real * memory, and we should just continue our scan. */ if (PageSwapCache(page)) { entry.val = page->index; swap_duplicate(entry); set_pte(page_table, swp_entry_to_pte(entry)); drop_pte: vma->vm_mm->rss--; flush_tlb_page(vma, address); __free_page(page); goto out_failed; } /* * Is it a clean page? Then it must be recoverable * by just paging it in again, and we can just drop * it.. * * However, this won't actually free any real * memory, as the page will just be in the page cache * somewhere, and as such we should just continue * our scan. * * Basically, this just makes it possible for us to do * some real work in the future in "shrink_mmap()". */ if (!pte_dirty(pte)) { flush_cache_page(vma, address); pte_clear(page_table); goto drop_pte; } /* * Don't go down into the swap-out stuff if * we cannot do I/O! Avoid recursing on FS * locks etc. */ if (!(gfp_mask & __GFP_IO)) goto out_failed; /* * Ok, it's really dirty. That means that * we should either create a new swap cache * entry for it, or we should write it back * to its own backing store. * * Note that in neither case do we actually * know that we make a page available, but * as we potentially sleep we can no longer * continue scanning, so we migth as well * assume we free'd something. * * NOTE NOTE NOTE! This should just set a * dirty bit in 'page', and just drop the * pte. All the hard work would be done by * shrink_mmap(). * * That would get rid of a lot of problems. */ flush_cache_page(vma, address); if (vma->vm_ops && (swapout = vma->vm_ops->swapout)) { int error; struct file *file = vma->vm_file; if (file) get_file(file); pte_clear(page_table); vma->vm_mm->rss--; flush_tlb_page(vma, address); vmlist_access_unlock(vma->vm_mm); error = swapout(page, file); if (file) fput(file); if (!error) goto out_free_success; __free_page(page); return error; } /* * This is a dirty, swappable page. First of all, * get a suitable swap entry for it, and make sure * we have the swap cache set up to associate the * page with that swap entry. */ entry = acquire_swap_entry(page); if (!entry.val) goto out_failed; /* No swap space left */ if (!(page = prepare_highmem_swapout(page))) goto out_swap_free; swap_duplicate(entry); /* One for the process, one for the swap cache */ /* This will also lock the page */ add_to_swap_cache(page, entry); /* Put the swap entry into the pte after the page is in swapcache */ vma->vm_mm->rss--; set_pte(page_table, swp_entry_to_pte(entry)); flush_tlb_page(vma, address); vmlist_access_unlock(vma->vm_mm); /* OK, do a physical asynchronous write to swap. */ rw_swap_page(WRITE, page, 0); out_free_success: __free_page(page); return 1; out_swap_free: swap_free(entry); out_failed: return 0; } /* * A new implementation of swap_out(). We do not swap complete processes, * but only a small number of blocks, before we continue with the next * process. The number of blocks actually swapped is determined on the * number of page faults, that this process actually had in the last time, * so we won't swap heavily used processes all the time ... * * Note: the priority argument is a hint on much CPU to waste with the * swap block search, not a hint, of how much blocks to swap with * each process. * * (C) 1993 Kai Petzke, wpp@marie.physik.tu-berlin.de */ static inline int swap_out_pmd(struct vm_area_struct * vma, pmd_t *dir, unsigned long address, unsigned long end, int gfp_mask, zone_t *zone) { pte_t * pte; unsigned long pmd_end; if (pmd_none(*dir)) return 0; if (pmd_bad(*dir)) { pmd_ERROR(*dir); pmd_clear(dir); return 0; } pte = pte_offset(dir, address); pmd_end = (address + PMD_SIZE) & PMD_MASK; if (end > pmd_end) end = pmd_end; do { int result; vma->vm_mm->swap_address = address + PAGE_SIZE; result = try_to_swap_out(vma, address, pte, gfp_mask, zone); if (result) return result; address += PAGE_SIZE; pte++; } while (address && (address < end)); return 0; } static inline int swap_out_pgd(struct vm_area_struct * vma, pgd_t *dir, unsigned long address, unsigned long end, int gfp_mask, zone_t *zone) { pmd_t * pmd; unsigned long pgd_end; if (pgd_none(*dir)) return 0; if (pgd_bad(*dir)) { pgd_ERROR(*dir); pgd_clear(dir); return 0; } pmd = pmd_offset(dir, address); pgd_end = (address + PGDIR_SIZE) & PGDIR_MASK; if (pgd_end && (end > pgd_end)) end = pgd_end; do { int result = swap_out_pmd(vma, pmd, address, end, gfp_mask, zone); if (result) return result; address = (address + PMD_SIZE) & PMD_MASK; pmd++; } while (address && (address < end)); return 0; } static int swap_out_vma(struct vm_area_struct * vma, unsigned long address, int gfp_mask, zone_t *zone) { pgd_t *pgdir; unsigned long end; /* Don't swap out areas which are locked down */ if (vma->vm_flags & VM_LOCKED) return 0; pgdir = pgd_offset(vma->vm_mm, address); end = vma->vm_end; if (address >= end) BUG(); do { int result = swap_out_pgd(vma, pgdir, address, end, gfp_mask, zone); if (result) return result; address = (address + PGDIR_SIZE) & PGDIR_MASK; pgdir++; } while (address && (address < end)); return 0; } static int swap_out_mm(struct mm_struct * mm, int gfp_mask, zone_t *zone) { unsigned long address; struct vm_area_struct* vma; /* * Go through process' page directory. */ address = mm->swap_address; /* * Find the proper vm-area after freezing the vma chain * and ptes. */ vmlist_access_lock(mm); vma = find_vma(mm, address); if (vma) { if (address < vma->vm_start) address = vma->vm_start; for (;;) { int result = swap_out_vma(vma, address, gfp_mask, zone); if (result) return result; vma = vma->vm_next; if (!vma) break; address = vma->vm_start; } } vmlist_access_unlock(mm); /* We didn't find anything for the process */ mm->swap_cnt = 0; mm->swap_address = 0; return 0; } /* * Select the task with maximal swap_cnt and try to swap out a page. * N.B. This function returns only 0 or 1. Return values != 1 from * the lower level routines result in continued processing. */ static int swap_out(unsigned int priority, int gfp_mask, zone_t *zone) { struct task_struct * p; int counter; int __ret = 0; lock_kernel(); /* * We make one or two passes through the task list, indexed by * assign = {0, 1}: * Pass 1: select the swappable task with maximal RSS that has * not yet been swapped out. * Pass 2: re-assign rss swap_cnt values, then select as above. * * With this approach, there's no need to remember the last task * swapped out. If the swap-out fails, we clear swap_cnt so the * task won't be selected again until all others have been tried. * * Think of swap_cnt as a "shadow rss" - it tells us which process * we want to page out (always try largest first). */ counter = nr_threads / (priority+1); if (counter < 1) counter = 1; if (counter > nr_threads) counter = nr_threads; for (; counter >= 0; counter--) { int assign = 0; int max_cnt = 0; struct mm_struct *best = NULL; int pid = 0; select: read_lock(&tasklist_lock); p = init_task.next_task; for (; p != &init_task; p = p->next_task) { struct mm_struct *mm = p->mm; if (!p->swappable || !mm) continue; if (mm->rss <= 0) continue; /* Refresh swap_cnt? */ if (assign) mm->swap_cnt = mm->rss; if (mm->swap_cnt > max_cnt) { max_cnt = mm->swap_cnt; best = mm; pid = p->pid; } } read_unlock(&tasklist_lock); if (!best) { if (!assign) { assign = 1; goto select; } goto out; } else { int ret; atomic_inc(&best->mm_count); ret = swap_out_mm(best, gfp_mask, zone); mmdrop(best); if (!ret) continue; if (ret < 0) kill_proc(pid, SIGBUS, 1); __ret = 1; goto out; } } out: unlock_kernel(); return __ret; } /* * We need to make the locks finer granularity, but right * now we need this so that we can do page allocations * without holding the kernel lock etc. * * We want to try to free "count" pages, and we need to * cluster them so that we get good swap-out behaviour. See * the "free_memory()" macro for details. */ static int do_try_to_free_pages(unsigned int gfp_mask, zone_t *zone) { int priority; int count = SWAP_CLUSTER_MAX; /* Always trim SLAB caches when memory gets low. */ kmem_cache_reap(gfp_mask); priority = 6; do { while (shrink_mmap(priority, gfp_mask, zone)) { if (!--count) goto done; } /* don't be too light against the d/i cache since shrink_mmap() almost never fail when there's really plenty of memory free. */ count -= shrink_dcache_memory(priority, gfp_mask, zone); count -= shrink_icache_memory(priority, gfp_mask, zone); if (count <= 0) goto done; /* Try to get rid of some shared memory pages.. */ if (gfp_mask & __GFP_IO) { while (shm_swap(priority, gfp_mask, zone)) { if (!--count) goto done; } } /* Then, try to page stuff out.. */ while (swap_out(priority, gfp_mask, zone)) { if (!--count) goto done; } } while (--priority >= 0); done: return priority >= 0; } static struct task_struct *kswapd_process; /* * The background pageout daemon, started as a kernel thread * from the init process. * * This basically executes once a second, trickling out pages * so that we have _some_ free memory available even if there * is no other activity that frees anything up. This is needed * for things like routing etc, where we otherwise might have * all activity going on in asynchronous contexts that cannot * page things out. * * If there are applications that are active memory-allocators * (most normal use), this basically shouldn't matter. */ int kswapd(void *unused) { struct task_struct *tsk = current; kswapd_process = tsk; tsk->session = 1; tsk->pgrp = 1; strcpy(tsk->comm, "kswapd"); sigfillset(&tsk->blocked); /* * Tell the memory management that we're a "memory allocator", * and that if we need more memory we should get access to it * regardless (see "__get_free_pages()"). "kswapd" should * never get caught in the normal page freeing logic. * * (Kswapd normally doesn't need memory anyway, but sometimes * you need a small amount of memory in order to be able to * page out something else, and this flag essentially protects * us from recursively trying to free more memory as we're * trying to free the first piece of memory in the first place). */ tsk->flags |= PF_MEMALLOC; while (1) { /* * Wake up once a second to see if we need to make * more memory available. * * If we actually get into a low-memory situation, * the processes needing more memory will wake us * up on a more timely basis. */ do { /* kswapd is critical to provide GFP_ATOMIC allocations (not GFP_HIGHMEM ones). */ if (nr_free_pages() - nr_free_highpages() >= freepages.high) break; if (!do_try_to_free_pages(GFP_KSWAPD, 0)) break; run_task_queue(&tq_disk); } while (!tsk->need_resched); tsk->state = TASK_INTERRUPTIBLE; schedule_timeout(HZ); } } /* * Called by non-kswapd processes when they want more * memory. * * In a perfect world, this should just wake up kswapd * and return. We don't actually want to swap stuff out * from user processes, because the locking issues are * nasty to the extreme (file write locks, and MM locking) * * One option might be to let kswapd do all the page-out * and VM page table scanning that needs locking, and this * process thread could do just the mmap shrink stage that * can be done by just dropping cached pages without having * any deadlock issues. */ int try_to_free_pages(unsigned int gfp_mask, zone_t *zone) { int retval = 1; wake_up_process(kswapd_process); if (gfp_mask & __GFP_WAIT) retval = do_try_to_free_pages(gfp_mask, zone); return retval; } static int __init kswapd_init(void) { printk("Starting kswapd v1.6\n"); swap_setup(); kernel_thread(kswapd, NULL, CLONE_FS | CLONE_FILES | CLONE_SIGHAND); return 0; } module_init(kswapd_init) |