Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Version: $Id: vmscan.c,v 1.4.2.2 1996/01/20 18:22:47 linux Exp $
 */

#include <linux/mm.h>
#include <linux/sched.h>
#include <linux/head.h>
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/stat.h>
#include <linux/swap.h>
#include <linux/fs.h>
#include <linux/swapctl.h>
#include <linux/pagemap.h>
#include <linux/smp_lock.h>

#include <asm/dma.h>
#include <asm/system.h> /* for cli()/sti() */
#include <asm/segment.h> /* for memcpy_to/fromfs */
#include <asm/bitops.h>
#include <asm/pgtable.h>

/*
 * To check memory consuming code elsewhere set this to 1
 */
#define MM_DEBUG 0

/* 
 * When are we next due for a page scan? 
 */
static int next_swap_jiffies = 0;

/*
 * Was the last kswapd wakeup caused by
 *     nr_free_pages < free_pages_low
 */
static int last_wakeup_low = 0;

/* 
 * How often do we do a pageout scan during normal conditions?
 * Default is four times a second.
 */
int swapout_interval = HZ / 4;

/* 
 * The wait queue for waking up the pageout daemon:
 */
static struct wait_queue * kswapd_wait = NULL;

/* 
 * We avoid doing a reschedule if the pageout daemon is already awake;
 */
static int kswapd_awake = 0;

/*
 * sysctl-modifiable parameters to control the aggressiveness of the
 * page-searching within the kswapd page recovery daemon.
 */
kswapd_control_t kswapd_ctl = {4, -1, -1, -1, -1};

static void init_swap_timer(void);

/*
 * The swap-out functions return 1 if they successfully
 * threw something out, and we got a free page. It returns
 * zero if it couldn't do anything, and any other value
 * indicates it decreased rss, but the page was shared.
 *
 * NOTE! If it sleeps, it *must* return 1 to make sure we
 * don't continue with the swap-out. Otherwise we may be
 * using a process that no longer actually exists (it might
 * have died while we slept).
 */
static inline int try_to_swap_out(struct task_struct * tsk, struct vm_area_struct* vma,
	unsigned long address, pte_t * page_table, int dma, int wait)
{
	pte_t pte;
	unsigned long entry;
	unsigned long page;
	struct page * page_map;

	pte = *page_table;
	if (!pte_present(pte))
		return 0;
	page = pte_page(pte);
	if (MAP_NR(page) >= MAP_NR(high_memory))
		return 0;

	page_map = mem_map + MAP_NR(page);
	if (PageReserved(page_map)
	    || PageLocked(page_map)
	    || (dma && !PageDMA(page_map)))
		return 0;
	/* Deal with page aging.  Pages age from being unused; they
	 * rejuvenate on being accessed.  Only swap old pages (age==0
	 * is oldest). */
	if ((pte_dirty(pte) && delete_from_swap_cache(MAP_NR(page))) 
	    || pte_young(pte))  {
		set_pte(page_table, pte_mkold(pte));
		touch_page(page_map);
		return 0;
	}
	age_page(page_map);
	if (page_map->age)
		return 0;
	if (pte_dirty(pte)) {
		if (vma->vm_ops && vma->vm_ops->swapout) {
			pid_t pid = tsk->pid;
			vma->vm_mm->rss--;
			if (vma->vm_ops->swapout(vma, address - vma->vm_start + vma->vm_offset, page_table))
				kill_proc(pid, SIGBUS, 1);
		} else {
			if (page_map->count != 1)
				return 0;
			if (!(entry = get_swap_page()))
				return 0;
			vma->vm_mm->rss--;
			flush_cache_page(vma, address);
			set_pte(page_table, __pte(entry));
			flush_tlb_page(vma, address);
			tsk->nswap++;
			rw_swap_page(WRITE, entry, (char *) page, wait);
		}
		free_page(page);
		return 1;	/* we slept: the process may not exist any more */
	}
        if ((entry = find_in_swap_cache(MAP_NR(page))))  {
		if (page_map->count != 1) {
			set_pte(page_table, pte_mkdirty(pte));
			printk("Aiee.. duplicated cached swap-cache entry\n");
			return 0;
		}
		vma->vm_mm->rss--;
		flush_cache_page(vma, address);
		set_pte(page_table, __pte(entry));
		flush_tlb_page(vma, address);
		free_page(page);
		return 1;
	} 
	vma->vm_mm->rss--;
	flush_cache_page(vma, address);
	pte_clear(page_table);
	flush_tlb_page(vma, address);
	entry = page_unuse(page);
	free_page(page);
	return entry;
}

/*
 * A new implementation of swap_out().  We do not swap complete processes,
 * but only a small number of blocks, before we continue with the next
 * process.  The number of blocks actually swapped is determined on the
 * number of page faults, that this process actually had in the last time,
 * so we won't swap heavily used processes all the time ...
 *
 * Note: the priority argument is a hint on much CPU to waste with the
 *       swap block search, not a hint, of how much blocks to swap with
 *       each process.
 *
 * (C) 1993 Kai Petzke, wpp@marie.physik.tu-berlin.de
 */

static inline int swap_out_pmd(struct task_struct * tsk, struct vm_area_struct * vma,
	pmd_t *dir, unsigned long address, unsigned long end, int dma, int wait)
{
	pte_t * pte;
	unsigned long pmd_end;

	if (pmd_none(*dir))
		return 0;
	if (pmd_bad(*dir)) {
		printk("swap_out_pmd: bad pmd (%08lx)\n", pmd_val(*dir));
		pmd_clear(dir);
		return 0;
	}
	
	pte = pte_offset(dir, address);
	
	pmd_end = (address + PMD_SIZE) & PMD_MASK;
	if (end > pmd_end)
		end = pmd_end;

	do {
		int result;
		tsk->swap_address = address + PAGE_SIZE;
		result = try_to_swap_out(tsk, vma, address, pte, dma, wait);
		if (result)
			return result;
		address += PAGE_SIZE;
		pte++;
	} while (address < end);
	return 0;
}

static inline int swap_out_pgd(struct task_struct * tsk, struct vm_area_struct * vma,
	pgd_t *dir, unsigned long address, unsigned long end, int dma, int wait)
{
	pmd_t * pmd;
	unsigned long pgd_end;

	if (pgd_none(*dir))
		return 0;
	if (pgd_bad(*dir)) {
		printk("swap_out_pgd: bad pgd (%08lx)\n", pgd_val(*dir));
		pgd_clear(dir);
		return 0;
	}

	pmd = pmd_offset(dir, address);

	pgd_end = (address + PGDIR_SIZE) & PGDIR_MASK;	
	if (end > pgd_end)
		end = pgd_end;
	
	do {
		int result = swap_out_pmd(tsk, vma, pmd, address, end, dma, wait);
		if (result)
			return result;
		address = (address + PMD_SIZE) & PMD_MASK;
		pmd++;
	} while (address < end);
	return 0;
}

static int swap_out_vma(struct task_struct * tsk, struct vm_area_struct * vma,
	pgd_t *pgdir, unsigned long start, int dma, int wait)
{
	unsigned long end;

	/* Don't swap out areas like shared memory which have their
	    own separate swapping mechanism or areas which are locked down */
	if (vma->vm_flags & (VM_SHM | VM_LOCKED))
		return 0;

	end = vma->vm_end;
	while (start < end) {
		int result = swap_out_pgd(tsk, vma, pgdir, start, end, dma, wait);
		if (result)
			return result;
		start = (start + PGDIR_SIZE) & PGDIR_MASK;
		pgdir++;
	}
	return 0;
}

static int swap_out_process(struct task_struct * p, int dma, int wait)
{
	unsigned long address;
	struct vm_area_struct* vma;

	/*
	 * Go through process' page directory.
	 */
	address = p->swap_address;
	p->swap_address = 0;

	/*
	 * Find the proper vm-area
	 */
	vma = find_vma(p->mm, address);
	if (!vma)
		return 0;
	if (address < vma->vm_start)
		address = vma->vm_start;

	for (;;) {
		int result = swap_out_vma(p, vma, pgd_offset(p->mm, address), address, dma, wait);
		if (result)
			return result;
		vma = vma->vm_next;
		if (!vma)
			break;
		address = vma->vm_start;
	}
	p->swap_address = 0;
	return 0;
}

static int swap_out(unsigned int priority, int dma, int wait)
{
	static int swap_task;
	int loop, counter, shfrv;
	struct task_struct *p;

#ifdef MM_DEBUG
	shfrv = 10;
#else
	/*
	 * Trouble due ageing pages: In some situations it is possible that we cross only tasks
	 * which are swapped out or which have only physical pages with age >= 3.
	 * High values of swap_cnt for memory consuming tasks do aggravate such situations.
	 *
	 * If PAGEOUT_WEIGHT has a value of 8192 a right shift value of 10 leads to
	 *     (8 * nr_tasks) >> priority
	 * Together with a high number of tasks, say 100, we have counters (due priority)
	 *     12(6) + 25(5) + 50(4) + 100(3) + 200(2) + 400(1) + 800(0)
	 * and as total result 1587 scans of swap_out() to swap out a task page.
	 *
	 * Just assume 80 tasks are swapped out and the remaining tasks have a swap_cnt value >= 40
	 * together with pages with age >= 3.  Then we need approx 20*40*2 = 1600 scans to get a
	 * free page.
	 * And now assume that the amount of cached pages, buffers, and ipc pages are really low.
	 */
	switch (priority) {
		case 6: case 5: case 4:  /* be friendly */
			shfrv = 10;
			break;
		case 3: case 2: case 1:  /* more intensive */
			shfrv =  9;
			break;
		case 0: default:         /* sorry we need a page */
			shfrv =  8;
			break;
	}
#endif

	counter = ((PAGEOUT_WEIGHT * nr_tasks) >> shfrv) >> priority;
	for(; counter >= 0; counter--) {
		/*
		 * Check that swap_task is suitable for swapping.  If not, look for
		 * the next suitable process.
		 */
		loop = 0;
		while(1) {
			if (swap_task >= NR_TASKS) {
				swap_task = 1;
				if (loop)
					/* all processes are unswappable or already swapped out */
					return 0;
				loop = 1;
			}

			p = task[swap_task];
			if (p && p->swappable && p->mm->rss)
				break;

			swap_task++;
		}

		/*
		 * Determine the number of pages to swap from this process.
		 */
		if (!p->swap_cnt) {
 			/*
			 * Normalise the number of pages swapped by
			 * multiplying by (RSS / 1MB)
			 */
			p->swap_cnt = AGE_CLUSTER_SIZE(p->mm->rss);
		}
		if (!--p->swap_cnt)
			swap_task++;
		switch (swap_out_process(p, dma, wait)) {
			case 0:
				if (p->state == TASK_STOPPED)
					/* Stopped task occupy nonused ram */
					break;
				if (p->swap_cnt)
					swap_task++;
				break;
			case 1:
				return 1;
			default:
				break;
		}
	}
#ifdef MM_DEBUG
	if (!priority) {
		printk("swap_out: physical ram %6dkB, min pages   %6dkB\n",
			(int)(high_memory>>10), min_free_pages<<(PAGE_SHIFT-10));
		printk("swap_out:   free pages %6dkB, async pages %6dkB\n",
			nr_free_pages<<(PAGE_SHIFT-10), nr_async_pages<<(PAGE_SHIFT-10));
	}
#endif
	return 0;
}

/*
 * We are much more aggressive about trying to swap out than we used
 * to be.  This works out OK, because we now do proper aging on page
 * contents. 
 */
int try_to_free_page(int priority, int dma, int wait)
{
	static int state = 0;
	int i=6;
	int stop;

	/* we don't try as hard if we're not waiting.. */
	stop = 3;
	if (wait)
		stop = 0;
	switch (state) {
		do {
		case 0:
			if (shrink_mmap(i, dma))
				return 1;
			state = 1;
		case 1:
			if (shm_swap(i, dma))
				return 1;
			state = 2;
		default:
			if (swap_out(i, dma, wait))
				return 1;
			state = 0;
		i--;
		} while ((i - stop) >= 0);
	}
	return 0;
}

/*
 * Before we start the kernel thread, print out the 
 * kswapd initialization message (otherwise the init message 
 * may be printed in the middle of another driver's init 
 * message).  It looks very bad when that happens.
 */
void kswapd_setup(void)
{
       int i;
       char *revision="$Revision: 1.4.2.2 $", *s, *e;

       if ((s = strchr(revision, ':')) &&
           (e = strchr(s, '$')))
               s++, i = e - s;
       else
               s = revision, i = -1;
       printk ("Starting kswapd v%.*s\n", i, s);
}

/*
 * The background pageout daemon.
 * Started as a kernel thread from the init process.
 */
int kswapd(void *unused)
{
	int i;
	
	current->session = 1;
	current->pgrp = 1;
	sprintf(current->comm, "kswapd");
	current->blocked = ~0UL;
	
	/*
	 *	As a kernel thread we want to tamper with system buffers
	 *	and other internals and thus be subject to the SMP locking
	 *	rules. (On a uniprocessor box this does nothing).
	 */
	 
#ifdef __SMP__
	lock_kernel();
	syscall_count++;
#endif

	/* Give kswapd a realtime priority. */
	current->policy = SCHED_FIFO;
	current->priority = 32;  /* Fixme --- we need to standardise our
				    namings for POSIX.4 realtime scheduling
				    priorities.  */

	init_swap_timer();
	
	while (1) {
		/* low on memory, we need to start swapping soon */
		next_swap_jiffies = jiffies +
			(last_wakeup_low ? swapout_interval >> 1 : swapout_interval);
		kswapd_awake = 0;
		current->signal = 0;
		run_task_queue(&tq_disk);
		interruptible_sleep_on(&kswapd_wait);
		kswapd_awake = 1;
		swapstats.wakeups++;
		/* Do the background pageout: */
		for (i=0; i < kswapd_ctl.maxpages; i++)
			try_to_free_page(GFP_KERNEL, 0,
					 (nr_free_pages < min_free_pages));
	}
}

/* 
 * The swap_tick function gets called on every clock tick.
 */

void swap_tick(void)
{
	int	want_wakeup = 0;

	if ((nr_free_pages + nr_async_pages) < free_pages_low) {
		if (last_wakeup_low)
			want_wakeup = (jiffies >= next_swap_jiffies);
		else
			last_wakeup_low = want_wakeup = 1;
	}
	else if (((nr_free_pages + nr_async_pages) < free_pages_high) && 
	         (jiffies >= next_swap_jiffies)) {
		last_wakeup_low = 0;
		want_wakeup = 1;
	}

	if (want_wakeup) {
		if (!kswapd_awake && kswapd_ctl.maxpages > 0) {
			wake_up(&kswapd_wait);
			need_resched = 1;
		}
	}
	timer_active |= (1<<SWAP_TIMER);
}


/* 
 * Initialise the swap timer
 */

void init_swap_timer(void)
{
	timer_table[SWAP_TIMER].expires = 0;
	timer_table[SWAP_TIMER].fn = swap_tick;
	timer_active |= (1<<SWAP_TIMER);
}