Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 | /* * linux/mm/vmscan.c * * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds * * Swap reorganised 29.12.95, Stephen Tweedie. * kswapd added: 7.1.96 sct * Removed kswapd_ctl limits, and swap out as many pages as needed * to bring the system back to freepages.high: 2.4.97, Rik van Riel. * Version: $Id: vmscan.c,v 1.5 1998/02/23 22:14:28 sct Exp $ */ #include <linux/mm.h> #include <linux/sched.h> #include <linux/kernel.h> #include <linux/kernel_stat.h> #include <linux/errno.h> #include <linux/string.h> #include <linux/swap.h> #include <linux/swapctl.h> #include <linux/smp_lock.h> #include <linux/slab.h> #include <linux/dcache.h> #include <linux/fs.h> #include <linux/pagemap.h> #include <linux/init.h> #include <asm/bitops.h> #include <asm/pgtable.h> /* * The wait queue for waking up the pageout daemon: */ static struct task_struct * kswapd_task = NULL; static void init_swap_timer(void); /* * The swap-out functions return 1 if they successfully * threw something out, and we got a free page. It returns * zero if it couldn't do anything, and any other value * indicates it decreased rss, but the page was shared. * * NOTE! If it sleeps, it *must* return 1 to make sure we * don't continue with the swap-out. Otherwise we may be * using a process that no longer actually exists (it might * have died while we slept). */ static inline int try_to_swap_out(struct task_struct * tsk, struct vm_area_struct* vma, unsigned long address, pte_t * page_table, int gfp_mask) { pte_t pte; unsigned long entry; unsigned long page; struct page * page_map; pte = *page_table; if (!pte_present(pte)) return 0; page = pte_page(pte); if (MAP_NR(page) >= max_mapnr) return 0; page_map = mem_map + MAP_NR(page); if (PageReserved(page_map) || PageLocked(page_map) || ((gfp_mask & __GFP_DMA) && !PageDMA(page_map))) return 0; /* * Deal with page aging. There are several special cases to * consider: * * Page has been accessed, but is swap cached. If the page is * getting sufficiently "interesting" --- its age is getting * high --- then if we are sufficiently short of free swap * pages, then delete the swap cache. We can only do this if * the swap page's reference count is one: ie. there are no * other references to it beyond the swap cache (as there must * still be PTEs pointing to it if count > 1). * * If the page has NOT been touched, and its age reaches zero, * then we are swapping it out: * * If there is already a swap cache page for this page, then * another process has already allocated swap space, so just * dereference the physical page and copy in the swap entry * from the swap cache. * * Note, we rely on all pages read in from swap either having * the swap cache flag set, OR being marked writable in the pte, * but NEVER BOTH. (It IS legal to be neither cached nor dirty, * however.) * * -- Stephen Tweedie 1998 */ if (PageSwapCache(page_map)) { if (pte_write(pte)) { struct page *found; printk ("VM: Found a writable swap-cached page!\n"); /* Try to diagnose the problem ... */ found = find_page(&swapper_inode, page_map->offset); if (found) { printk("page=%p@%08lx, found=%p, count=%d\n", page_map, page_map->offset, found, atomic_read(&found->count)); __free_page(found); } else printk ("Spurious, page not in cache\n"); return 0; } } if (pte_young(pte)) { /* * Transfer the "accessed" bit from the page * tables to the global page map. */ set_pte(page_table, pte_mkold(pte)); set_bit(PG_referenced, &page_map->flags); /* * We should test here to see if we want to recover any * swap cache page here. We do this if the page seeing * enough activity, AND we are sufficiently low on swap * * We need to track both the number of available swap * pages and the total number present before we can do * this... */ return 0; } if (pte_dirty(pte)) { if (vma->vm_ops && vma->vm_ops->swapout) { pid_t pid = tsk->pid; vma->vm_mm->rss--; if (vma->vm_ops->swapout(vma, address - vma->vm_start + vma->vm_offset, page_table)) kill_proc(pid, SIGBUS, 1); } else { /* * This is a dirty, swappable page. First of all, * get a suitable swap entry for it, and make sure * we have the swap cache set up to associate the * page with that swap entry. */ entry = in_swap_cache(page_map); if (!entry) { entry = get_swap_page(); if (!entry) return 0; /* No swap space left */ } vma->vm_mm->rss--; tsk->nswap++; flush_cache_page(vma, address); set_pte(page_table, __pte(entry)); flush_tlb_page(vma, address); swap_duplicate(entry); /* Now to write back the page. We have two * cases: if the page is already part of the * swap cache, then it is already on disk. Just * free the page and return (we release the swap * cache on the last accessor too). * * If we have made a new swap entry, then we * start the write out to disk. If the page is * shared, however, we still need to keep the * copy in memory, so we add it to the swap * cache. */ if (PageSwapCache(page_map)) { free_page_and_swap_cache(page); return (atomic_read(&page_map->count) == 0); } add_to_swap_cache(page_map, entry); /* We checked we were unlocked way up above, and we have been careful not to stall until here */ set_bit(PG_locked, &page_map->flags); /* OK, do a physical write to swap. */ rw_swap_page(WRITE, entry, (char *) page, (gfp_mask & __GFP_WAIT)); } /* Now we can free the current physical page. We also * free up the swap cache if this is the last use of the * page. Note that there is a race here: the page may * still be shared COW by another process, but that * process may exit while we are writing out the page * asynchronously. That's no problem, shrink_mmap() can * correctly clean up the occassional unshared page * which gets left behind in the swap cache. */ free_page_and_swap_cache(page); return 1; /* we slept: the process may not exist any more */ } /* The page was _not_ dirty, but still has a zero age. It must * already be uptodate on disk. If it is in the swap cache, * then we can just unlink the page now. Remove the swap cache * too if this is the last user. */ if ((entry = in_swap_cache(page_map))) { vma->vm_mm->rss--; flush_cache_page(vma, address); set_pte(page_table, __pte(entry)); flush_tlb_page(vma, address); swap_duplicate(entry); free_page_and_swap_cache(page); return (atomic_read(&page_map->count) == 0); } /* * A clean page to be discarded? Must be mmap()ed from * somewhere. Unlink the pte, and tell the filemap code to * discard any cached backing page if this is the last user. */ if (PageSwapCache(page_map)) { printk ("VM: How can this page _still_ be cached?"); return 0; } vma->vm_mm->rss--; flush_cache_page(vma, address); pte_clear(page_table); flush_tlb_page(vma, address); entry = page_unuse(page_map); __free_page(page_map); return entry; } /* * A new implementation of swap_out(). We do not swap complete processes, * but only a small number of blocks, before we continue with the next * process. The number of blocks actually swapped is determined on the * number of page faults, that this process actually had in the last time, * so we won't swap heavily used processes all the time ... * * Note: the priority argument is a hint on much CPU to waste with the * swap block search, not a hint, of how much blocks to swap with * each process. * * (C) 1993 Kai Petzke, wpp@marie.physik.tu-berlin.de */ static inline int swap_out_pmd(struct task_struct * tsk, struct vm_area_struct * vma, pmd_t *dir, unsigned long address, unsigned long end, int gfp_mask) { pte_t * pte; unsigned long pmd_end; if (pmd_none(*dir)) return 0; if (pmd_bad(*dir)) { printk("swap_out_pmd: bad pmd (%08lx)\n", pmd_val(*dir)); pmd_clear(dir); return 0; } pte = pte_offset(dir, address); pmd_end = (address + PMD_SIZE) & PMD_MASK; if (end > pmd_end) end = pmd_end; do { int result; tsk->swap_address = address + PAGE_SIZE; result = try_to_swap_out(tsk, vma, address, pte, gfp_mask); if (result) return result; address += PAGE_SIZE; pte++; } while (address < end); return 0; } static inline int swap_out_pgd(struct task_struct * tsk, struct vm_area_struct * vma, pgd_t *dir, unsigned long address, unsigned long end, int gfp_mask) { pmd_t * pmd; unsigned long pgd_end; if (pgd_none(*dir)) return 0; if (pgd_bad(*dir)) { printk("swap_out_pgd: bad pgd (%08lx)\n", pgd_val(*dir)); pgd_clear(dir); return 0; } pmd = pmd_offset(dir, address); pgd_end = (address + PGDIR_SIZE) & PGDIR_MASK; if (end > pgd_end) end = pgd_end; do { int result = swap_out_pmd(tsk, vma, pmd, address, end, gfp_mask); if (result) return result; address = (address + PMD_SIZE) & PMD_MASK; pmd++; } while (address < end); return 0; } static int swap_out_vma(struct task_struct * tsk, struct vm_area_struct * vma, unsigned long address, int gfp_mask) { pgd_t *pgdir; unsigned long end; /* Don't swap out areas like shared memory which have their own separate swapping mechanism or areas which are locked down */ if (vma->vm_flags & (VM_SHM | VM_LOCKED)) return 0; pgdir = pgd_offset(tsk->mm, address); end = vma->vm_end; while (address < end) { int result = swap_out_pgd(tsk, vma, pgdir, address, end, gfp_mask); if (result) return result; address = (address + PGDIR_SIZE) & PGDIR_MASK; pgdir++; } return 0; } static int swap_out_process(struct task_struct * p, int gfp_mask) { unsigned long address; struct vm_area_struct* vma; /* * Go through process' page directory. */ address = p->swap_address; /* * Find the proper vm-area */ vma = find_vma(p->mm, address); if (vma) { if (address < vma->vm_start) address = vma->vm_start; for (;;) { int result = swap_out_vma(p, vma, address, gfp_mask); if (result) return result; vma = vma->vm_next; if (!vma) break; address = vma->vm_start; } } /* We didn't find anything for the process */ p->swap_cnt = 0; p->swap_address = 0; return 0; } /* * Select the task with maximal swap_cnt and try to swap out a page. * N.B. This function returns only 0 or 1. Return values != 1 from * the lower level routines result in continued processing. */ static int swap_out(unsigned int priority, int gfp_mask) { struct task_struct * p, * pbest; int counter, assign, max_cnt; /* * We make one or two passes through the task list, indexed by * assign = {0, 1}: * Pass 1: select the swappable task with maximal swap_cnt. * Pass 2: assign new swap_cnt values, then select as above. * With this approach, there's no need to remember the last task * swapped out. If the swap-out fails, we clear swap_cnt so the * task won't be selected again until all others have been tried. */ counter = ((PAGEOUT_WEIGHT * nr_tasks) >> 10) >> priority; for (; counter >= 0; counter--) { assign = 0; max_cnt = 0; pbest = NULL; select: read_lock(&tasklist_lock); p = init_task.next_task; for (; p != &init_task; p = p->next_task) { if (!p->swappable) continue; if (p->mm->rss <= 0) continue; if (assign) { /* * If we didn't select a task on pass 1, * assign each task a new swap_cnt. * Normalise the number of pages swapped * by multiplying by (RSS / 1MB) */ p->swap_cnt = AGE_CLUSTER_SIZE(p->mm->rss); } if (p->swap_cnt > max_cnt) { max_cnt = p->swap_cnt; pbest = p; } } read_unlock(&tasklist_lock); if (!pbest) { if (!assign) { assign = 1; goto select; } goto out; } pbest->swap_cnt--; /* * Nonzero means we cleared out something, but only "1" means * that we actually free'd up a page as a result. */ if (swap_out_process(pbest, gfp_mask) == 1) return 1; } out: return 0; } /* * We are much more aggressive about trying to swap out than we used * to be. This works out OK, because we now do proper aging on page * contents. */ static int do_try_to_free_page(int gfp_mask) { static int state = 0; int i=6; /* Always trim SLAB caches when memory gets low. */ kmem_cache_reap(gfp_mask); if (buffer_over_borrow() || pgcache_over_borrow()) shrink_mmap(i, gfp_mask); switch (state) { do { case 0: if (shrink_mmap(i, gfp_mask)) return 1; state = 1; case 1: if (shm_swap(i, gfp_mask)) return 1; state = 2; case 2: if (swap_out(i, gfp_mask)) return 1; state = 3; case 3: shrink_dcache_memory(i, gfp_mask); state = 0; i--; } while (i >= 0); } return 0; } /* * Before we start the kernel thread, print out the * kswapd initialization message (otherwise the init message * may be printed in the middle of another driver's init * message). It looks very bad when that happens. */ void __init kswapd_setup(void) { int i; char *revision="$Revision: 1.5 $", *s, *e; if ((s = strchr(revision, ':')) && (e = strchr(s, '$'))) s++, i = e - s; else s = revision, i = -1; printk ("Starting kswapd v%.*s\n", i, s); } /* * The background pageout daemon. * Started as a kernel thread from the init process. */ int kswapd(void *unused) { current->session = 1; current->pgrp = 1; strcpy(current->comm, "kswapd"); sigfillset(¤t->blocked); /* * As a kernel thread we want to tamper with system buffers * and other internals and thus be subject to the SMP locking * rules. (On a uniprocessor box this does nothing). */ lock_kernel(); /* * Set the base priority to something smaller than a * regular process. We will scale up the priority * dynamically depending on how much memory we need. */ current->priority = (DEF_PRIORITY * 2) / 3; /* * Tell the memory management that we're a "memory allocator", * and that if we need more memory we should get access to it * regardless (see "try_to_free_pages()"). "kswapd" should * never get caught in the normal page freeing logic. * * (Kswapd normally doesn't need memory anyway, but sometimes * you need a small amount of memory in order to be able to * page out something else, and this flag essentially protects * us from recursively trying to free more memory as we're * trying to free the first piece of memory in the first place). */ current->flags |= PF_MEMALLOC; init_swap_timer(); kswapd_task = current; while (1) { unsigned long end_time; current->state = TASK_INTERRUPTIBLE; flush_signals(current); run_task_queue(&tq_disk); schedule(); swapstats.wakeups++; /* max one hundreth of a second */ end_time = jiffies + (HZ-1)/100; do { if (!do_try_to_free_page(0)) break; if (nr_free_pages > freepages.high + SWAP_CLUSTER_MAX) break; } while (time_before_eq(jiffies,end_time)); } /* As if we could ever get here - maybe we want to make this killable */ kswapd_task = NULL; unlock_kernel(); return 0; } /* * We need to make the locks finer granularity, but right * now we need this so that we can do page allocations * without holding the kernel lock etc. * * The "PF_MEMALLOC" flag protects us against recursion: * if we need more memory as part of a swap-out effort we * will just silently return "success" to tell the page * allocator to accept the allocation. */ int try_to_free_pages(unsigned int gfp_mask, int count) { int retval = 1; lock_kernel(); if (!(current->flags & PF_MEMALLOC)) { current->flags |= PF_MEMALLOC; do { retval = do_try_to_free_page(gfp_mask); if (!retval) break; count--; } while (count > 0); current->flags &= ~PF_MEMALLOC; } unlock_kernel(); return retval; } /* * Wake up kswapd according to the priority * 0 - no wakeup * 1 - wake up as a low-priority process * 2 - wake up as a normal process * 3 - wake up as an almost real-time process * * This plays mind-games with the "goodness()" * function in kernel/sched.c. */ static inline void kswapd_wakeup(struct task_struct *p, int priority) { if (priority) { p->counter = p->priority << priority; wake_up_process(p); } } /* * The swap_tick function gets called on every clock tick. */ void swap_tick(void) { struct task_struct *p = kswapd_task; /* * Only bother to try to wake kswapd up * if the task exists and can be woken. */ if (p && (p->state & TASK_INTERRUPTIBLE)) { unsigned int pages; int want_wakeup; /* * Schedule for wakeup if there isn't lots * of free memory or if there is too much * of it used for buffers or pgcache. * * "want_wakeup" is our priority: 0 means * not to wake anything up, while 3 means * that we'd better give kswapd a realtime * priority. */ want_wakeup = 0; pages = nr_free_pages; if (pages < freepages.high) want_wakeup = 1; if (pages < freepages.low) want_wakeup = 2; if (pages < freepages.min) want_wakeup = 3; kswapd_wakeup(p,want_wakeup); } timer_active |= (1<<SWAP_TIMER); } /* * Initialise the swap timer */ void init_swap_timer(void) { timer_table[SWAP_TIMER].expires = jiffies; timer_table[SWAP_TIMER].fn = swap_tick; timer_active |= (1<<SWAP_TIMER); } |