Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 | /* * linux/mm/vmscan.c * * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds * * Swap reorganised 29.12.95, Stephen Tweedie. * kswapd added: 7.1.96 sct * Removed kswapd_ctl limits, and swap out as many pages as needed * to bring the system back to freepages.high: 2.4.97, Rik van Riel. * Version: $Id: vmscan.c,v 1.5 1998/02/23 22:14:28 sct Exp $ * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). * Multiqueue VM started 5.8.00, Rik van Riel. */ #include <linux/slab.h> #include <linux/kernel_stat.h> #include <linux/swap.h> #include <linux/swapctl.h> #include <linux/smp_lock.h> #include <linux/pagemap.h> #include <linux/init.h> #include <linux/highmem.h> #include <linux/file.h> #include <asm/pgalloc.h> #define MAX(a,b) ((a) > (b) ? (a) : (b)) /* * The swap-out function returns 1 if it successfully * scanned all the pages it was asked to (`count'). * It returns zero if it couldn't do anything, * * rss may decrease because pages are shared, but this * doesn't count as having freed a page. */ /* mm->page_table_lock is held. mmap_sem is not held */ static void try_to_swap_out(struct mm_struct * mm, struct vm_area_struct* vma, unsigned long address, pte_t * page_table, struct page *page) { pte_t pte; swp_entry_t entry; /* * If we are doing a zone-specific scan, do not * touch pages from zones which don't have a * shortage. */ if (zone_inactive_plenty(page->zone)) return; /* Don't look at this pte if it's been accessed recently. */ if (ptep_test_and_clear_young(page_table)) { page->age += PAGE_AGE_ADV; if (page->age > PAGE_AGE_MAX) page->age = PAGE_AGE_MAX; return; } if (TryLockPage(page)) return; /* From this point on, the odds are that we're going to * nuke this pte, so read and clear the pte. This hook * is needed on CPUs which update the accessed and dirty * bits in hardware. */ pte = ptep_get_and_clear(page_table); flush_tlb_page(vma, address); /* * Is the page already in the swap cache? If so, then * we can just drop our reference to it without doing * any IO - it's already up-to-date on disk. */ if (PageSwapCache(page)) { entry.val = page->index; if (pte_dirty(pte)) set_page_dirty(page); set_swap_pte: swap_duplicate(entry); set_pte(page_table, swp_entry_to_pte(entry)); drop_pte: mm->rss--; if (!page->age) deactivate_page(page); UnlockPage(page); page_cache_release(page); return; } /* * Is it a clean page? Then it must be recoverable * by just paging it in again, and we can just drop * it.. * * However, this won't actually free any real * memory, as the page will just be in the page cache * somewhere, and as such we should just continue * our scan. * * Basically, this just makes it possible for us to do * some real work in the future in "refill_inactive()". */ flush_cache_page(vma, address); if (!pte_dirty(pte)) goto drop_pte; /* * Ok, it's really dirty. That means that * we should either create a new swap cache * entry for it, or we should write it back * to its own backing store. */ if (page->mapping) { set_page_dirty(page); goto drop_pte; } /* * This is a dirty, swappable page. First of all, * get a suitable swap entry for it, and make sure * we have the swap cache set up to associate the * page with that swap entry. */ entry = get_swap_page(); if (!entry.val) goto out_unlock_restore; /* No swap space left */ /* Add it to the swap cache and mark it dirty */ add_to_swap_cache(page, entry); set_page_dirty(page); goto set_swap_pte; out_unlock_restore: set_pte(page_table, pte); UnlockPage(page); return; } /* mm->page_table_lock is held. mmap_sem is not held */ static int swap_out_pmd(struct mm_struct * mm, struct vm_area_struct * vma, pmd_t *dir, unsigned long address, unsigned long end, int count) { pte_t * pte; unsigned long pmd_end; if (pmd_none(*dir)) return count; if (pmd_bad(*dir)) { pmd_ERROR(*dir); pmd_clear(dir); return count; } pte = pte_offset(dir, address); pmd_end = (address + PMD_SIZE) & PMD_MASK; if (end > pmd_end) end = pmd_end; do { if (pte_present(*pte)) { struct page *page = pte_page(*pte); if (VALID_PAGE(page) && !PageReserved(page)) { try_to_swap_out(mm, vma, address, pte, page); if (!--count) break; } } address += PAGE_SIZE; pte++; } while (address && (address < end)); mm->swap_address = address + PAGE_SIZE; return count; } /* mm->page_table_lock is held. mmap_sem is not held */ static inline int swap_out_pgd(struct mm_struct * mm, struct vm_area_struct * vma, pgd_t *dir, unsigned long address, unsigned long end, int count) { pmd_t * pmd; unsigned long pgd_end; if (pgd_none(*dir)) return count; if (pgd_bad(*dir)) { pgd_ERROR(*dir); pgd_clear(dir); return count; } pmd = pmd_offset(dir, address); pgd_end = (address + PGDIR_SIZE) & PGDIR_MASK; if (pgd_end && (end > pgd_end)) end = pgd_end; do { count = swap_out_pmd(mm, vma, pmd, address, end, count); if (!count) break; address = (address + PMD_SIZE) & PMD_MASK; pmd++; } while (address && (address < end)); return count; } /* mm->page_table_lock is held. mmap_sem is not held */ static int swap_out_vma(struct mm_struct * mm, struct vm_area_struct * vma, unsigned long address, int count) { pgd_t *pgdir; unsigned long end; /* Don't swap out areas which are locked down */ if (vma->vm_flags & (VM_LOCKED|VM_RESERVED)) return count; pgdir = pgd_offset(mm, address); end = vma->vm_end; if (address >= end) BUG(); do { count = swap_out_pgd(mm, vma, pgdir, address, end, count); if (!count) break; address = (address + PGDIR_SIZE) & PGDIR_MASK; pgdir++; } while (address && (address < end)); return count; } /* * Returns non-zero if we scanned all `count' pages */ static int swap_out_mm(struct mm_struct * mm, int count) { unsigned long address; struct vm_area_struct* vma; if (!count) return 1; /* * Go through process' page directory. */ /* * Find the proper vm-area after freezing the vma chain * and ptes. */ spin_lock(&mm->page_table_lock); address = mm->swap_address; vma = find_vma(mm, address); if (vma) { if (address < vma->vm_start) address = vma->vm_start; for (;;) { count = swap_out_vma(mm, vma, address, count); if (!count) goto out_unlock; vma = vma->vm_next; if (!vma) break; address = vma->vm_start; } } /* Reset to 0 when we reach the end of address space */ mm->swap_address = 0; out_unlock: spin_unlock(&mm->page_table_lock); return !count; } #define SWAP_MM_SHIFT 4 #define SWAP_SHIFT 5 #define SWAP_MIN 8 static inline int swap_amount(struct mm_struct *mm) { int nr = mm->rss >> SWAP_SHIFT; if (nr < SWAP_MIN) { nr = SWAP_MIN; if (nr > mm->rss) nr = mm->rss; } return nr; } static void swap_out(unsigned int priority, int gfp_mask) { int counter; int retval = 0; struct mm_struct *mm = current->mm; /* Always start by trying to penalize the process that is allocating memory */ if (mm) retval = swap_out_mm(mm, swap_amount(mm)); /* Then, look at the other mm's */ counter = (mmlist_nr << SWAP_MM_SHIFT) >> priority; do { struct list_head *p; spin_lock(&mmlist_lock); p = init_mm.mmlist.next; if (p == &init_mm.mmlist) goto empty; /* Move it to the back of the queue.. */ list_del(p); list_add_tail(p, &init_mm.mmlist); mm = list_entry(p, struct mm_struct, mmlist); /* Make sure the mm doesn't disappear when we drop the lock.. */ atomic_inc(&mm->mm_users); spin_unlock(&mmlist_lock); /* Walk about 6% of the address space each time */ retval |= swap_out_mm(mm, swap_amount(mm)); mmput(mm); } while (--counter >= 0); return; empty: spin_unlock(&mmlist_lock); } /** * reclaim_page - reclaims one page from the inactive_clean list * @zone: reclaim a page from this zone * * The pages on the inactive_clean can be instantly reclaimed. * The tests look impressive, but most of the time we'll grab * the first page of the list and exit successfully. */ struct page * reclaim_page(zone_t * zone) { struct page * page = NULL; struct list_head * page_lru; int maxscan; /* * We only need the pagemap_lru_lock if we don't reclaim the page, * but we have to grab the pagecache_lock before the pagemap_lru_lock * to avoid deadlocks and most of the time we'll succeed anyway. */ spin_lock(&pagecache_lock); spin_lock(&pagemap_lru_lock); maxscan = zone->inactive_clean_pages; while ((page_lru = zone->inactive_clean_list.prev) != &zone->inactive_clean_list && maxscan--) { page = list_entry(page_lru, struct page, lru); /* Wrong page on list?! (list corruption, should not happen) */ if (!PageInactiveClean(page)) { printk("VM: reclaim_page, wrong page on list.\n"); list_del(page_lru); page->zone->inactive_clean_pages--; continue; } /* Page is or was in use? Move it to the active list. */ if (PageReferenced(page) || (!page->buffers && page_count(page) > 1)) { del_page_from_inactive_clean_list(page); add_page_to_active_list(page); page->age = PAGE_AGE_START; continue; } /* The page is dirty, or locked, move to inactive_dirty list. */ if (page->buffers || PageDirty(page) || TryLockPage(page)) { del_page_from_inactive_clean_list(page); add_page_to_inactive_dirty_list(page); continue; } /* OK, remove the page from the caches. */ if (PageSwapCache(page)) { __delete_from_swap_cache(page); goto found_page; } if (page->mapping) { __remove_inode_page(page); goto found_page; } /* We should never ever get here. */ printk(KERN_ERR "VM: reclaim_page, found unknown page\n"); list_del(page_lru); zone->inactive_clean_pages--; UnlockPage(page); } /* Reset page pointer, maybe we encountered an unfreeable page. */ page = NULL; goto out; found_page: memory_pressure++; del_page_from_inactive_clean_list(page); UnlockPage(page); page->age = PAGE_AGE_START; if (page_count(page) != 1) printk("VM: reclaim_page, found page with count %d!\n", page_count(page)); out: spin_unlock(&pagemap_lru_lock); spin_unlock(&pagecache_lock); return page; } /** * page_launder - clean dirty inactive pages, move to inactive_clean list * @gfp_mask: what operations we are allowed to do * @sync: are we allowed to do synchronous IO in emergencies ? * * When this function is called, we are most likely low on free + * inactive_clean pages. Since we want to refill those pages as * soon as possible, we'll make two loops over the inactive list, * one to move the already cleaned pages to the inactive_clean lists * and one to (often asynchronously) clean the dirty inactive pages. * * In situations where kswapd cannot keep up, user processes will * end up calling this function. Since the user process needs to * have a page before it can continue with its allocation, we'll * do synchronous page flushing in that case. * * This code is heavily inspired by the FreeBSD source code. Thanks * go out to Matthew Dillon. */ #define MAX_LAUNDER (4 * (1 << page_cluster)) #define CAN_DO_FS (gfp_mask & __GFP_FS) #define CAN_DO_IO (gfp_mask & __GFP_IO) int do_page_launder(zone_t *zone, int gfp_mask, int sync) { int launder_loop, maxscan, cleaned_pages, maxlaunder; struct list_head * page_lru; struct page * page; launder_loop = 0; maxlaunder = 0; cleaned_pages = 0; dirty_page_rescan: spin_lock(&pagemap_lru_lock); maxscan = nr_inactive_dirty_pages; while ((page_lru = inactive_dirty_list.prev) != &inactive_dirty_list && maxscan-- > 0) { page = list_entry(page_lru, struct page, lru); /* Wrong page on list?! (list corruption, should not happen) */ if (!PageInactiveDirty(page)) { printk("VM: page_launder, wrong page on list.\n"); list_del(page_lru); nr_inactive_dirty_pages--; page->zone->inactive_dirty_pages--; continue; } /* Page is or was in use? Move it to the active list. */ if (PageReferenced(page) || (!page->buffers && page_count(page) > 1) || page_ramdisk(page)) { del_page_from_inactive_dirty_list(page); add_page_to_active_list(page); page->age = PAGE_AGE_START; continue; } /* * If we are doing zone-specific laundering, * avoid touching pages from zones which do * not have a free shortage. */ if (zone && !zone_free_shortage(page->zone)) { list_del(page_lru); list_add(page_lru, &inactive_dirty_list); continue; } /* * The page is locked. IO in progress? * Move it to the back of the list. */ if (TryLockPage(page)) { list_del(page_lru); list_add(page_lru, &inactive_dirty_list); continue; } /* * Dirty swap-cache page? Write it out if * last copy.. */ if (PageDirty(page)) { int (*writepage)(struct page *) = page->mapping->a_ops->writepage; if (!writepage) goto page_active; /* First time through? Move it to the back of the list */ if (!launder_loop || !CAN_DO_FS) { list_del(page_lru); list_add(page_lru, &inactive_dirty_list); UnlockPage(page); continue; } /* OK, do a physical asynchronous write to swap. */ ClearPageDirty(page); page_cache_get(page); spin_unlock(&pagemap_lru_lock); writepage(page); page_cache_release(page); /* And re-start the thing.. */ spin_lock(&pagemap_lru_lock); continue; } /* * If the page has buffers, try to free the buffer mappings * associated with this page. If we succeed we either free * the page (in case it was a buffercache only page) or we * move the page to the inactive_clean list. * * On the first round, we should free all previously cleaned * buffer pages */ if (page->buffers) { unsigned int buffer_mask; int clearedbuf; int freed_page = 0; /* * Since we might be doing disk IO, we have to * drop the spinlock and take an extra reference * on the page so it doesn't go away from under us. */ del_page_from_inactive_dirty_list(page); page_cache_get(page); spin_unlock(&pagemap_lru_lock); /* Will we do (asynchronous) IO? */ if (launder_loop && maxlaunder == 0 && sync) buffer_mask = gfp_mask; /* Do as much as we can */ else if (launder_loop && maxlaunder-- > 0) buffer_mask = gfp_mask & ~__GFP_WAIT; /* Don't wait, async write-out */ else buffer_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO); /* Don't even start IO */ /* Try to free the page buffers. */ clearedbuf = try_to_free_buffers(page, buffer_mask); /* * Re-take the spinlock. Note that we cannot * unlock the page yet since we're still * accessing the page_struct here... */ spin_lock(&pagemap_lru_lock); /* The buffers were not freed. */ if (!clearedbuf) { add_page_to_inactive_dirty_list(page); /* The page was only in the buffer cache. */ } else if (!page->mapping) { atomic_dec(&buffermem_pages); freed_page = 1; cleaned_pages++; /* The page has more users besides the cache and us. */ } else if (page_count(page) > 2) { add_page_to_active_list(page); /* OK, we "created" a freeable page. */ } else /* page->mapping && page_count(page) == 2 */ { add_page_to_inactive_clean_list(page); cleaned_pages++; } /* * Unlock the page and drop the extra reference. * We can only do it here because we are accessing * the page struct above. */ UnlockPage(page); page_cache_release(page); /* * If we're freeing buffer cache pages, stop when * we've got enough free memory. */ if (freed_page) { if (zone) { if (!zone_free_shortage(zone)) break; } else if (!free_shortage()) break; } continue; } else if (page->mapping && !PageDirty(page)) { /* * If a page had an extra reference in * deactivate_page(), we will find it here. * Now the page is really freeable, so we * move it to the inactive_clean list. */ del_page_from_inactive_dirty_list(page); add_page_to_inactive_clean_list(page); UnlockPage(page); cleaned_pages++; } else { page_active: /* * OK, we don't know what to do with the page. * It's no use keeping it here, so we move it to * the active list. */ del_page_from_inactive_dirty_list(page); add_page_to_active_list(page); UnlockPage(page); } } spin_unlock(&pagemap_lru_lock); /* * If we don't have enough free pages, we loop back once * to queue the dirty pages for writeout. When we were called * by a user process (that /needs/ a free page) and we didn't * free anything yet, we wait synchronously on the writeout of * MAX_SYNC_LAUNDER pages. * * We also wake up bdflush, since bdflush should, under most * loads, flush out the dirty pages before we have to wait on * IO. */ if (CAN_DO_IO && !launder_loop && total_free_shortage()) { launder_loop = 1; /* If we cleaned pages, never do synchronous IO. */ if (cleaned_pages) sync = 0; /* We only do a few "out of order" flushes. */ maxlaunder = MAX_LAUNDER; /* Kflushd takes care of the rest. */ wakeup_bdflush(0); goto dirty_page_rescan; } /* Return the number of pages moved to the inactive_clean list. */ return cleaned_pages; } int page_launder(int gfp_mask, int sync) { int type = 0, ret = 0; pg_data_t *pgdat = pgdat_list; /* * First do a global scan if there is a * global shortage. */ if (free_shortage()) ret += do_page_launder(NULL, gfp_mask, sync); /* * Then check if there is any specific zone * needs laundering. */ for (type = 0; type < MAX_NR_ZONES; type++) { zone_t *zone = pgdat->node_zones + type; if (zone_free_shortage(zone)) ret += do_page_launder(zone, gfp_mask, sync); } return ret; } static inline void age_page_up(struct page *page) { unsigned age = page->age + PAGE_AGE_ADV; if (age > PAGE_AGE_MAX) age = PAGE_AGE_MAX; page->age = age; } /** * refill_inactive_scan - scan the active list and find pages to deactivate * @priority: the priority at which to scan * @target: number of pages to deactivate, zero for background aging * * This function will scan a portion of the active list to find * unused pages, those pages will then be moved to the inactive list. */ int refill_inactive_scan(zone_t *zone, unsigned int priority, int target) { struct list_head * page_lru; struct page * page; int maxscan = nr_active_pages >> priority; int page_active = 0; int nr_deactivated = 0; /* * When we are background aging, we try to increase the page aging * information in the system. */ if (!target) maxscan = nr_active_pages >> 4; /* Take the lock while messing with the list... */ spin_lock(&pagemap_lru_lock); while (maxscan-- > 0 && (page_lru = active_list.prev) != &active_list) { page = list_entry(page_lru, struct page, lru); /* Wrong page on list?! (list corruption, should not happen) */ if (!PageActive(page)) { printk("VM: refill_inactive, wrong page on list.\n"); list_del(page_lru); nr_active_pages--; continue; } /* * Do not deactivate pages from zones which * have plenty inactive pages. */ if (zone_inactive_plenty(page->zone)) { page_active = 1; goto skip_page; } /* Do aging on the pages. */ if (PageTestandClearReferenced(page)) { age_page_up(page); page_active = 1; } else { age_page_down_ageonly(page); /* * Since we don't hold a reference on the page * ourselves, we have to do our test a bit more * strict then deactivate_page(). This is needed * since otherwise the system could hang shuffling * unfreeable pages from the active list to the * inactive_dirty list and back again... * * SUBTLE: we can have buffer pages with count 1. */ if (page->age == 0 && page_count(page) <= (page->buffers ? 2 : 1)) { deactivate_page_nolock(page); page_active = 0; } else { page_active = 1; } } /* * If the page is still on the active list, move it * to the other end of the list. Otherwise we exit if * we have done enough work. */ if (page_active || PageActive(page)) { skip_page: list_del(page_lru); list_add(page_lru, &active_list); } else { if (!zone || (zone && (zone == page->zone))) nr_deactivated++; if (target && nr_deactivated >= target) break; } } spin_unlock(&pagemap_lru_lock); return nr_deactivated; } /* * Check if we have are low on free pages globally. */ int free_shortage(void) { int freeable = nr_free_pages() + nr_inactive_clean_pages(); int freetarget = freepages.high; /* Are we low on free pages globally? */ if (freeable < freetarget) return freetarget - freeable; return 0; } /* * * Check if there are zones with a severe shortage of free pages, * or if all zones have a minor shortage. */ int total_free_shortage(void) { int sum = 0; pg_data_t *pgdat = pgdat_list; /* Do we have a global free shortage? */ if((sum = free_shortage())) return sum; /* If not, are we very low on any particular zone? */ do { int i; for(i = 0; i < MAX_NR_ZONES; i++) { zone_t *zone = pgdat->node_zones+ i; if (zone->size && (zone->inactive_clean_pages + zone->free_pages < zone->pages_min)) { sum += zone->pages_min; sum -= zone->free_pages; sum -= zone->inactive_clean_pages; } } pgdat = pgdat->node_next; } while (pgdat); return sum; } /* * How many inactive pages are we short globally? */ int inactive_shortage(void) { int shortage = 0; /* Is the inactive dirty list too small? */ shortage += freepages.high; shortage += inactive_target; shortage -= nr_free_pages(); shortage -= nr_inactive_clean_pages(); shortage -= nr_inactive_dirty_pages; if (shortage > 0) return shortage; return 0; } /* * Are we low on inactive pages globally or in any zone? */ int total_inactive_shortage(void) { int shortage = 0; pg_data_t *pgdat = pgdat_list; if((shortage = inactive_shortage())) return shortage; shortage = 0; do { int i; for(i = 0; i < MAX_NR_ZONES; i++) { int zone_shortage; zone_t *zone = pgdat->node_zones+ i; if (!zone->size) continue; zone_shortage = zone->pages_high; zone_shortage -= zone->inactive_dirty_pages; zone_shortage -= zone->inactive_clean_pages; zone_shortage -= zone->free_pages; if (zone_shortage > 0) shortage += zone_shortage; } pgdat = pgdat->node_next; } while (pgdat); return shortage; } /* * Refill_inactive is the function used to scan and age the pages on * the active list and in the working set of processes, moving the * little-used pages to the inactive list. * * When called by kswapd, we try to deactivate as many pages as needed * to recover from the inactive page shortage. This makes it possible * for kswapd to keep up with memory demand so user processes can get * low latency on memory allocations. * * However, when the system starts to get overloaded we can get called * by user processes. For user processes we want to both reduce the * latency and make sure that multiple user processes together don't * deactivate too many pages. To achieve this we simply do less work * when called from a user process. */ #define DEF_PRIORITY (6) static int refill_inactive_global(unsigned int gfp_mask, int user) { int count, start_count, maxtry; if (user) { count = (1 << page_cluster); maxtry = 6; } else { count = inactive_shortage(); maxtry = 1 << DEF_PRIORITY; } start_count = count; do { if (current->need_resched) { __set_current_state(TASK_RUNNING); schedule(); if (!inactive_shortage()) return 1; } /* Walk the VM space for a bit.. */ swap_out(DEF_PRIORITY, gfp_mask); count -= refill_inactive_scan(NULL, DEF_PRIORITY, count); if (count <= 0) goto done; if (--maxtry <= 0) return 0; } while (inactive_shortage()); done: return (count < start_count); } static int refill_inactive_zone(zone_t *zone, unsigned int gfp_mask, int user) { int count, start_count, maxtry; count = start_count = zone_inactive_shortage(zone); maxtry = (1 << DEF_PRIORITY); do { swap_out(DEF_PRIORITY, gfp_mask); count -= refill_inactive_scan(zone, DEF_PRIORITY, count); if (count <= 0) goto done; if (--maxtry <= 0) return 0; } while(zone_inactive_shortage(zone)); done: return (count < start_count); } static int refill_inactive(unsigned int gfp_mask, int user) { int type = 0, ret = 0; pg_data_t *pgdat = pgdat_list; /* * First do a global scan if there is a * global shortage. */ if (inactive_shortage()) ret += refill_inactive_global(gfp_mask, user); /* * Then check if there is any specific zone * with a shortage and try to refill it if * so. */ for (type = 0; type < MAX_NR_ZONES; type++) { zone_t *zone = pgdat->node_zones + type; if (zone_inactive_shortage(zone)) ret += refill_inactive_zone(zone, gfp_mask, user); } return ret; } #define DEF_PRIORITY (6) static int do_try_to_free_pages(unsigned int gfp_mask, int user) { int ret = 0; /* * If we're low on free pages, move pages from the * inactive_dirty list to the inactive_clean list. * * Usually bdflush will have pre-cleaned the pages * before we get around to moving them to the other * list, so this is a relatively cheap operation. */ ret += page_launder(gfp_mask, user); if (total_free_shortage()) { shrink_dcache_memory(DEF_PRIORITY, gfp_mask); shrink_icache_memory(DEF_PRIORITY, gfp_mask); } /* * If needed, we move pages from the active list * to the inactive list. */ ret += refill_inactive(gfp_mask, user); /* * Reclaim unused slab cache if memory is low. */ kmem_cache_reap(gfp_mask); return ret; } DECLARE_WAIT_QUEUE_HEAD(kswapd_wait); DECLARE_WAIT_QUEUE_HEAD(kswapd_done); /* * The background pageout daemon, started as a kernel thread * from the init process. * * This basically trickles out pages so that we have _some_ * free memory available even if there is no other activity * that frees anything up. This is needed for things like routing * etc, where we otherwise might have all activity going on in * asynchronous contexts that cannot page things out. * * If there are applications that are active memory-allocators * (most normal use), this basically shouldn't matter. */ int kswapd(void *unused) { struct task_struct *tsk = current; daemonize(); strcpy(tsk->comm, "kswapd"); sigfillset(&tsk->blocked); /* * Tell the memory management that we're a "memory allocator", * and that if we need more memory we should get access to it * regardless (see "__alloc_pages()"). "kswapd" should * never get caught in the normal page freeing logic. * * (Kswapd normally doesn't need memory anyway, but sometimes * you need a small amount of memory in order to be able to * page out something else, and this flag essentially protects * us from recursively trying to free more memory as we're * trying to free the first piece of memory in the first place). */ tsk->flags |= PF_MEMALLOC; /* * Kswapd main loop. */ for (;;) { static long recalc = 0; /* If needed, try to free some memory. */ if (total_inactive_shortage() || total_free_shortage()) do_try_to_free_pages(GFP_KSWAPD, 0); /* Once a second ... */ if (time_after(jiffies, recalc + HZ)) { recalc = jiffies; /* Recalculate VM statistics. */ recalculate_vm_stats(); /* Do background page aging. */ refill_inactive_scan(NULL, DEF_PRIORITY, 0); } run_task_queue(&tq_disk); /* * We go to sleep if either the free page shortage * or the inactive page shortage is gone. We do this * because: * 1) we need no more free pages or * 2) the inactive pages need to be flushed to disk, * it wouldn't help to eat CPU time now ... * * We go to sleep for one second, but if it's needed * we'll be woken up earlier... */ if (!total_free_shortage() || !total_inactive_shortage()) { interruptible_sleep_on_timeout(&kswapd_wait, HZ); /* * If we couldn't free enough memory, we see if it was * due to the system just not having enough memory. * If that is the case, the only solution is to kill * a process (the alternative is enternal deadlock). * * If there still is enough memory around, we just loop * and try free some more memory... */ } else if (out_of_memory()) { oom_kill(); } } } void wakeup_kswapd(void) { if (waitqueue_active(&kswapd_wait)) wake_up_interruptible(&kswapd_wait); } /* * Called by non-kswapd processes when they want more * memory but are unable to sleep on kswapd because * they might be holding some IO locks ... */ int try_to_free_pages(unsigned int gfp_mask) { int ret = 1; if (gfp_mask & __GFP_WAIT) { current->flags |= PF_MEMALLOC; ret = do_try_to_free_pages(gfp_mask, 1); current->flags &= ~PF_MEMALLOC; } return ret; } DECLARE_WAIT_QUEUE_HEAD(kreclaimd_wait); /* * Kreclaimd will move pages from the inactive_clean list to the * free list, in order to keep atomic allocations possible under * all circumstances. */ int kreclaimd(void *unused) { struct task_struct *tsk = current; pg_data_t *pgdat; daemonize(); strcpy(tsk->comm, "kreclaimd"); sigfillset(&tsk->blocked); current->flags |= PF_MEMALLOC; while (1) { /* * We sleep until someone wakes us up from * page_alloc.c::__alloc_pages(). */ interruptible_sleep_on(&kreclaimd_wait); /* * Move some pages from the inactive_clean lists to * the free lists, if it is needed. */ pgdat = pgdat_list; do { int i; for(i = 0; i < MAX_NR_ZONES; i++) { zone_t *zone = pgdat->node_zones + i; if (!zone->size) continue; while (zone->free_pages < zone->pages_low) { struct page * page; page = reclaim_page(zone); if (!page) break; __free_page(page); } } pgdat = pgdat->node_next; } while (pgdat); } } static int __init kswapd_init(void) { printk("Starting kswapd v1.8\n"); swap_setup(); kernel_thread(kswapd, NULL, CLONE_FS | CLONE_FILES | CLONE_SIGNAL); kernel_thread(kreclaimd, NULL, CLONE_FS | CLONE_FILES | CLONE_SIGNAL); return 0; } module_init(kswapd_init) |