Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Version: $Id: vmscan.c,v 1.5 1998/02/23 22:14:28 sct Exp $
 */

#include <linux/slab.h>
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/swapctl.h>
#include <linux/smp_lock.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
#include <linux/file.h>

#include <asm/pgalloc.h>

/*
 * The swap-out functions return 1 if they successfully
 * threw something out, and we got a free page. It returns
 * zero if it couldn't do anything, and any other value
 * indicates it decreased rss, but the page was shared.
 *
 * NOTE! If it sleeps, it *must* return 1 to make sure we
 * don't continue with the swap-out. Otherwise we may be
 * using a process that no longer actually exists (it might
 * have died while we slept).
 */
static int try_to_swap_out(struct vm_area_struct* vma, unsigned long address, pte_t * page_table, int gfp_mask)
{
	pte_t pte;
	swp_entry_t entry;
	struct page * page;
	int (*swapout)(struct page *, struct file *);

	pte = *page_table;
	if (!pte_present(pte))
		goto out_failed;
	page = pte_page(pte);
	if (page-mem_map >= max_mapnr)
		goto out_failed;

	/* Don't look at this pte if it's been accessed recently. */
	if (pte_young(pte)) {
		/*
		 * Transfer the "accessed" bit from the page
		 * tables to the global page map.
		 */
		set_pte(page_table, pte_mkold(pte));
		set_bit(PG_referenced, &page->flags);
		goto out_failed;
	}

	if (PageReserved(page) || PageLocked(page))
		goto out_failed;

	/*
	 * Is the page already in the swap cache? If so, then
	 * we can just drop our reference to it without doing
	 * any IO - it's already up-to-date on disk.
	 *
	 * Return 0, as we didn't actually free any real
	 * memory, and we should just continue our scan.
	 */
	if (PageSwapCache(page)) {
		entry.val = page->index;
		swap_duplicate(entry);
		set_pte(page_table, swp_entry_to_pte(entry));
drop_pte:
		vma->vm_mm->rss--;
		flush_tlb_page(vma, address);
		__free_page(page);
		goto out_failed;
	}

	/*
	 * Is it a clean page? Then it must be recoverable
	 * by just paging it in again, and we can just drop
	 * it..
	 *
	 * However, this won't actually free any real
	 * memory, as the page will just be in the page cache
	 * somewhere, and as such we should just continue
	 * our scan.
	 *
	 * Basically, this just makes it possible for us to do
	 * some real work in the future in "shrink_mmap()".
	 */
	if (!pte_dirty(pte)) {
		flush_cache_page(vma, address);
		pte_clear(page_table);
		goto drop_pte;
	}

	/*
	 * Don't go down into the swap-out stuff if
	 * we cannot do I/O! Avoid recursing on FS
	 * locks etc.
	 */
	if (!(gfp_mask & __GFP_IO))
		goto out_failed;

	/*
	 * Ok, it's really dirty. That means that
	 * we should either create a new swap cache
	 * entry for it, or we should write it back
	 * to its own backing store.
	 *
	 * Note that in neither case do we actually
	 * know that we make a page available, but
	 * as we potentially sleep we can no longer
	 * continue scanning, so we migth as well
	 * assume we free'd something.
	 *
	 * NOTE NOTE NOTE! This should just set a
	 * dirty bit in 'page', and just drop the
	 * pte. All the hard work would be done by
	 * shrink_mmap().
	 *
	 * That would get rid of a lot of problems.
	 */
	flush_cache_page(vma, address);
	if (vma->vm_ops && (swapout = vma->vm_ops->swapout)) {
		int error;
		struct file *file = vma->vm_file;
		if (file) get_file(file);
		pte_clear(page_table);
		vma->vm_mm->rss--;
		flush_tlb_page(vma, address);
		vmlist_access_unlock(vma->vm_mm);
		error = swapout(page, file);
		if (file) fput(file);
		if (!error)
			goto out_free_success;
		__free_page(page);
		return error;
	}

	/*
	 * This is a dirty, swappable page.  First of all,
	 * get a suitable swap entry for it, and make sure
	 * we have the swap cache set up to associate the
	 * page with that swap entry.
	 */
	entry = acquire_swap_entry(page);
	if (!entry.val)
		goto out_failed; /* No swap space left */
		
	if (!(page = prepare_highmem_swapout(page)))
		goto out_swap_free;

	swap_duplicate(entry);	/* One for the process, one for the swap cache */

	/* This will also lock the page */
	add_to_swap_cache(page, entry);
	/* Put the swap entry into the pte after the page is in swapcache */
	vma->vm_mm->rss--;
	set_pte(page_table, swp_entry_to_pte(entry));
	flush_tlb_page(vma, address);
	vmlist_access_unlock(vma->vm_mm);

	/* OK, do a physical asynchronous write to swap.  */
	rw_swap_page(WRITE, page, 0);

out_free_success:
	__free_page(page);
	return 1;
out_swap_free:
	swap_free(entry);
out_failed:
	return 0;

}

/*
 * A new implementation of swap_out().  We do not swap complete processes,
 * but only a small number of blocks, before we continue with the next
 * process.  The number of blocks actually swapped is determined on the
 * number of page faults, that this process actually had in the last time,
 * so we won't swap heavily used processes all the time ...
 *
 * Note: the priority argument is a hint on much CPU to waste with the
 *       swap block search, not a hint, of how much blocks to swap with
 *       each process.
 *
 * (C) 1993 Kai Petzke, wpp@marie.physik.tu-berlin.de
 */

static inline int swap_out_pmd(struct vm_area_struct * vma, pmd_t *dir, unsigned long address, unsigned long end, int gfp_mask)
{
	pte_t * pte;
	unsigned long pmd_end;

	if (pmd_none(*dir))
		return 0;
	if (pmd_bad(*dir)) {
		pmd_ERROR(*dir);
		pmd_clear(dir);
		return 0;
	}
	
	pte = pte_offset(dir, address);
	
	pmd_end = (address + PMD_SIZE) & PMD_MASK;
	if (end > pmd_end)
		end = pmd_end;

	do {
		int result;
		vma->vm_mm->swap_address = address + PAGE_SIZE;
		result = try_to_swap_out(vma, address, pte, gfp_mask);
		if (result)
			return result;
		address += PAGE_SIZE;
		pte++;
	} while (address && (address < end));
	return 0;
}

static inline int swap_out_pgd(struct vm_area_struct * vma, pgd_t *dir, unsigned long address, unsigned long end, int gfp_mask)
{
	pmd_t * pmd;
	unsigned long pgd_end;

	if (pgd_none(*dir))
		return 0;
	if (pgd_bad(*dir)) {
		pgd_ERROR(*dir);
		pgd_clear(dir);
		return 0;
	}

	pmd = pmd_offset(dir, address);

	pgd_end = (address + PGDIR_SIZE) & PGDIR_MASK;	
	if (pgd_end && (end > pgd_end))
		end = pgd_end;
	
	do {
		int result = swap_out_pmd(vma, pmd, address, end, gfp_mask);
		if (result)
			return result;
		address = (address + PMD_SIZE) & PMD_MASK;
		pmd++;
	} while (address && (address < end));
	return 0;
}

static int swap_out_vma(struct vm_area_struct * vma, unsigned long address, int gfp_mask)
{
	pgd_t *pgdir;
	unsigned long end;

	/* Don't swap out areas which are locked down */
	if (vma->vm_flags & VM_LOCKED)
		return 0;

	pgdir = pgd_offset(vma->vm_mm, address);

	end = vma->vm_end;
	if (address >= end)
		BUG();
	do {
		int result = swap_out_pgd(vma, pgdir, address, end, gfp_mask);
		if (result)
			return result;
		address = (address + PGDIR_SIZE) & PGDIR_MASK;
		pgdir++;
	} while (address && (address < end));
	return 0;
}

static int swap_out_mm(struct mm_struct * mm, int gfp_mask)
{
	unsigned long address;
	struct vm_area_struct* vma;

	/*
	 * Go through process' page directory.
	 */
	address = mm->swap_address;

	/*
	 * Find the proper vm-area after freezing the vma chain 
	 * and ptes.
	 */
	vmlist_access_lock(mm);
	vma = find_vma(mm, address);
	if (vma) {
		if (address < vma->vm_start)
			address = vma->vm_start;

		for (;;) {
			int result = swap_out_vma(vma, address, gfp_mask);
			if (result)
				return result;
			vma = vma->vm_next;
			if (!vma)
				break;
			address = vma->vm_start;
		}
	}
	vmlist_access_unlock(mm);

	/* We didn't find anything for the process */
	mm->swap_cnt = 0;
	mm->swap_address = 0;
	return 0;
}

/*
 * Select the task with maximal swap_cnt and try to swap out a page.
 * N.B. This function returns only 0 or 1.  Return values != 1 from
 * the lower level routines result in continued processing.
 */
static int swap_out(unsigned int priority, int gfp_mask)
{
	struct task_struct * p;
	int counter;
	int __ret = 0;

	lock_kernel();
	/* 
	 * We make one or two passes through the task list, indexed by 
	 * assign = {0, 1}:
	 *   Pass 1: select the swappable task with maximal RSS that has
	 *         not yet been swapped out. 
	 *   Pass 2: re-assign rss swap_cnt values, then select as above.
	 *
	 * With this approach, there's no need to remember the last task
	 * swapped out.  If the swap-out fails, we clear swap_cnt so the 
	 * task won't be selected again until all others have been tried.
	 *
	 * Think of swap_cnt as a "shadow rss" - it tells us which process
	 * we want to page out (always try largest first).
	 */
	counter = nr_threads / (priority+1);
	if (counter < 1)
		counter = 1;
	if (counter > nr_threads)
		counter = nr_threads;

	for (; counter >= 0; counter--) {
		int assign = 0;
		int max_cnt = 0;
		struct mm_struct *best = NULL;
		int pid = 0;
	select:
		read_lock(&tasklist_lock);
		p = init_task.next_task;
		for (; p != &init_task; p = p->next_task) {
			struct mm_struct *mm = p->mm;
			if (!p->swappable || !mm)
				continue;
	 		if (mm->rss <= 0)
				continue;
			/* Refresh swap_cnt? */
			if (assign)
				mm->swap_cnt = mm->rss;
			if (mm->swap_cnt > max_cnt) {
				max_cnt = mm->swap_cnt;
				best = mm;
				pid = p->pid;
			}
		}
		read_unlock(&tasklist_lock);
		if (!best) {
			if (!assign) {
				assign = 1;
				goto select;
			}
			goto out;
		} else {
			int ret;

			atomic_inc(&best->mm_count);
			ret = swap_out_mm(best, gfp_mask);
			mmdrop(best);

			if (!ret)
				continue;

			if (ret < 0)
				kill_proc(pid, SIGBUS, 1);
			__ret = 1;
			goto out;
		}
	}
out:
	unlock_kernel();
	return __ret;
}

/*
 * We need to make the locks finer granularity, but right
 * now we need this so that we can do page allocations
 * without holding the kernel lock etc.
 *
 * We want to try to free "count" pages, and we need to 
 * cluster them so that we get good swap-out behaviour. See
 * the "free_memory()" macro for details.
 */
static int do_try_to_free_pages(unsigned int gfp_mask, zone_t *zone)
{
	int priority;
	int count = SWAP_CLUSTER_MAX;

	/* Always trim SLAB caches when memory gets low. */
	kmem_cache_reap(gfp_mask);

	priority = 6;
	do {
		while (shrink_mmap(priority, gfp_mask, zone)) {
			if (!--count)
				goto done;
		}


		/* Try to get rid of some shared memory pages.. */
		if (gfp_mask & __GFP_IO) {
			/*
			 * don't be too light against the d/i cache since
		   	 * shrink_mmap() almost never fail when there's
		   	 * really plenty of memory free. 
			 */
			count -= shrink_dcache_memory(priority, gfp_mask, zone);
			count -= shrink_icache_memory(priority, gfp_mask, zone);
			if (count <= 0)
				goto done;
			while (shm_swap(priority, gfp_mask, zone)) {
				if (!--count)
					goto done;
			}
		}

		/* Then, try to page stuff out.. */
		while (swap_out(priority, gfp_mask)) {
			if (!--count)
				goto done;
		}
	} while (--priority >= 0);
done:

	return priority >= 0;
}

DECLARE_WAIT_QUEUE_HEAD(kswapd_wait);

/*
 * The background pageout daemon, started as a kernel thread
 * from the init process. 
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
int kswapd(void *unused)
{
	struct task_struct *tsk = current;

	tsk->session = 1;
	tsk->pgrp = 1;
	strcpy(tsk->comm, "kswapd");
	sigfillset(&tsk->blocked);
	
	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
	tsk->flags |= PF_MEMALLOC;

	while (1) {
		/*
		 * If we actually get into a low-memory situation,
		 * the processes needing more memory will wake us
		 * up on a more timely basis.
		 */
		do {
			/* kswapd is critical to provide GFP_ATOMIC
			   allocations (not GFP_HIGHMEM ones). */
			if (nr_free_pages() - nr_free_highpages() >= freepages.high)
				break;
			if (!do_try_to_free_pages(GFP_KSWAPD, 0))
				break;
			run_task_queue(&tq_disk);
		} while (!tsk->need_resched);
		tsk->state = TASK_INTERRUPTIBLE;
		interruptible_sleep_on(&kswapd_wait);
	}
}

/*
 * Called by non-kswapd processes when they want more
 * memory.
 *
 * In a perfect world, this should just wake up kswapd
 * and return. We don't actually want to swap stuff out
 * from user processes, because the locking issues are
 * nasty to the extreme (file write locks, and MM locking)
 *
 * One option might be to let kswapd do all the page-out
 * and VM page table scanning that needs locking, and this
 * process thread could do just the mmap shrink stage that
 * can be done by just dropping cached pages without having
 * any deadlock issues.
 */
int try_to_free_pages(unsigned int gfp_mask, zone_t *zone)
{
	int retval = 1;

	if (gfp_mask & __GFP_WAIT) {
		current->flags |= PF_MEMALLOC;
		retval = do_try_to_free_pages(gfp_mask, zone);
		current->flags &= ~PF_MEMALLOC;
	}
	return retval;
}

static int __init kswapd_init(void)
{
	printk("Starting kswapd v1.6\n");
	swap_setup();
	kernel_thread(kswapd, NULL, CLONE_FS | CLONE_FILES | CLONE_SIGHAND);
	return 0;
}

module_init(kswapd_init)