Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 | /* * linux/mm/vmscan.c * * The pageout daemon, decides which pages to evict (swap out) and * does the actual work of freeing them. * * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds * * Swap reorganised 29.12.95, Stephen Tweedie. * kswapd added: 7.1.96 sct * Removed kswapd_ctl limits, and swap out as many pages as needed * to bring the system back to freepages.high: 2.4.97, Rik van Riel. * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). * Multiqueue VM started 5.8.00, Rik van Riel. */ #include <linux/slab.h> #include <linux/kernel_stat.h> #include <linux/swap.h> #include <linux/swapctl.h> #include <linux/smp_lock.h> #include <linux/pagemap.h> #include <linux/init.h> #include <linux/highmem.h> #include <linux/file.h> #include <asm/pgalloc.h> /* * "vm_passes" is the number of vm passes before failing the * memory balancing. Take into account 3 passes are needed * for a flush/wait/free cycle and that we only scan 1/vm_cache_scan_ratio * of the inactive list at each pass. */ int vm_passes = 60; /* * "vm_cache_scan_ratio" is how much of the inactive LRU queue we will scan * in one go. A value of 6 for vm_cache_scan_ratio implies that we'll * scan 1/6 of the inactive lists during a normal aging round. */ int vm_cache_scan_ratio = 6; /* * "vm_mapped_ratio" controls the pageout rate, the smaller, the earlier * we'll start to pageout. */ int vm_mapped_ratio = 100; /* * "vm_lru_balance_ratio" controls the balance between active and * inactive cache. The bigger vm_balance is, the easier the * active cache will grow, because we'll rotate the active list * slowly. A value of 2 means we'll go towards a balance of * 1/3 of the cache being inactive. */ int vm_lru_balance_ratio = 2; /* * "vm_vfs_scan_ratio" is what proportion of the VFS queues we will scan * in one go. A value of 6 for vm_vfs_scan_ratio implies that 1/6th of * the unused-inode, dentry and dquot caches will be freed during a normal * aging round. */ int vm_vfs_scan_ratio = 6; /* * "vm_anon_lru" select if to immdiatly insert anon pages in the * lru. Immediatly means as soon as they're allocated during the * page faults. * * If this is set to 0, they're inserted only after the first * swapout. * * Having anon pages immediatly inserted in the lru allows the * VM to know better when it's worthwhile to start swapping * anonymous ram, it will start to swap earlier and it should * swap smoother and faster, but it will decrease scalability * on the >16-ways of an order of magnitude. Big SMP/NUMA * definitely can't take an hit on a global spinlock at * every anon page allocation. So this is off by default. * * Low ram machines that swaps all the time want to turn * this on (i.e. set to 1). */ int vm_anon_lru = 0; /* * The swap-out function returns 1 if it successfully * scanned all the pages it was asked to (`count'). * It returns zero if it couldn't do anything, * * rss may decrease because pages are shared, but this * doesn't count as having freed a page. */ /* mm->page_table_lock is held. mmap_sem is not held */ static inline int try_to_swap_out(struct mm_struct * mm, struct vm_area_struct* vma, unsigned long address, pte_t * page_table, struct page *page, zone_t * classzone) { pte_t pte; swp_entry_t entry; /* Don't look at this pte if it's been accessed recently. */ if ((vma->vm_flags & VM_LOCKED) || ptep_test_and_clear_young(page_table)) { mark_page_accessed(page); return 0; } /* Don't bother unmapping pages that are active */ if (PageActive(page)) return 0; /* Don't bother replenishing zones not under pressure.. */ if (!memclass(page_zone(page), classzone)) return 0; if (TryLockPage(page)) return 0; /* From this point on, the odds are that we're going to * nuke this pte, so read and clear the pte. This hook * is needed on CPUs which update the accessed and dirty * bits in hardware. */ flush_cache_page(vma, address); pte = ptep_get_and_clear(page_table); flush_tlb_page(vma, address); if (pte_dirty(pte)) set_page_dirty(page); /* * Is the page already in the swap cache? If so, then * we can just drop our reference to it without doing * any IO - it's already up-to-date on disk. */ if (PageSwapCache(page)) { entry.val = page->index; swap_duplicate(entry); set_swap_pte: set_pte(page_table, swp_entry_to_pte(entry)); drop_pte: mm->rss--; UnlockPage(page); { int freeable = page_count(page) - !!page->buffers <= 2; page_cache_release(page); return freeable; } } /* * Is it a clean page? Then it must be recoverable * by just paging it in again, and we can just drop * it.. or if it's dirty but has backing store, * just mark the page dirty and drop it. * * However, this won't actually free any real * memory, as the page will just be in the page cache * somewhere, and as such we should just continue * our scan. * * Basically, this just makes it possible for us to do * some real work in the future in "refill_inactive()". */ if (page->mapping) goto drop_pte; if (!PageDirty(page)) goto drop_pte; /* * Anonymous buffercache pages can be left behind by * concurrent truncate and pagefault. */ if (page->buffers) goto preserve; /* * This is a dirty, swappable page. First of all, * get a suitable swap entry for it, and make sure * we have the swap cache set up to associate the * page with that swap entry. */ for (;;) { entry = get_swap_page(); if (!entry.val) break; /* Add it to the swap cache and mark it dirty * (adding to the page cache will clear the dirty * and uptodate bits, so we need to do it again) */ if (add_to_swap_cache(page, entry) == 0) { SetPageUptodate(page); set_page_dirty(page); goto set_swap_pte; } /* Raced with "speculative" read_swap_cache_async */ swap_free(entry); } /* No swap space left */ preserve: set_pte(page_table, pte); UnlockPage(page); return 0; } /* mm->page_table_lock is held. mmap_sem is not held */ static inline int swap_out_pmd(struct mm_struct * mm, struct vm_area_struct * vma, pmd_t *dir, unsigned long address, unsigned long end, int count, zone_t * classzone) { pte_t * pte; unsigned long pmd_end; if (pmd_none(*dir)) return count; if (pmd_bad(*dir)) { pmd_ERROR(*dir); pmd_clear(dir); return count; } pte = pte_offset(dir, address); pmd_end = (address + PMD_SIZE) & PMD_MASK; if (end > pmd_end) end = pmd_end; do { if (pte_present(*pte)) { struct page *page = pte_page(*pte); if (VALID_PAGE(page) && !PageReserved(page)) { count -= try_to_swap_out(mm, vma, address, pte, page, classzone); if (!count) { address += PAGE_SIZE; break; } } } address += PAGE_SIZE; pte++; } while (address && (address < end)); mm->swap_address = address; return count; } /* mm->page_table_lock is held. mmap_sem is not held */ static inline int swap_out_pgd(struct mm_struct * mm, struct vm_area_struct * vma, pgd_t *dir, unsigned long address, unsigned long end, int count, zone_t * classzone) { pmd_t * pmd; unsigned long pgd_end; if (pgd_none(*dir)) return count; if (pgd_bad(*dir)) { pgd_ERROR(*dir); pgd_clear(dir); return count; } pmd = pmd_offset(dir, address); pgd_end = (address + PGDIR_SIZE) & PGDIR_MASK; if (pgd_end && (end > pgd_end)) end = pgd_end; do { count = swap_out_pmd(mm, vma, pmd, address, end, count, classzone); if (!count) break; address = (address + PMD_SIZE) & PMD_MASK; pmd++; } while (address && (address < end)); return count; } /* mm->page_table_lock is held. mmap_sem is not held */ static inline int swap_out_vma(struct mm_struct * mm, struct vm_area_struct * vma, unsigned long address, int count, zone_t * classzone) { pgd_t *pgdir; unsigned long end; /* Don't swap out areas which are reserved */ if (vma->vm_flags & VM_RESERVED) return count; pgdir = pgd_offset(mm, address); end = vma->vm_end; BUG_ON(address >= end); do { count = swap_out_pgd(mm, vma, pgdir, address, end, count, classzone); if (!count) break; address = (address + PGDIR_SIZE) & PGDIR_MASK; pgdir++; } while (address && (address < end)); return count; } /* Placeholder for swap_out(): may be updated by fork.c:mmput() */ struct mm_struct *swap_mm = &init_mm; /* * Returns remaining count of pages to be swapped out by followup call. */ static inline int swap_out_mm(struct mm_struct * mm, int count, int * mmcounter, zone_t * classzone) { unsigned long address; struct vm_area_struct* vma; /* * Find the proper vm-area after freezing the vma chain * and ptes. */ spin_lock(&mm->page_table_lock); address = mm->swap_address; if (address == TASK_SIZE || swap_mm != mm) { /* We raced: don't count this mm but try again */ ++*mmcounter; goto out_unlock; } vma = find_vma(mm, address); if (vma) { if (address < vma->vm_start) address = vma->vm_start; for (;;) { count = swap_out_vma(mm, vma, address, count, classzone); vma = vma->vm_next; if (!vma) break; if (!count) goto out_unlock; address = vma->vm_start; } } /* Indicate that we reached the end of address space */ mm->swap_address = TASK_SIZE; out_unlock: spin_unlock(&mm->page_table_lock); return count; } static int FASTCALL(swap_out(zone_t * classzone)); static int fastcall swap_out(zone_t * classzone) { int counter, nr_pages = SWAP_CLUSTER_MAX; struct mm_struct *mm; counter = mmlist_nr << 1; do { if (unlikely(current->need_resched)) { __set_current_state(TASK_RUNNING); schedule(); } spin_lock(&mmlist_lock); mm = swap_mm; while (mm->swap_address == TASK_SIZE || mm == &init_mm) { mm->swap_address = 0; mm = list_entry(mm->mmlist.next, struct mm_struct, mmlist); if (mm == swap_mm) goto empty; swap_mm = mm; } /* Make sure the mm doesn't disappear when we drop the lock.. */ atomic_inc(&mm->mm_users); spin_unlock(&mmlist_lock); nr_pages = swap_out_mm(mm, nr_pages, &counter, classzone); mmput(mm); if (!nr_pages) return 1; } while (--counter >= 0); return 0; empty: spin_unlock(&mmlist_lock); return 0; } static void FASTCALL(refill_inactive(int nr_pages, zone_t * classzone)); static int FASTCALL(shrink_cache(int nr_pages, zone_t * classzone, unsigned int gfp_mask, int * failed_swapout)); static int fastcall shrink_cache(int nr_pages, zone_t * classzone, unsigned int gfp_mask, int * failed_swapout) { struct list_head * entry; int max_scan = (classzone->nr_inactive_pages + classzone->nr_active_pages) / vm_cache_scan_ratio; int max_mapped = vm_mapped_ratio * nr_pages; while (max_scan && classzone->nr_inactive_pages && (entry = inactive_list.prev) != &inactive_list) { struct page * page; if (unlikely(current->need_resched)) { spin_unlock(&pagemap_lru_lock); __set_current_state(TASK_RUNNING); schedule(); spin_lock(&pagemap_lru_lock); continue; } page = list_entry(entry, struct page, lru); BUG_ON(!PageLRU(page)); BUG_ON(PageActive(page)); list_del(entry); list_add(entry, &inactive_list); /* * Zero page counts can happen because we unlink the pages * _after_ decrementing the usage count.. */ if (unlikely(!page_count(page))) continue; if (!memclass(page_zone(page), classzone)) continue; max_scan--; /* Racy check to avoid trylocking when not worthwhile */ if (!page->buffers && (page_count(page) != 1 || !page->mapping)) goto page_mapped; /* * The page is locked. IO in progress? * Move it to the back of the list. */ if (unlikely(TryLockPage(page))) { if (PageLaunder(page) && (gfp_mask & __GFP_FS)) { page_cache_get(page); spin_unlock(&pagemap_lru_lock); wait_on_page(page); page_cache_release(page); spin_lock(&pagemap_lru_lock); } continue; } if (PageDirty(page) && is_page_cache_freeable(page) && page->mapping) { /* * It is not critical here to write it only if * the page is unmapped beause any direct writer * like O_DIRECT would set the PG_dirty bitflag * on the phisical page after having successfully * pinned it and after the I/O to the page is finished, * so the direct writes to the page cannot get lost. */ int (*writepage)(struct page *); writepage = page->mapping->a_ops->writepage; if ((gfp_mask & __GFP_FS) && writepage) { ClearPageDirty(page); SetPageLaunder(page); page_cache_get(page); spin_unlock(&pagemap_lru_lock); writepage(page); page_cache_release(page); spin_lock(&pagemap_lru_lock); continue; } } /* * If the page has buffers, try to free the buffer mappings * associated with this page. If we succeed we try to free * the page as well. */ if (page->buffers) { spin_unlock(&pagemap_lru_lock); /* avoid to free a locked page */ page_cache_get(page); if (try_to_release_page(page, gfp_mask)) { if (!page->mapping) { /* * We must not allow an anon page * with no buffers to be visible on * the LRU, so we unlock the page after * taking the lru lock */ spin_lock(&pagemap_lru_lock); UnlockPage(page); __lru_cache_del(page); /* effectively free the page here */ page_cache_release(page); if (--nr_pages) continue; break; } else { /* * The page is still in pagecache so undo the stuff * before the try_to_release_page since we've not * finished and we can now try the next step. */ page_cache_release(page); spin_lock(&pagemap_lru_lock); } } else { /* failed to drop the buffers so stop here */ UnlockPage(page); page_cache_release(page); spin_lock(&pagemap_lru_lock); continue; } } spin_lock(&pagecache_lock); /* * This is the non-racy check for busy page. * It is critical to check PageDirty _after_ we made sure * the page is freeable so not in use by anybody. * At this point we're guaranteed that page->buffers is NULL, * nobody can refill page->buffers under us because we still * hold the page lock. */ if (!page->mapping || page_count(page) > 1) { spin_unlock(&pagecache_lock); UnlockPage(page); page_mapped: if (--max_mapped < 0) { spin_unlock(&pagemap_lru_lock); nr_pages -= kmem_cache_reap(gfp_mask); if (nr_pages <= 0) goto out; shrink_dcache_memory(vm_vfs_scan_ratio, gfp_mask); shrink_icache_memory(vm_vfs_scan_ratio, gfp_mask); #ifdef CONFIG_QUOTA shrink_dqcache_memory(vm_vfs_scan_ratio, gfp_mask); #endif if (!*failed_swapout) *failed_swapout = !swap_out(classzone); max_mapped = nr_pages * vm_mapped_ratio; spin_lock(&pagemap_lru_lock); refill_inactive(nr_pages, classzone); } continue; } if (PageDirty(page)) { spin_unlock(&pagecache_lock); UnlockPage(page); continue; } __lru_cache_del(page); /* point of no return */ if (likely(!PageSwapCache(page))) { __remove_inode_page(page); spin_unlock(&pagecache_lock); } else { swp_entry_t swap; swap.val = page->index; __delete_from_swap_cache(page); spin_unlock(&pagecache_lock); swap_free(swap); } UnlockPage(page); /* effectively free the page here */ page_cache_release(page); if (--nr_pages) continue; break; } spin_unlock(&pagemap_lru_lock); out: return nr_pages; } /* * This moves pages from the active list to * the inactive list. * * We move them the other way when we see the * reference bit on the page. */ static void fastcall refill_inactive(int nr_pages, zone_t * classzone) { struct list_head * entry; unsigned long ratio; ratio = (unsigned long) nr_pages * classzone->nr_active_pages / (((unsigned long) classzone->nr_inactive_pages * vm_lru_balance_ratio) + 1); entry = active_list.prev; while (ratio && entry != &active_list) { struct page * page; page = list_entry(entry, struct page, lru); entry = entry->prev; if (PageTestandClearReferenced(page)) { list_del(&page->lru); list_add(&page->lru, &active_list); continue; } ratio--; del_page_from_active_list(page); add_page_to_inactive_list(page); SetPageReferenced(page); } if (entry != &active_list) { list_del(&active_list); list_add(&active_list, entry); } } static int FASTCALL(shrink_caches(zone_t * classzone, unsigned int gfp_mask, int nr_pages, int * failed_swapout)); static int fastcall shrink_caches(zone_t * classzone, unsigned int gfp_mask, int nr_pages, int * failed_swapout) { nr_pages -= kmem_cache_reap(gfp_mask); if (nr_pages <= 0) goto out; spin_lock(&pagemap_lru_lock); refill_inactive(nr_pages, classzone); nr_pages = shrink_cache(nr_pages, classzone, gfp_mask, failed_swapout); out: return nr_pages; } static int check_classzone_need_balance(zone_t * classzone); int fastcall try_to_free_pages_zone(zone_t *classzone, unsigned int gfp_mask) { gfp_mask = pf_gfp_mask(gfp_mask); for (;;) { int tries = vm_passes; int failed_swapout = !(gfp_mask & __GFP_IO); int nr_pages = SWAP_CLUSTER_MAX; do { nr_pages = shrink_caches(classzone, gfp_mask, nr_pages, &failed_swapout); if (nr_pages <= 0) return 1; shrink_dcache_memory(vm_vfs_scan_ratio, gfp_mask); shrink_icache_memory(vm_vfs_scan_ratio, gfp_mask); #ifdef CONFIG_QUOTA shrink_dqcache_memory(vm_vfs_scan_ratio, gfp_mask); #endif if (!failed_swapout) failed_swapout = !swap_out(classzone); } while (--tries); #ifdef CONFIG_OOM_KILLER out_of_memory(); #else if (likely(current->pid != 1)) break; if (!check_classzone_need_balance(classzone)) break; __set_current_state(TASK_RUNNING); yield(); #endif } return 0; } int fastcall try_to_free_pages(unsigned int gfp_mask) { pg_data_t *pgdat; zonelist_t *zonelist; unsigned long pf_free_pages; int error = 0; pf_free_pages = current->flags & PF_FREE_PAGES; current->flags &= ~PF_FREE_PAGES; for_each_pgdat(pgdat) { zonelist = pgdat->node_zonelists + (gfp_mask & GFP_ZONEMASK); error |= try_to_free_pages_zone(zonelist->zones[0], gfp_mask); } current->flags |= pf_free_pages; return error; } DECLARE_WAIT_QUEUE_HEAD(kswapd_wait); static int check_classzone_need_balance(zone_t * classzone) { zone_t * first_zone; int class_idx = zone_idx(classzone); first_zone = classzone->zone_pgdat->node_zones; while (classzone >= first_zone) { if (classzone->free_pages > classzone->watermarks[class_idx].high) return 0; classzone--; } return 1; } static int kswapd_balance_pgdat(pg_data_t * pgdat) { int need_more_balance = 0, i; zone_t * zone; for (i = pgdat->nr_zones-1; i >= 0; i--) { zone = pgdat->node_zones + i; if (unlikely(current->need_resched)) schedule(); if (!zone->need_balance || !zone->size) continue; if (!try_to_free_pages_zone(zone, GFP_KSWAPD)) { zone->need_balance = 0; __set_current_state(TASK_INTERRUPTIBLE); schedule_timeout(HZ*5); continue; } if (check_classzone_need_balance(zone)) need_more_balance = 1; else zone->need_balance = 0; } return need_more_balance; } static void kswapd_balance(void) { int need_more_balance; pg_data_t * pgdat; do { need_more_balance = 0; for_each_pgdat(pgdat) need_more_balance |= kswapd_balance_pgdat(pgdat); } while (need_more_balance); } static int kswapd_can_sleep_pgdat(pg_data_t * pgdat) { zone_t * zone; int i; for (i = pgdat->nr_zones-1; i >= 0; i--) { zone = pgdat->node_zones + i; if (!zone->need_balance || !zone->size) continue; return 0; } return 1; } static int kswapd_can_sleep(void) { pg_data_t * pgdat; for_each_pgdat(pgdat) { if (!kswapd_can_sleep_pgdat(pgdat)) return 0; } return 1; } /* * The background pageout daemon, started as a kernel thread * from the init process. * * This basically trickles out pages so that we have _some_ * free memory available even if there is no other activity * that frees anything up. This is needed for things like routing * etc, where we otherwise might have all activity going on in * asynchronous contexts that cannot page things out. * * If there are applications that are active memory-allocators * (most normal use), this basically shouldn't matter. */ int kswapd(void *unused) { struct task_struct *tsk = current; DECLARE_WAITQUEUE(wait, tsk); daemonize(); strcpy(tsk->comm, "kswapd"); sigfillset(&tsk->blocked); /* * Tell the memory management that we're a "memory allocator", * and that if we need more memory we should get access to it * regardless (see "__alloc_pages()"). "kswapd" should * never get caught in the normal page freeing logic. * * (Kswapd normally doesn't need memory anyway, but sometimes * you need a small amount of memory in order to be able to * page out something else, and this flag essentially protects * us from recursively trying to free more memory as we're * trying to free the first piece of memory in the first place). */ tsk->flags |= PF_MEMALLOC; /* * Kswapd main loop. */ for (;;) { __set_current_state(TASK_INTERRUPTIBLE); add_wait_queue(&kswapd_wait, &wait); mb(); if (kswapd_can_sleep()) schedule(); __set_current_state(TASK_RUNNING); remove_wait_queue(&kswapd_wait, &wait); /* * If we actually get into a low-memory situation, * the processes needing more memory will wake us * up on a more timely basis. */ kswapd_balance(); run_task_queue(&tq_disk); } } static int __init kswapd_init(void) { printk("Starting kswapd\n"); swap_setup(); kernel_thread(kswapd, NULL, CLONE_FS | CLONE_FILES | CLONE_SIGNAL); return 0; } module_init(kswapd_init) |