Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 | /* * linux/mm/filemap.c * * Copyright (C) 1994-1999 Linus Torvalds */ /* * This file handles the generic file mmap semantics used by * most "normal" filesystems (but you don't /have/ to use this: * the NFS filesystem used to do this differently, for example) */ #include <linux/config.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/compiler.h> #include <linux/fs.h> #include <linux/aio.h> #include <linux/kernel_stat.h> #include <linux/mm.h> #include <linux/mman.h> #include <linux/pagemap.h> #include <linux/file.h> #include <linux/uio.h> #include <linux/hash.h> #include <linux/writeback.h> #include <linux/pagevec.h> #include <linux/blkdev.h> #include <linux/security.h> /* * This is needed for the following functions: * - try_to_release_page * - block_invalidatepage * - page_has_buffers * - generic_osync_inode * * FIXME: remove all knowledge of the buffer layer from this file */ #include <linux/buffer_head.h> #include <asm/uaccess.h> #include <asm/mman.h> /* * Shared mappings implemented 30.11.1994. It's not fully working yet, * though. * * Shared mappings now work. 15.8.1995 Bruno. * * finished 'unifying' the page and buffer cache and SMP-threaded the * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> * * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> */ /* * Lock ordering: * * ->i_shared_sem (vmtruncate) * ->private_lock (__free_pte->__set_page_dirty_buffers) * ->swap_list_lock * ->swap_device_lock (exclusive_swap_page, others) * ->mapping->page_lock * ->mmap_sem * ->i_shared_sem (various places) * * ->inode_lock * ->sb_lock (fs/fs-writeback.c) * ->mapping->page_lock (__sync_single_inode) * ->page_table_lock * ->swap_device_lock (try_to_unmap_one) * ->private_lock (try_to_unmap_one) * ->page_lock (try_to_unmap_one) */ /* * Remove a page from the page cache and free it. Caller has to make * sure the page is locked and that nobody else uses it - or that usage * is safe. The caller must hold a write_lock on the mapping's page_lock. */ void __remove_from_page_cache(struct page *page) { struct address_space *mapping = page->mapping; BUG_ON(PageDirty(page) && !PageSwapCache(page)); radix_tree_delete(&mapping->page_tree, page->index); list_del(&page->list); page->mapping = NULL; mapping->nrpages--; dec_page_state(nr_pagecache); } void remove_from_page_cache(struct page *page) { struct address_space *mapping = page->mapping; if (unlikely(!PageLocked(page))) PAGE_BUG(page); write_lock(&mapping->page_lock); __remove_from_page_cache(page); write_unlock(&mapping->page_lock); } static inline int sync_page(struct page *page) { struct address_space *mapping = page->mapping; if (mapping && mapping->a_ops && mapping->a_ops->sync_page) return mapping->a_ops->sync_page(page); return 0; } /** * filemap_fdatawrite - start writeback against all of a mapping's dirty pages * @mapping: address space structure to write * * This is a "data integrity" operation, as opposed to a regular memory * cleansing writeback. The difference between these two operations is that * if a dirty page/buffer is encountered, it must be waited upon, and not just * skipped over. */ int filemap_fdatawrite(struct address_space *mapping) { int ret; struct writeback_control wbc = { .sync_mode = WB_SYNC_ALL, .nr_to_write = mapping->nrpages * 2, }; if (mapping->backing_dev_info->memory_backed) return 0; write_lock(&mapping->page_lock); list_splice_init(&mapping->dirty_pages, &mapping->io_pages); write_unlock(&mapping->page_lock); ret = do_writepages(mapping, &wbc); return ret; } /** * filemap_fdatawait - walk the list of locked pages of the given address * space and wait for all of them. * @mapping: address space structure to wait for */ int filemap_fdatawait(struct address_space * mapping) { int ret = 0; int progress; restart: progress = 0; write_lock(&mapping->page_lock); while (!list_empty(&mapping->locked_pages)) { struct page *page; page = list_entry(mapping->locked_pages.next,struct page,list); list_del(&page->list); if (PageDirty(page)) list_add(&page->list, &mapping->dirty_pages); else list_add(&page->list, &mapping->clean_pages); if (!PageWriteback(page)) { if (++progress > 32) { if (need_resched()) { write_unlock(&mapping->page_lock); __cond_resched(); goto restart; } } continue; } progress = 0; page_cache_get(page); write_unlock(&mapping->page_lock); wait_on_page_writeback(page); if (PageError(page)) ret = -EIO; page_cache_release(page); write_lock(&mapping->page_lock); } write_unlock(&mapping->page_lock); return ret; } /* * This adds a page to the page cache, starting out as locked, unreferenced, * not uptodate and with no errors. * * This function is used for two things: adding newly allocated pagecache * pages and for moving existing anon pages into swapcache. * * In the case of pagecache pages, the page is new, so we can just run * SetPageLocked() against it. The other page state flags were set by * rmqueue() * * In the case of swapcache, try_to_swap_out() has already locked the page, so * SetPageLocked() is ugly-but-OK there too. The required page state has been * set up by swap_out_add_to_swap_cache(). * * This function does not add the page to the LRU. The caller must do that. */ int add_to_page_cache(struct page *page, struct address_space *mapping, pgoff_t offset, int gfp_mask) { int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM); if (error == 0) { page_cache_get(page); write_lock(&mapping->page_lock); error = radix_tree_insert(&mapping->page_tree, offset, page); if (!error) { SetPageLocked(page); ___add_to_page_cache(page, mapping, offset); } else { page_cache_release(page); } write_unlock(&mapping->page_lock); radix_tree_preload_end(); } return error; } int add_to_page_cache_lru(struct page *page, struct address_space *mapping, pgoff_t offset, int gfp_mask) { int ret = add_to_page_cache(page, mapping, offset, gfp_mask); if (ret == 0) lru_cache_add(page); return ret; } /* * In order to wait for pages to become available there must be * waitqueues associated with pages. By using a hash table of * waitqueues where the bucket discipline is to maintain all * waiters on the same queue and wake all when any of the pages * become available, and for the woken contexts to check to be * sure the appropriate page became available, this saves space * at a cost of "thundering herd" phenomena during rare hash * collisions. */ static wait_queue_head_t *page_waitqueue(struct page *page) { const struct zone *zone = page_zone(page); return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)]; } void wait_on_page_bit(struct page *page, int bit_nr) { wait_queue_head_t *waitqueue = page_waitqueue(page); DEFINE_WAIT(wait); do { prepare_to_wait(waitqueue, &wait, TASK_UNINTERRUPTIBLE); sync_page(page); if (test_bit(bit_nr, &page->flags)) io_schedule(); } while (test_bit(bit_nr, &page->flags)); finish_wait(waitqueue, &wait); } EXPORT_SYMBOL(wait_on_page_bit); /** * unlock_page() - unlock a locked page * * @page: the page * * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). * Also wakes sleepers in wait_on_page_writeback() because the wakeup * mechananism between PageLocked pages and PageWriteback pages is shared. * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. * * The first mb is necessary to safely close the critical section opened by the * TestSetPageLocked(), the second mb is necessary to enforce ordering between * the clear_bit and the read of the waitqueue (to avoid SMP races with a * parallel wait_on_page_locked()). */ void unlock_page(struct page *page) { wait_queue_head_t *waitqueue = page_waitqueue(page); smp_mb__before_clear_bit(); if (!TestClearPageLocked(page)) BUG(); smp_mb__after_clear_bit(); if (waitqueue_active(waitqueue)) wake_up_all(waitqueue); } /* * End writeback against a page. */ void end_page_writeback(struct page *page) { wait_queue_head_t *waitqueue = page_waitqueue(page); if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) { smp_mb__before_clear_bit(); if (!TestClearPageWriteback(page)) BUG(); smp_mb__after_clear_bit(); } if (waitqueue_active(waitqueue)) wake_up_all(waitqueue); } EXPORT_SYMBOL(end_page_writeback); /* * Get a lock on the page, assuming we need to sleep to get it. * * Ugly: running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some * random driver's requestfn sets TASK_RUNNING, we could busywait. However * chances are that on the second loop, the block layer's plug list is empty, * so sync_page() will then return in state TASK_UNINTERRUPTIBLE. */ void __lock_page(struct page *page) { wait_queue_head_t *wqh = page_waitqueue(page); DEFINE_WAIT(wait); while (TestSetPageLocked(page)) { prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); sync_page(page); if (PageLocked(page)) io_schedule(); } finish_wait(wqh, &wait); } EXPORT_SYMBOL(__lock_page); /* * a rather lightweight function, finding and getting a reference to a * hashed page atomically. */ struct page * find_get_page(struct address_space *mapping, unsigned long offset) { struct page *page; /* * We scan the hash list read-only. Addition to and removal from * the hash-list needs a held write-lock. */ read_lock(&mapping->page_lock); page = radix_tree_lookup(&mapping->page_tree, offset); if (page) page_cache_get(page); read_unlock(&mapping->page_lock); return page; } /* * Same as above, but trylock it instead of incrementing the count. */ struct page *find_trylock_page(struct address_space *mapping, unsigned long offset) { struct page *page; read_lock(&mapping->page_lock); page = radix_tree_lookup(&mapping->page_tree, offset); if (page && TestSetPageLocked(page)) page = NULL; read_unlock(&mapping->page_lock); return page; } /** * find_lock_page - locate, pin and lock a pagecache page * * @mapping - the address_space to search * @offset - the page index * * Locates the desired pagecache page, locks it, increments its reference * count and returns its address. * * Returns zero if the page was not present. find_lock_page() may sleep. */ struct page *find_lock_page(struct address_space *mapping, unsigned long offset) { struct page *page; read_lock(&mapping->page_lock); repeat: page = radix_tree_lookup(&mapping->page_tree, offset); if (page) { page_cache_get(page); if (TestSetPageLocked(page)) { read_unlock(&mapping->page_lock); lock_page(page); read_lock(&mapping->page_lock); /* Has the page been truncated while we slept? */ if (page->mapping != mapping || page->index != offset) { unlock_page(page); page_cache_release(page); goto repeat; } } } read_unlock(&mapping->page_lock); return page; } /** * find_or_create_page - locate or add a pagecache page * * @mapping - the page's address_space * @index - the page's index into the mapping * @gfp_mask - page allocation mode * * Locates a page in the pagecache. If the page is not present, a new page * is allocated using @gfp_mask and is added to the pagecache and to the VM's * LRU list. The returned page is locked and has its reference count * incremented. * * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic * allocation! * * find_or_create_page() returns the desired page's address, or zero on * memory exhaustion. */ struct page *find_or_create_page(struct address_space *mapping, unsigned long index, unsigned int gfp_mask) { struct page *page, *cached_page = NULL; int err; repeat: page = find_lock_page(mapping, index); if (!page) { if (!cached_page) { cached_page = alloc_page(gfp_mask); if (!cached_page) return NULL; } err = add_to_page_cache_lru(cached_page, mapping, index, gfp_mask); if (!err) { page = cached_page; cached_page = NULL; } else if (err == -EEXIST) goto repeat; } if (cached_page) page_cache_release(cached_page); return page; } /** * find_get_pages - gang pagecache lookup * @mapping: The address_space to search * @start: The starting page index * @nr_pages: The maximum number of pages * @pages: Where the resulting pages are placed * * find_get_pages() will search for and return a group of up to * @nr_pages pages in the mapping. The pages are placed at @pages. * find_get_pages() takes a reference against the returned pages. * * The search returns a group of mapping-contiguous pages with ascending * indexes. There may be holes in the indices due to not-present pages. * * find_get_pages() returns the number of pages which were found. */ unsigned int find_get_pages(struct address_space *mapping, pgoff_t start, unsigned int nr_pages, struct page **pages) { unsigned int i; unsigned int ret; read_lock(&mapping->page_lock); ret = radix_tree_gang_lookup(&mapping->page_tree, (void **)pages, start, nr_pages); for (i = 0; i < ret; i++) page_cache_get(pages[i]); read_unlock(&mapping->page_lock); return ret; } /* * Same as grab_cache_page, but do not wait if the page is unavailable. * This is intended for speculative data generators, where the data can * be regenerated if the page couldn't be grabbed. This routine should * be safe to call while holding the lock for another page. * * Clear __GFP_FS when allocating the page to avoid recursion into the fs * and deadlock against the caller's locked page. */ struct page * grab_cache_page_nowait(struct address_space *mapping, unsigned long index) { struct page *page = find_get_page(mapping, index); int gfp_mask; if (page) { if (!TestSetPageLocked(page)) return page; page_cache_release(page); return NULL; } gfp_mask = mapping->gfp_mask & ~__GFP_FS; page = alloc_pages(gfp_mask, 0); if (page && add_to_page_cache_lru(page, mapping, index, gfp_mask)) { page_cache_release(page); page = NULL; } return page; } /* * This is a generic file read routine, and uses the * inode->i_op->readpage() function for the actual low-level * stuff. * * This is really ugly. But the goto's actually try to clarify some * of the logic when it comes to error handling etc. * - note the struct file * is only passed for the use of readpage */ void do_generic_mapping_read(struct address_space *mapping, struct file_ra_state *ra, struct file * filp, loff_t *ppos, read_descriptor_t * desc, read_actor_t actor) { struct inode *inode = mapping->host; unsigned long index, offset; struct page *cached_page; int error; cached_page = NULL; index = *ppos >> PAGE_CACHE_SHIFT; offset = *ppos & ~PAGE_CACHE_MASK; for (;;) { struct page *page; unsigned long end_index, nr, ret; end_index = inode->i_size >> PAGE_CACHE_SHIFT; if (index > end_index) break; nr = PAGE_CACHE_SIZE; if (index == end_index) { nr = inode->i_size & ~PAGE_CACHE_MASK; if (nr <= offset) break; } cond_resched(); page_cache_readahead(mapping, ra, filp, index); nr = nr - offset; /* * Try to find the data in the page cache.. */ find_page: read_lock(&mapping->page_lock); page = radix_tree_lookup(&mapping->page_tree, index); if (!page) { read_unlock(&mapping->page_lock); handle_ra_miss(mapping,ra); goto no_cached_page; } page_cache_get(page); read_unlock(&mapping->page_lock); if (!PageUptodate(page)) goto page_not_up_to_date; page_ok: /* If users can be writing to this page using arbitrary * virtual addresses, take care about potential aliasing * before reading the page on the kernel side. */ if (!list_empty(&mapping->i_mmap_shared)) flush_dcache_page(page); /* * Mark the page accessed if we read the beginning. */ if (!offset) mark_page_accessed(page); /* * Ok, we have the page, and it's up-to-date, so * now we can copy it to user space... * * The actor routine returns how many bytes were actually used.. * NOTE! This may not be the same as how much of a user buffer * we filled up (we may be padding etc), so we can only update * "pos" here (the actor routine has to update the user buffer * pointers and the remaining count). */ ret = actor(desc, page, offset, nr); offset += ret; index += offset >> PAGE_CACHE_SHIFT; offset &= ~PAGE_CACHE_MASK; page_cache_release(page); if (ret == nr && desc->count) continue; break; page_not_up_to_date: if (PageUptodate(page)) goto page_ok; /* Get exclusive access to the page ... */ lock_page(page); /* Did it get unhashed before we got the lock? */ if (!page->mapping) { unlock_page(page); page_cache_release(page); continue; } /* Did somebody else fill it already? */ if (PageUptodate(page)) { unlock_page(page); goto page_ok; } readpage: /* ... and start the actual read. The read will unlock the page. */ error = mapping->a_ops->readpage(filp, page); if (!error) { if (PageUptodate(page)) goto page_ok; wait_on_page_locked(page); if (PageUptodate(page)) goto page_ok; error = -EIO; } /* UHHUH! A synchronous read error occurred. Report it */ desc->error = error; page_cache_release(page); break; no_cached_page: /* * Ok, it wasn't cached, so we need to create a new * page.. */ if (!cached_page) { cached_page = page_cache_alloc_cold(mapping); if (!cached_page) { desc->error = -ENOMEM; break; } } error = add_to_page_cache_lru(cached_page, mapping, index, GFP_KERNEL); if (error) { if (error == -EEXIST) goto find_page; desc->error = error; break; } page = cached_page; cached_page = NULL; goto readpage; } *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset; if (cached_page) page_cache_release(cached_page); UPDATE_ATIME(inode); } /* * Fault a userspace page into pagetables. Return non-zero on a fault. * * FIXME: this assumes that two userspace pages are always sufficient. That's * not true if PAGE_CACHE_SIZE > PAGE_SIZE. */ static inline int fault_in_pages_writeable(char *uaddr, int size) { int ret; /* * Writing zeroes into userspace here is OK, because we know that if * the zero gets there, we'll be overwriting it. */ ret = __put_user(0, uaddr); if (ret == 0) { char *end = uaddr + size - 1; /* * If the page was already mapped, this will get a cache miss * for sure, so try to avoid doing it. */ if (((unsigned long)uaddr & PAGE_MASK) != ((unsigned long)end & PAGE_MASK)) ret = __put_user(0, end); } return ret; } static void fault_in_pages_readable(const char *uaddr, int size) { volatile char c; int ret; ret = __get_user(c, (char *)uaddr); if (ret == 0) { const char *end = uaddr + size - 1; if (((unsigned long)uaddr & PAGE_MASK) != ((unsigned long)end & PAGE_MASK)) __get_user(c, (char *)end); } } int file_read_actor(read_descriptor_t *desc, struct page *page, unsigned long offset, unsigned long size) { char *kaddr; unsigned long left, count = desc->count; if (size > count) size = count; /* * Faults on the destination of a read are common, so do it before * taking the kmap. */ if (!fault_in_pages_writeable(desc->buf, size)) { kaddr = kmap_atomic(page, KM_USER0); left = __copy_to_user(desc->buf, kaddr + offset, size); kunmap_atomic(kaddr, KM_USER0); if (left == 0) goto success; } /* Do it the slow way */ kaddr = kmap(page); left = __copy_to_user(desc->buf, kaddr + offset, size); kunmap(page); if (left) { size -= left; desc->error = -EFAULT; } success: desc->count = count - size; desc->written += size; desc->buf += size; return size; } /* * This is the "read()" routine for all filesystems * that can use the page cache directly. */ static ssize_t __generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov, unsigned long nr_segs, loff_t *ppos) { struct file *filp = iocb->ki_filp; ssize_t retval; unsigned long seg; size_t count; count = 0; for (seg = 0; seg < nr_segs; seg++) { const struct iovec *iv = &iov[seg]; /* * If any segment has a negative length, or the cumulative * length ever wraps negative then return -EINVAL. */ count += iv->iov_len; if (unlikely((ssize_t)(count|iv->iov_len) < 0)) return -EINVAL; if (access_ok(VERIFY_WRITE, iv->iov_base, iv->iov_len)) continue; if (seg == 0) return -EFAULT; nr_segs = seg; count -= iv->iov_len; /* This segment is no good */ break; } /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ if (filp->f_flags & O_DIRECT) { loff_t pos = *ppos, size; struct address_space *mapping; struct inode *inode; mapping = filp->f_dentry->d_inode->i_mapping; inode = mapping->host; retval = 0; if (!count) goto out; /* skip atime */ size = inode->i_size; if (pos < size) { if (pos + count > size) { count = size - pos; nr_segs = iov_shorten((struct iovec *)iov, nr_segs, count); } retval = generic_file_direct_IO(READ, iocb, iov, pos, nr_segs); if (retval >= 0 && !is_sync_kiocb(iocb)) retval = -EIOCBQUEUED; if (retval > 0) *ppos = pos + retval; } UPDATE_ATIME(filp->f_dentry->d_inode); goto out; } retval = 0; if (count) { for (seg = 0; seg < nr_segs; seg++) { read_descriptor_t desc; desc.written = 0; desc.buf = iov[seg].iov_base; desc.count = iov[seg].iov_len; if (desc.count == 0) continue; desc.error = 0; do_generic_file_read(filp,ppos,&desc,file_read_actor); retval += desc.written; if (!retval) { retval = desc.error; break; } } } out: return retval; } ssize_t generic_file_aio_read(struct kiocb *iocb, char *buf, size_t count, loff_t pos) { struct iovec local_iov = { .iov_base = buf, .iov_len = count }; BUG_ON(iocb->ki_pos != pos); return __generic_file_aio_read(iocb, &local_iov, 1, &iocb->ki_pos); } EXPORT_SYMBOL(generic_file_aio_read); ssize_t generic_file_read(struct file *filp, char *buf, size_t count, loff_t *ppos) { struct iovec local_iov = { .iov_base = buf, .iov_len = count }; struct kiocb kiocb; ssize_t ret; init_sync_kiocb(&kiocb, filp); ret = __generic_file_aio_read(&kiocb, &local_iov, 1, ppos); if (-EIOCBQUEUED == ret) ret = wait_on_sync_kiocb(&kiocb); return ret; } int file_send_actor(read_descriptor_t * desc, struct page *page, unsigned long offset, unsigned long size) { ssize_t written; unsigned long count = desc->count; struct file *file = (struct file *) desc->buf; if (size > count) size = count; written = file->f_op->sendpage(file, page, offset, size, &file->f_pos, size<count); if (written < 0) { desc->error = written; written = 0; } desc->count = count - written; desc->written += written; return written; } ssize_t generic_file_sendfile(struct file *in_file, loff_t *ppos, size_t count, read_actor_t actor, void *target) { read_descriptor_t desc; if (!count) return 0; desc.written = 0; desc.count = count; desc.buf = target; desc.error = 0; do_generic_file_read(in_file, ppos, &desc, actor); if (desc.written) return desc.written; return desc.error; } static ssize_t do_readahead(struct address_space *mapping, struct file *filp, unsigned long index, unsigned long nr) { if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage) return -EINVAL; do_page_cache_readahead(mapping, filp, index, max_sane_readahead(nr)); return 0; } asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count) { ssize_t ret; struct file *file; ret = -EBADF; file = fget(fd); if (file) { if (file->f_mode & FMODE_READ) { struct address_space *mapping = file->f_dentry->d_inode->i_mapping; unsigned long start = offset >> PAGE_CACHE_SHIFT; unsigned long end = (offset + count - 1) >> PAGE_CACHE_SHIFT; unsigned long len = end - start + 1; ret = do_readahead(mapping, file, start, len); } fput(file); } return ret; } #ifdef CONFIG_MMU /* * This adds the requested page to the page cache if it isn't already there, * and schedules an I/O to read in its contents from disk. */ static int FASTCALL(page_cache_read(struct file * file, unsigned long offset)); static int page_cache_read(struct file * file, unsigned long offset) { struct address_space *mapping = file->f_dentry->d_inode->i_mapping; struct page *page; int error; page = page_cache_alloc_cold(mapping); if (!page) return -ENOMEM; error = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL); if (!error) { error = mapping->a_ops->readpage(file, page); page_cache_release(page); return error; } /* * We arrive here in the unlikely event that someone * raced with us and added our page to the cache first * or we are out of memory for radix-tree nodes. */ page_cache_release(page); return error == -EEXIST ? 0 : error; } /* * filemap_nopage() is invoked via the vma operations vector for a * mapped memory region to read in file data during a page fault. * * The goto's are kind of ugly, but this streamlines the normal case of having * it in the page cache, and handles the special cases reasonably without * having a lot of duplicated code. */ struct page * filemap_nopage(struct vm_area_struct * area, unsigned long address, int unused) { int error; struct file *file = area->vm_file; struct address_space *mapping = file->f_dentry->d_inode->i_mapping; struct file_ra_state *ra = &file->f_ra; struct inode *inode = mapping->host; struct page *page; unsigned long size, pgoff, endoff; int did_readahead; pgoff = ((address - area->vm_start) >> PAGE_CACHE_SHIFT) + area->vm_pgoff; endoff = ((area->vm_end - area->vm_start) >> PAGE_CACHE_SHIFT) + area->vm_pgoff; retry_all: /* * An external ptracer can access pages that normally aren't * accessible.. */ size = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; if ((pgoff >= size) && (area->vm_mm == current->mm)) return NULL; /* * The "size" of the file, as far as mmap is concerned, isn't bigger * than the mapping */ if (size > endoff) size = endoff; did_readahead = 0; /* * The readahead code wants to be told about each and every page * so it can build and shrink its windows appropriately */ if (VM_SequentialReadHint(area)) { did_readahead = 1; page_cache_readahead(mapping, ra, file, pgoff); } /* * If the offset is outside the mapping size we're off the end * of a privately mapped file, so we need to map a zero page. */ if ((pgoff < size) && !VM_RandomReadHint(area)) { did_readahead = 1; page_cache_readaround(mapping, ra, file, pgoff); } /* * Do we have something in the page cache already? */ retry_find: page = find_get_page(mapping, pgoff); if (!page) { if (did_readahead) { handle_ra_miss(mapping,ra); did_readahead = 0; } goto no_cached_page; } /* * Ok, found a page in the page cache, now we need to check * that it's up-to-date. */ if (!PageUptodate(page)) goto page_not_uptodate; success: /* * Found the page and have a reference on it, need to check sharing * and possibly copy it over to another page.. */ mark_page_accessed(page); flush_page_to_ram(page); return page; no_cached_page: /* * We're only likely to ever get here if MADV_RANDOM is in * effect. */ error = page_cache_read(file, pgoff); /* * The page we want has now been added to the page cache. * In the unlikely event that someone removed it in the * meantime, we'll just come back here and read it again. */ if (error >= 0) goto retry_find; /* * An error return from page_cache_read can result if the * system is low on memory, or a problem occurs while trying * to schedule I/O. */ if (error == -ENOMEM) return NOPAGE_OOM; return NULL; page_not_uptodate: inc_page_state(pgmajfault); lock_page(page); /* Did it get unhashed while we waited for it? */ if (!page->mapping) { unlock_page(page); page_cache_release(page); goto retry_all; } /* Did somebody else get it up-to-date? */ if (PageUptodate(page)) { unlock_page(page); goto success; } if (!mapping->a_ops->readpage(file, page)) { wait_on_page_locked(page); if (PageUptodate(page)) goto success; } /* * Umm, take care of errors if the page isn't up-to-date. * Try to re-read it _once_. We do this synchronously, * because there really aren't any performance issues here * and we need to check for errors. */ lock_page(page); /* Somebody truncated the page on us? */ if (!page->mapping) { unlock_page(page); page_cache_release(page); goto retry_all; } /* Somebody else successfully read it in? */ if (PageUptodate(page)) { unlock_page(page); goto success; } ClearPageError(page); if (!mapping->a_ops->readpage(file, page)) { wait_on_page_locked(page); if (PageUptodate(page)) goto success; } /* * Things didn't work out. Return zero to tell the * mm layer so, possibly freeing the page cache page first. */ page_cache_release(page); return NULL; } static struct page * filemap_getpage(struct file *file, unsigned long pgoff, int nonblock) { struct address_space *mapping = file->f_dentry->d_inode->i_mapping; struct page *page; int error; /* * Do we have something in the page cache already? */ retry_find: page = find_get_page(mapping, pgoff); if (!page) { if (nonblock) return NULL; goto no_cached_page; } /* * Ok, found a page in the page cache, now we need to check * that it's up-to-date. */ if (!PageUptodate(page)) goto page_not_uptodate; success: /* * Found the page and have a reference on it, need to check sharing * and possibly copy it over to another page.. */ mark_page_accessed(page); flush_page_to_ram(page); return page; no_cached_page: error = page_cache_read(file, pgoff); /* * The page we want has now been added to the page cache. * In the unlikely event that someone removed it in the * meantime, we'll just come back here and read it again. */ if (error >= 0) goto retry_find; /* * An error return from page_cache_read can result if the * system is low on memory, or a problem occurs while trying * to schedule I/O. */ return NULL; page_not_uptodate: lock_page(page); /* Did it get unhashed while we waited for it? */ if (!page->mapping) { unlock_page(page); goto err; } /* Did somebody else get it up-to-date? */ if (PageUptodate(page)) { unlock_page(page); goto success; } if (!mapping->a_ops->readpage(file, page)) { wait_on_page_locked(page); if (PageUptodate(page)) goto success; } /* * Umm, take care of errors if the page isn't up-to-date. * Try to re-read it _once_. We do this synchronously, * because there really aren't any performance issues here * and we need to check for errors. */ lock_page(page); /* Somebody truncated the page on us? */ if (!page->mapping) { unlock_page(page); goto err; } /* Somebody else successfully read it in? */ if (PageUptodate(page)) { unlock_page(page); goto success; } ClearPageError(page); if (!mapping->a_ops->readpage(file, page)) { wait_on_page_locked(page); if (PageUptodate(page)) goto success; } /* * Things didn't work out. Return zero to tell the * mm layer so, possibly freeing the page cache page first. */ err: page_cache_release(page); return NULL; } static int filemap_populate(struct vm_area_struct *vma, unsigned long addr, unsigned long len, unsigned long prot, unsigned long pgoff, int nonblock) { struct file *file = vma->vm_file; struct address_space *mapping = file->f_dentry->d_inode->i_mapping; struct inode *inode = mapping->host; unsigned long size; struct mm_struct *mm = vma->vm_mm; struct page *page; int err; repeat: size = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; if (pgoff + (len >> PAGE_CACHE_SHIFT) > size) return -EINVAL; page = filemap_getpage(file, pgoff, nonblock); if (!page && !nonblock) return -ENOMEM; if (page) { err = install_page(mm, vma, addr, page, prot); if (err) { page_cache_release(page); return err; } } len -= PAGE_SIZE; addr += PAGE_SIZE; pgoff++; if (len) goto repeat; return 0; } static struct vm_operations_struct generic_file_vm_ops = { .nopage = filemap_nopage, .populate = filemap_populate, }; /* This is used for a general mmap of a disk file */ int generic_file_mmap(struct file * file, struct vm_area_struct * vma) { struct address_space *mapping = file->f_dentry->d_inode->i_mapping; struct inode *inode = mapping->host; if (!mapping->a_ops->readpage) return -ENOEXEC; UPDATE_ATIME(inode); vma->vm_ops = &generic_file_vm_ops; return 0; } int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) { if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE)) return -EINVAL; vma->vm_flags &= ~VM_MAYWRITE; return generic_file_mmap(file, vma); } #else int generic_file_mmap(struct file * file, struct vm_area_struct * vma) { return -ENOSYS; } int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) { return -ENOSYS; } #endif /* CONFIG_MMU */ static inline struct page *__read_cache_page(struct address_space *mapping, unsigned long index, int (*filler)(void *,struct page*), void *data) { struct page *page, *cached_page = NULL; int err; repeat: page = find_get_page(mapping, index); if (!page) { if (!cached_page) { cached_page = page_cache_alloc_cold(mapping); if (!cached_page) return ERR_PTR(-ENOMEM); } err = add_to_page_cache_lru(cached_page, mapping, index, GFP_KERNEL); if (err == -EEXIST) goto repeat; if (err < 0) { /* Presumably ENOMEM for radix tree node */ page_cache_release(cached_page); return ERR_PTR(err); } page = cached_page; cached_page = NULL; err = filler(data, page); if (err < 0) { page_cache_release(page); page = ERR_PTR(err); } } if (cached_page) page_cache_release(cached_page); return page; } /* * Read into the page cache. If a page already exists, * and PageUptodate() is not set, try to fill the page. */ struct page *read_cache_page(struct address_space *mapping, unsigned long index, int (*filler)(void *,struct page*), void *data) { struct page *page; int err; retry: page = __read_cache_page(mapping, index, filler, data); if (IS_ERR(page)) goto out; mark_page_accessed(page); if (PageUptodate(page)) goto out; lock_page(page); if (!page->mapping) { unlock_page(page); page_cache_release(page); goto retry; } if (PageUptodate(page)) { unlock_page(page); goto out; } err = filler(data, page); if (err < 0) { page_cache_release(page); page = ERR_PTR(err); } out: return page; } /* * If the page was newly created, increment its refcount and add it to the * caller's lru-buffering pagevec. This function is specifically for * generic_file_write(). */ static inline struct page * __grab_cache_page(struct address_space *mapping, unsigned long index, struct page **cached_page, struct pagevec *lru_pvec) { int err; struct page *page; repeat: page = find_lock_page(mapping, index); if (!page) { if (!*cached_page) { *cached_page = page_cache_alloc(mapping); if (!*cached_page) return NULL; } err = add_to_page_cache(*cached_page, mapping, index, GFP_KERNEL); if (err == -EEXIST) goto repeat; if (err == 0) { page = *cached_page; page_cache_get(page); if (!pagevec_add(lru_pvec, page)) __pagevec_lru_add(lru_pvec); *cached_page = NULL; } } return page; } void remove_suid(struct dentry *dentry) { struct iattr newattrs; struct inode *inode = dentry->d_inode; unsigned int mode = inode->i_mode & (S_ISUID|S_ISGID|S_IXGRP); if (!(mode & S_IXGRP)) mode &= S_ISUID; /* was any of the uid bits set? */ if (mode && !capable(CAP_FSETID)) { newattrs.ia_valid = ATTR_KILL_SUID | ATTR_KILL_SGID; notify_change(dentry, &newattrs); } } static inline int filemap_copy_from_user(struct page *page, unsigned long offset, const char *buf, unsigned bytes) { char *kaddr; int left; kaddr = kmap_atomic(page, KM_USER0); left = __copy_from_user(kaddr + offset, buf, bytes); kunmap_atomic(kaddr, KM_USER0); if (left != 0) { /* Do it the slow way */ kaddr = kmap(page); left = __copy_from_user(kaddr + offset, buf, bytes); kunmap(page); } return left; } static int __filemap_copy_from_user_iovec(char *vaddr, const struct iovec *iov, size_t base, size_t bytes) { int left = 0; while (bytes) { char *buf = iov->iov_base + base; int copy = min(bytes, iov->iov_len - base); base = 0; if ((left = __copy_from_user(vaddr, buf, copy))) break; bytes -= copy; vaddr += copy; iov++; } return left; } static inline int filemap_copy_from_user_iovec(struct page *page, unsigned long offset, const struct iovec *iov, size_t base, size_t bytes) { char *kaddr; int left; kaddr = kmap_atomic(page, KM_USER0); left = __filemap_copy_from_user_iovec(kaddr + offset, iov, base, bytes); kunmap_atomic(kaddr, KM_USER0); if (left != 0) { kaddr = kmap(page); left = __filemap_copy_from_user_iovec(kaddr + offset, iov, base, bytes); kunmap(page); } return left; } static inline void filemap_set_next_iovec(const struct iovec **iovp, size_t *basep, size_t bytes) { const struct iovec *iov = *iovp; size_t base = *basep; while (bytes) { int copy = min(bytes, iov->iov_len - base); bytes -= copy; base += copy; if (iov->iov_len == base) { iov++; base = 0; } } *iovp = iov; *basep = base; } /* * Write to a file through the page cache. * * We put everything into the page cache prior to writing it. This is not a * problem when writing full pages. With partial pages, however, we first have * to read the data into the cache, then dirty the page, and finally schedule * it for writing by marking it dirty. * okir@monad.swb.de */ ssize_t generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov, unsigned long nr_segs, loff_t *ppos) { struct file *file = iocb->ki_filp; struct address_space * mapping = file->f_dentry->d_inode->i_mapping; struct address_space_operations *a_ops = mapping->a_ops; size_t ocount; /* original count */ size_t count; /* after file limit checks */ struct inode *inode = mapping->host; unsigned long limit = current->rlim[RLIMIT_FSIZE].rlim_cur; const int isblk = S_ISBLK(inode->i_mode); long status = 0; loff_t pos; struct page *page; struct page *cached_page = NULL; ssize_t written; int err; size_t bytes; struct pagevec lru_pvec; const struct iovec *cur_iov = iov; /* current iovec */ size_t iov_base = 0; /* offset in the current iovec */ unsigned long seg; char *buf; ocount = 0; for (seg = 0; seg < nr_segs; seg++) { const struct iovec *iv = &iov[seg]; /* * If any segment has a negative length, or the cumulative * length ever wraps negative then return -EINVAL. */ ocount += iv->iov_len; if (unlikely((ssize_t)(ocount|iv->iov_len) < 0)) return -EINVAL; if (access_ok(VERIFY_READ, iv->iov_base, iv->iov_len)) continue; if (seg == 0) return -EFAULT; nr_segs = seg; ocount -= iv->iov_len; /* This segment is no good */ break; } count = ocount; pos = *ppos; if (unlikely(pos < 0)) return -EINVAL; /* We can write back this queue in page reclaim */ current->backing_dev_info = mapping->backing_dev_info; pagevec_init(&lru_pvec, 0); if (unlikely(file->f_error)) { err = file->f_error; file->f_error = 0; goto out; } written = 0; if (!isblk) { /* FIXME: this is for backwards compatibility with 2.4 */ if (file->f_flags & O_APPEND) pos = inode->i_size; if (limit != RLIM_INFINITY) { if (pos >= limit) { send_sig(SIGXFSZ, current, 0); err = -EFBIG; goto out; } if (pos > 0xFFFFFFFFULL || count > limit - (u32)pos) { /* send_sig(SIGXFSZ, current, 0); */ count = limit - (u32)pos; } } } /* * LFS rule */ if (unlikely(pos + count > MAX_NON_LFS && !(file->f_flags & O_LARGEFILE))) { if (pos >= MAX_NON_LFS) { send_sig(SIGXFSZ, current, 0); err = -EFBIG; goto out; } if (count > MAX_NON_LFS - (u32)pos) { /* send_sig(SIGXFSZ, current, 0); */ count = MAX_NON_LFS - (u32)pos; } } /* * Are we about to exceed the fs block limit ? * * If we have written data it becomes a short write. If we have * exceeded without writing data we send a signal and return EFBIG. * Linus frestrict idea will clean these up nicely.. */ if (likely(!isblk)) { if (unlikely(pos >= inode->i_sb->s_maxbytes)) { if (count || pos > inode->i_sb->s_maxbytes) { send_sig(SIGXFSZ, current, 0); err = -EFBIG; goto out; } /* zero-length writes at ->s_maxbytes are OK */ } if (unlikely(pos + count > inode->i_sb->s_maxbytes)) count = inode->i_sb->s_maxbytes - pos; } else { if (bdev_read_only(inode->i_bdev)) { err = -EPERM; goto out; } if (pos >= inode->i_size) { if (count || pos > inode->i_size) { err = -ENOSPC; goto out; } } if (pos + count > inode->i_size) count = inode->i_size - pos; } err = 0; if (count == 0) goto out; remove_suid(file->f_dentry); inode_update_time(inode, 1); /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ if (unlikely(file->f_flags & O_DIRECT)) { if (count != ocount) nr_segs = iov_shorten((struct iovec *)iov, nr_segs, count); written = generic_file_direct_IO(WRITE, iocb, iov, pos, nr_segs); if (written > 0) { loff_t end = pos + written; if (end > inode->i_size && !isblk) { inode->i_size = end; mark_inode_dirty(inode); } *ppos = end; } /* * Sync the fs metadata but not the minor inode changes and * of course not the data as we did direct DMA for the IO. */ if (written >= 0 && file->f_flags & O_SYNC) status = generic_osync_inode(inode, OSYNC_METADATA); if (written >= 0 && !is_sync_kiocb(iocb)) written = -EIOCBQUEUED; goto out_status; } buf = iov->iov_base; do { unsigned long index; unsigned long offset; long page_fault; offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */ index = pos >> PAGE_CACHE_SHIFT; bytes = PAGE_CACHE_SIZE - offset; if (bytes > count) bytes = count; /* * Bring in the user page that we will copy from _first_. * Otherwise there's a nasty deadlock on copying from the * same page as we're writing to, without it being marked * up-to-date. */ fault_in_pages_readable(buf, bytes); page = __grab_cache_page(mapping,index,&cached_page,&lru_pvec); if (!page) { status = -ENOMEM; break; } status = a_ops->prepare_write(file, page, offset, offset+bytes); if (unlikely(status)) { /* * prepare_write() may have instantiated a few blocks * outside i_size. Trim these off again. */ unlock_page(page); page_cache_release(page); if (pos + bytes > inode->i_size) vmtruncate(inode, inode->i_size); break; } if (likely(nr_segs == 1)) page_fault = filemap_copy_from_user(page, offset, buf, bytes); else page_fault = filemap_copy_from_user_iovec(page, offset, cur_iov, iov_base, bytes); flush_dcache_page(page); status = a_ops->commit_write(file, page, offset, offset+bytes); if (unlikely(page_fault)) { status = -EFAULT; } else { if (!status) status = bytes; if (status >= 0) { written += status; count -= status; pos += status; buf += status; if (unlikely(nr_segs > 1)) filemap_set_next_iovec(&cur_iov, &iov_base, status); } } if (!PageReferenced(page)) SetPageReferenced(page); unlock_page(page); page_cache_release(page); if (status < 0) break; balance_dirty_pages_ratelimited(mapping); cond_resched(); } while (count); *ppos = pos; if (cached_page) page_cache_release(cached_page); /* * For now, when the user asks for O_SYNC, we'll actually give O_DSYNC */ if (status >= 0) { if ((file->f_flags & O_SYNC) || IS_SYNC(inode)) status = generic_osync_inode(inode, OSYNC_METADATA|OSYNC_DATA); } out_status: err = written ? written : status; out: pagevec_lru_add(&lru_pvec); current->backing_dev_info = 0; return err; } ssize_t generic_file_write_nolock(struct file *file, const struct iovec *iov, unsigned long nr_segs, loff_t *ppos) { struct kiocb kiocb; ssize_t ret; init_sync_kiocb(&kiocb, file); ret = generic_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos); if (-EIOCBQUEUED == ret) ret = wait_on_sync_kiocb(&kiocb); return ret; } ssize_t generic_file_aio_write(struct kiocb *iocb, const char *buf, size_t count, loff_t pos) { struct file *file = iocb->ki_filp; struct inode *inode = file->f_dentry->d_inode->i_mapping->host; int err; struct iovec local_iov = { .iov_base = (void *)buf, .iov_len = count }; BUG_ON(iocb->ki_pos != pos); down(&inode->i_sem); err = generic_file_aio_write_nolock(iocb, &local_iov, 1, &iocb->ki_pos); up(&inode->i_sem); return err; } EXPORT_SYMBOL(generic_file_aio_write); EXPORT_SYMBOL(generic_file_aio_write_nolock); ssize_t generic_file_write(struct file *file, const char *buf, size_t count, loff_t *ppos) { struct inode *inode = file->f_dentry->d_inode->i_mapping->host; int err; struct iovec local_iov = { .iov_base = (void *)buf, .iov_len = count }; down(&inode->i_sem); err = generic_file_write_nolock(file, &local_iov, 1, ppos); up(&inode->i_sem); return err; } ssize_t generic_file_readv(struct file *filp, const struct iovec *iov, unsigned long nr_segs, loff_t *ppos) { struct kiocb kiocb; ssize_t ret; init_sync_kiocb(&kiocb, filp); ret = __generic_file_aio_read(&kiocb, iov, nr_segs, ppos); if (-EIOCBQUEUED == ret) ret = wait_on_sync_kiocb(&kiocb); return ret; } ssize_t generic_file_writev(struct file *file, const struct iovec *iov, unsigned long nr_segs, loff_t * ppos) { struct inode *inode = file->f_dentry->d_inode; ssize_t ret; down(&inode->i_sem); ret = generic_file_write_nolock(file, iov, nr_segs, ppos); up(&inode->i_sem); return ret; } ssize_t generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t offset, unsigned long nr_segs) { struct file *file = iocb->ki_filp; struct address_space *mapping = file->f_dentry->d_inode->i_mapping; ssize_t retval; if (mapping->nrpages) { retval = filemap_fdatawrite(mapping); if (retval == 0) retval = filemap_fdatawait(mapping); if (retval) goto out; } retval = mapping->a_ops->direct_IO(rw, iocb, iov, offset, nr_segs); if (rw == WRITE && mapping->nrpages) invalidate_inode_pages2(mapping); out: return retval; } |