Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 | /* * linux/mm/filemap.c * * Copyright (C) 1994-1999 Linus Torvalds */ /* * This file handles the generic file mmap semantics used by * most "normal" filesystems (but you don't /have/ to use this: * the NFS filesystem used to do this differently, for example) */ #include <linux/slab.h> #include <linux/shm.h> #include <linux/mman.h> #include <linux/locks.h> #include <linux/pagemap.h> #include <linux/swap.h> #include <linux/smp_lock.h> #include <linux/blkdev.h> #include <linux/file.h> #include <linux/swapctl.h> #include <linux/init.h> #include <linux/mm.h> #include <asm/pgalloc.h> #include <asm/uaccess.h> #include <asm/mman.h> #include <linux/highmem.h> /* * Shared mappings implemented 30.11.1994. It's not fully working yet, * though. * * Shared mappings now work. 15.8.1995 Bruno. * * finished 'unifying' the page and buffer cache and SMP-threaded the * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> * * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> */ atomic_t page_cache_size = ATOMIC_INIT(0); unsigned int page_hash_bits; struct page **page_hash_table; spinlock_t pagecache_lock = SPIN_LOCK_UNLOCKED; /* * NOTE: to avoid deadlocking you must never acquire the pagecache_lock with * the pagemap_lru_lock held. */ spinlock_t pagemap_lru_lock = SPIN_LOCK_UNLOCKED; #define CLUSTER_PAGES (1 << page_cluster) #define CLUSTER_OFFSET(x) (((x) >> page_cluster) << page_cluster) static void add_page_to_hash_queue(struct page * page, struct page **p) { struct page *next = *p; *p = page; page->next_hash = next; page->pprev_hash = p; if (next) next->pprev_hash = &page->next_hash; if (page->buffers) PAGE_BUG(page); atomic_inc(&page_cache_size); } static inline void add_page_to_inode_queue(struct address_space *mapping, struct page * page) { struct list_head *head = &mapping->clean_pages; mapping->nrpages++; list_add(&page->list, head); page->mapping = mapping; } static inline void remove_page_from_inode_queue(struct page * page) { struct address_space * mapping = page->mapping; mapping->nrpages--; list_del(&page->list); page->mapping = NULL; } static inline void remove_page_from_hash_queue(struct page * page) { struct page *next = page->next_hash; struct page **pprev = page->pprev_hash; if (next) next->pprev_hash = pprev; *pprev = next; page->pprev_hash = NULL; atomic_dec(&page_cache_size); } /* * Remove a page from the page cache and free it. Caller has to make * sure the page is locked and that nobody else uses it - or that usage * is safe. */ void __remove_inode_page(struct page *page) { if (PageDirty(page)) BUG(); remove_page_from_inode_queue(page); remove_page_from_hash_queue(page); } void remove_inode_page(struct page *page) { if (!PageLocked(page)) PAGE_BUG(page); spin_lock(&pagecache_lock); __remove_inode_page(page); spin_unlock(&pagecache_lock); } static inline int sync_page(struct page *page) { struct address_space *mapping = page->mapping; if (mapping && mapping->a_ops && mapping->a_ops->sync_page) return mapping->a_ops->sync_page(page); return 0; } /* * Add a page to the dirty page list. */ void __set_page_dirty(struct page *page) { struct address_space *mapping = page->mapping; spin_lock(&pagecache_lock); list_del(&page->list); list_add(&page->list, &mapping->dirty_pages); spin_unlock(&pagecache_lock); if (mapping->host) mark_inode_dirty_pages(mapping->host); } /** * invalidate_inode_pages - Invalidate all the unlocked pages of one inode * @inode: the inode which pages we want to invalidate * * This function only removes the unlocked pages, if you want to * remove all the pages of one inode, you must call truncate_inode_pages. */ void invalidate_inode_pages(struct inode * inode) { struct list_head *head, *curr; struct page * page; head = &inode->i_mapping->clean_pages; spin_lock(&pagecache_lock); spin_lock(&pagemap_lru_lock); curr = head->next; while (curr != head) { page = list_entry(curr, struct page, list); curr = curr->next; /* We cannot invalidate something in use.. */ if (page_count(page) != 1) continue; /* ..or dirty.. */ if (PageDirty(page)) continue; /* ..or locked */ if (TryLockPage(page)) continue; __lru_cache_del(page); __remove_inode_page(page); UnlockPage(page); page_cache_release(page); } spin_unlock(&pagemap_lru_lock); spin_unlock(&pagecache_lock); } static inline void truncate_partial_page(struct page *page, unsigned partial) { memclear_highpage_flush(page, partial, PAGE_CACHE_SIZE-partial); if (page->buffers) block_flushpage(page, partial); } static inline void truncate_complete_page(struct page *page) { /* Leave it on the LRU if it gets converted into anonymous buffers */ if (!page->buffers || block_flushpage(page, 0)) lru_cache_del(page); /* * We remove the page from the page cache _after_ we have * destroyed all buffer-cache references to it. Otherwise some * other process might think this inode page is not in the * page cache and creates a buffer-cache alias to it causing * all sorts of fun problems ... */ ClearPageDirty(page); ClearPageUptodate(page); remove_inode_page(page); page_cache_release(page); } static int FASTCALL(truncate_list_pages(struct list_head *, unsigned long, unsigned *)); static int truncate_list_pages(struct list_head *head, unsigned long start, unsigned *partial) { struct list_head *curr; struct page * page; curr = head->next; while (curr != head) { unsigned long offset; page = list_entry(curr, struct page, list); curr = curr->next; offset = page->index; /* Is one of the pages to truncate? */ if ((offset >= start) || (*partial && (offset + 1) == start)) { if (TryLockPage(page)) { page_cache_get(page); spin_unlock(&pagecache_lock); wait_on_page(page); page_cache_release(page); return 1; } page_cache_get(page); spin_unlock(&pagecache_lock); if (*partial && (offset + 1) == start) { truncate_partial_page(page, *partial); *partial = 0; } else truncate_complete_page(page); UnlockPage(page); page_cache_release(page); return 1; } } return 0; } /** * truncate_inode_pages - truncate *all* the pages from an offset * @mapping: mapping to truncate * @lstart: offset from with to truncate * * Truncate the page cache at a set offset, removing the pages * that are beyond that offset (and zeroing out partial pages). * If any page is locked we wait for it to become unlocked. */ void truncate_inode_pages(struct address_space * mapping, loff_t lstart) { unsigned long start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; unsigned partial = lstart & (PAGE_CACHE_SIZE - 1); repeat: spin_lock(&pagecache_lock); if (truncate_list_pages(&mapping->clean_pages, start, &partial)) goto repeat; if (truncate_list_pages(&mapping->dirty_pages, start, &partial)) goto repeat; if (truncate_list_pages(&mapping->locked_pages, start, &partial)) goto repeat; spin_unlock(&pagecache_lock); } static inline struct page * __find_page_nolock(struct address_space *mapping, unsigned long offset, struct page *page) { goto inside; for (;;) { page = page->next_hash; inside: if (!page) goto not_found; if (page->mapping != mapping) continue; if (page->index == offset) break; } /* * Touching the page may move it to the active list. * If we end up with too few inactive pages, we wake * up kswapd. */ age_page_up(page); if (inactive_shortage() > inactive_target / 2 && free_shortage()) wakeup_kswapd(); not_found: return page; } /* * By the time this is called, the page is locked and * we don't have to worry about any races any more. * * Start the IO.. */ static int writeout_one_page(struct page *page) { struct buffer_head *bh, *head = page->buffers; bh = head; do { if (buffer_locked(bh) || !buffer_dirty(bh) || !buffer_uptodate(bh)) continue; bh->b_flushtime = jiffies; ll_rw_block(WRITE, 1, &bh); } while ((bh = bh->b_this_page) != head); return 0; } static int waitfor_one_page(struct page *page) { int error = 0; struct buffer_head *bh, *head = page->buffers; bh = head; do { wait_on_buffer(bh); if (buffer_req(bh) && !buffer_uptodate(bh)) error = -EIO; } while ((bh = bh->b_this_page) != head); return error; } static int do_buffer_fdatasync(struct list_head *head, unsigned long start, unsigned long end, int (*fn)(struct page *)) { struct list_head *curr; struct page *page; int retval = 0; spin_lock(&pagecache_lock); curr = head->next; while (curr != head) { page = list_entry(curr, struct page, list); curr = curr->next; if (!page->buffers) continue; if (page->index >= end) continue; if (page->index < start) continue; page_cache_get(page); spin_unlock(&pagecache_lock); lock_page(page); /* The buffers could have been free'd while we waited for the page lock */ if (page->buffers) retval |= fn(page); UnlockPage(page); spin_lock(&pagecache_lock); curr = page->list.next; page_cache_release(page); } spin_unlock(&pagecache_lock); return retval; } /* * Two-stage data sync: first start the IO, then go back and * collect the information.. */ int generic_buffer_fdatasync(struct inode *inode, unsigned long start_idx, unsigned long end_idx) { int retval; /* writeout dirty buffers on pages from both clean and dirty lists */ retval = do_buffer_fdatasync(&inode->i_mapping->dirty_pages, start_idx, end_idx, writeout_one_page); retval |= do_buffer_fdatasync(&inode->i_mapping->clean_pages, start_idx, end_idx, writeout_one_page); retval |= do_buffer_fdatasync(&inode->i_mapping->locked_pages, start_idx, end_idx, writeout_one_page); /* now wait for locked buffers on pages from both clean and dirty lists */ retval |= do_buffer_fdatasync(&inode->i_mapping->dirty_pages, start_idx, end_idx, waitfor_one_page); retval |= do_buffer_fdatasync(&inode->i_mapping->clean_pages, start_idx, end_idx, waitfor_one_page); retval |= do_buffer_fdatasync(&inode->i_mapping->locked_pages, start_idx, end_idx, waitfor_one_page); return retval; } /** * filemap_fdatasync - walk the list of dirty pages of the given address space * and writepage() all of them. * * @mapping: address space structure to write * */ void filemap_fdatasync(struct address_space * mapping) { int (*writepage)(struct page *) = mapping->a_ops->writepage; spin_lock(&pagecache_lock); while (!list_empty(&mapping->dirty_pages)) { struct page *page = list_entry(mapping->dirty_pages.next, struct page, list); list_del(&page->list); list_add(&page->list, &mapping->locked_pages); if (!PageDirty(page)) continue; page_cache_get(page); spin_unlock(&pagecache_lock); lock_page(page); if (PageDirty(page)) { ClearPageDirty(page); writepage(page); } else UnlockPage(page); page_cache_release(page); spin_lock(&pagecache_lock); } spin_unlock(&pagecache_lock); } /** * filemap_fdatawait - walk the list of locked pages of the given address space * and wait for all of them. * * @mapping: address space structure to wait for * */ void filemap_fdatawait(struct address_space * mapping) { spin_lock(&pagecache_lock); while (!list_empty(&mapping->locked_pages)) { struct page *page = list_entry(mapping->locked_pages.next, struct page, list); list_del(&page->list); list_add(&page->list, &mapping->clean_pages); if (!PageLocked(page)) continue; page_cache_get(page); spin_unlock(&pagecache_lock); ___wait_on_page(page); page_cache_release(page); spin_lock(&pagecache_lock); } spin_unlock(&pagecache_lock); } /* * Add a page to the inode page cache. * * The caller must have locked the page and * set all the page flags correctly.. */ void add_to_page_cache_locked(struct page * page, struct address_space *mapping, unsigned long index) { if (!PageLocked(page)) BUG(); page_cache_get(page); spin_lock(&pagecache_lock); page->index = index; add_page_to_inode_queue(mapping, page); add_page_to_hash_queue(page, page_hash(mapping, index)); lru_cache_add(page); spin_unlock(&pagecache_lock); } /* * This adds a page to the page cache, starting out as locked, * owned by us, but unreferenced, not uptodate and with no errors. */ static inline void __add_to_page_cache(struct page * page, struct address_space *mapping, unsigned long offset, struct page **hash) { unsigned long flags; if (PageLocked(page)) BUG(); flags = page->flags & ~((1 << PG_uptodate) | (1 << PG_error) | (1 << PG_dirty) | (1 << PG_referenced) | (1 << PG_arch_1)); page->flags = flags | (1 << PG_locked); page_cache_get(page); page->index = offset; add_page_to_inode_queue(mapping, page); add_page_to_hash_queue(page, hash); lru_cache_add(page); } void add_to_page_cache(struct page * page, struct address_space * mapping, unsigned long offset) { spin_lock(&pagecache_lock); __add_to_page_cache(page, mapping, offset, page_hash(mapping, offset)); spin_unlock(&pagecache_lock); } static int add_to_page_cache_unique(struct page * page, struct address_space *mapping, unsigned long offset, struct page **hash) { int err; struct page *alias; spin_lock(&pagecache_lock); alias = __find_page_nolock(mapping, offset, *hash); err = 1; if (!alias) { __add_to_page_cache(page,mapping,offset,hash); err = 0; } spin_unlock(&pagecache_lock); return err; } /* * This adds the requested page to the page cache if it isn't already there, * and schedules an I/O to read in its contents from disk. */ static inline int page_cache_read(struct file * file, unsigned long offset) { struct inode *inode = file->f_dentry->d_inode; struct address_space *mapping = inode->i_mapping; struct page **hash = page_hash(mapping, offset); struct page *page; spin_lock(&pagecache_lock); page = __find_page_nolock(mapping, offset, *hash); spin_unlock(&pagecache_lock); if (page) return 0; page = page_cache_alloc(mapping); if (!page) return -ENOMEM; if (!add_to_page_cache_unique(page, mapping, offset, hash)) { int error = mapping->a_ops->readpage(file, page); page_cache_release(page); return error; } /* * We arrive here in the unlikely event that someone * raced with us and added our page to the cache first. */ page_cache_free(page); return 0; } /* * Read in an entire cluster at once. A cluster is usually a 64k- * aligned block that includes the page requested in "offset." */ static int read_cluster_nonblocking(struct file * file, unsigned long offset, unsigned long filesize) { unsigned long pages = CLUSTER_PAGES; offset = CLUSTER_OFFSET(offset); while ((pages-- > 0) && (offset < filesize)) { int error = page_cache_read(file, offset); if (error < 0) return error; offset ++; } return 0; } /* * Wait for a page to get unlocked. * * This must be called with the caller "holding" the page, * ie with increased "page->count" so that the page won't * go away during the wait.. */ void ___wait_on_page(struct page *page) { struct task_struct *tsk = current; DECLARE_WAITQUEUE(wait, tsk); add_wait_queue(&page->wait, &wait); do { sync_page(page); set_task_state(tsk, TASK_UNINTERRUPTIBLE); if (!PageLocked(page)) break; run_task_queue(&tq_disk); schedule(); } while (PageLocked(page)); tsk->state = TASK_RUNNING; remove_wait_queue(&page->wait, &wait); } /* * Get a lock on the page, assuming we need to sleep * to get it.. */ static void __lock_page(struct page *page) { struct task_struct *tsk = current; DECLARE_WAITQUEUE(wait, tsk); add_wait_queue_exclusive(&page->wait, &wait); for (;;) { sync_page(page); set_task_state(tsk, TASK_UNINTERRUPTIBLE); if (PageLocked(page)) { run_task_queue(&tq_disk); schedule(); continue; } if (!TryLockPage(page)) break; } tsk->state = TASK_RUNNING; remove_wait_queue(&page->wait, &wait); } /* * Get an exclusive lock on the page, optimistically * assuming it's not locked.. */ void lock_page(struct page *page) { if (TryLockPage(page)) __lock_page(page); } /* * a rather lightweight function, finding and getting a reference to a * hashed page atomically. */ struct page * __find_get_page(struct address_space *mapping, unsigned long offset, struct page **hash) { struct page *page; /* * We scan the hash list read-only. Addition to and removal from * the hash-list needs a held write-lock. */ spin_lock(&pagecache_lock); page = __find_page_nolock(mapping, offset, *hash); if (page) page_cache_get(page); spin_unlock(&pagecache_lock); return page; } /* * Find a swapcache page (and get a reference) or return NULL. * The SwapCache check is protected by the pagecache lock. */ struct page * __find_get_swapcache_page(struct address_space *mapping, unsigned long offset, struct page **hash) { struct page *page; /* * We need the LRU lock to protect against page_launder(). */ spin_lock(&pagecache_lock); page = __find_page_nolock(mapping, offset, *hash); if (page) { spin_lock(&pagemap_lru_lock); if (PageSwapCache(page)) page_cache_get(page); else page = NULL; spin_unlock(&pagemap_lru_lock); } spin_unlock(&pagecache_lock); return page; } /* * Same as the above, but lock the page too, verifying that * it's still valid once we own it. */ struct page * __find_lock_page (struct address_space *mapping, unsigned long offset, struct page **hash) { struct page *page; /* * We scan the hash list read-only. Addition to and removal from * the hash-list needs a held write-lock. */ repeat: spin_lock(&pagecache_lock); page = __find_page_nolock(mapping, offset, *hash); if (page) { page_cache_get(page); spin_unlock(&pagecache_lock); lock_page(page); /* Is the page still hashed? Ok, good.. */ if (page->mapping) return page; /* Nope: we raced. Release and try again.. */ UnlockPage(page); page_cache_release(page); goto repeat; } spin_unlock(&pagecache_lock); return NULL; } #if 0 #define PROFILE_READAHEAD #define DEBUG_READAHEAD #endif /* * We combine this with read-ahead to deactivate pages when we * think there's sequential IO going on. Note that this is * harmless since we don't actually evict the pages from memory * but just move them to the inactive list. * * TODO: * - make the readahead code smarter * - move readahead to the VMA level so we can do the same * trick with mmap() * * Rik van Riel, 2000 */ static void drop_behind(struct file * file, unsigned long index) { struct inode *inode = file->f_dentry->d_inode; struct address_space *mapping = inode->i_mapping; struct page **hash; struct page *page; unsigned long start; /* Nothing to drop-behind if we're on the first page. */ if (!index) return; if (index > file->f_rawin) start = index - file->f_rawin; else start = 0; /* * Go backwards from index-1 and drop all pages in the * readahead window. Since the readahead window may have * been increased since the last time we were called, we * stop when the page isn't there. */ spin_lock(&pagecache_lock); while (--index >= start) { hash = page_hash(mapping, index); page = __find_page_nolock(mapping, index, *hash); if (!page) break; deactivate_page(page); } spin_unlock(&pagecache_lock); } /* * Read-ahead profiling information * -------------------------------- * Every PROFILE_MAXREADCOUNT, the following information is written * to the syslog: * Percentage of asynchronous read-ahead. * Average of read-ahead fields context value. * If DEBUG_READAHEAD is defined, a snapshot of these fields is written * to the syslog. */ #ifdef PROFILE_READAHEAD #define PROFILE_MAXREADCOUNT 1000 static unsigned long total_reada; static unsigned long total_async; static unsigned long total_ramax; static unsigned long total_ralen; static unsigned long total_rawin; static void profile_readahead(int async, struct file *filp) { unsigned long flags; ++total_reada; if (async) ++total_async; total_ramax += filp->f_ramax; total_ralen += filp->f_ralen; total_rawin += filp->f_rawin; if (total_reada > PROFILE_MAXREADCOUNT) { save_flags(flags); cli(); if (!(total_reada > PROFILE_MAXREADCOUNT)) { restore_flags(flags); return; } printk("Readahead average: max=%ld, len=%ld, win=%ld, async=%ld%%\n", total_ramax/total_reada, total_ralen/total_reada, total_rawin/total_reada, (total_async*100)/total_reada); #ifdef DEBUG_READAHEAD printk("Readahead snapshot: max=%ld, len=%ld, win=%ld, raend=%Ld\n", filp->f_ramax, filp->f_ralen, filp->f_rawin, filp->f_raend); #endif total_reada = 0; total_async = 0; total_ramax = 0; total_ralen = 0; total_rawin = 0; restore_flags(flags); } } #endif /* defined PROFILE_READAHEAD */ /* * Read-ahead context: * ------------------- * The read ahead context fields of the "struct file" are the following: * - f_raend : position of the first byte after the last page we tried to * read ahead. * - f_ramax : current read-ahead maximum size. * - f_ralen : length of the current IO read block we tried to read-ahead. * - f_rawin : length of the current read-ahead window. * if last read-ahead was synchronous then * f_rawin = f_ralen * otherwise (was asynchronous) * f_rawin = previous value of f_ralen + f_ralen * * Read-ahead limits: * ------------------ * MIN_READAHEAD : minimum read-ahead size when read-ahead. * MAX_READAHEAD : maximum read-ahead size when read-ahead. * * Synchronous read-ahead benefits: * -------------------------------- * Using reasonable IO xfer length from peripheral devices increase system * performances. * Reasonable means, in this context, not too large but not too small. * The actual maximum value is: * MAX_READAHEAD + PAGE_CACHE_SIZE = 76k is CONFIG_READA_SMALL is undefined * and 32K if defined (4K page size assumed). * * Asynchronous read-ahead benefits: * --------------------------------- * Overlapping next read request and user process execution increase system * performance. * * Read-ahead risks: * ----------------- * We have to guess which further data are needed by the user process. * If these data are often not really needed, it's bad for system * performances. * However, we know that files are often accessed sequentially by * application programs and it seems that it is possible to have some good * strategy in that guessing. * We only try to read-ahead files that seems to be read sequentially. * * Asynchronous read-ahead risks: * ------------------------------ * In order to maximize overlapping, we must start some asynchronous read * request from the device, as soon as possible. * We must be very careful about: * - The number of effective pending IO read requests. * ONE seems to be the only reasonable value. * - The total memory pool usage for the file access stream. * This maximum memory usage is implicitly 2 IO read chunks: * 2*(MAX_READAHEAD + PAGE_CACHE_SIZE) = 156K if CONFIG_READA_SMALL is undefined, * 64k if defined (4K page size assumed). */ static inline int get_max_readahead(struct inode * inode) { if (!inode->i_dev || !max_readahead[MAJOR(inode->i_dev)]) return MAX_READAHEAD; return max_readahead[MAJOR(inode->i_dev)][MINOR(inode->i_dev)]; } static void generic_file_readahead(int reada_ok, struct file * filp, struct inode * inode, struct page * page) { unsigned long end_index = inode->i_size >> PAGE_CACHE_SHIFT; unsigned long index = page->index; unsigned long max_ahead, ahead; unsigned long raend; int max_readahead = get_max_readahead(inode); raend = filp->f_raend; max_ahead = 0; /* * The current page is locked. * If the current position is inside the previous read IO request, do not * try to reread previously read ahead pages. * Otherwise decide or not to read ahead some pages synchronously. * If we are not going to read ahead, set the read ahead context for this * page only. */ if (PageLocked(page)) { if (!filp->f_ralen || index >= raend || index + filp->f_rawin < raend) { raend = index; if (raend < end_index) max_ahead = filp->f_ramax; filp->f_rawin = 0; filp->f_ralen = 1; if (!max_ahead) { filp->f_raend = index + filp->f_ralen; filp->f_rawin += filp->f_ralen; } } } /* * The current page is not locked. * If we were reading ahead and, * if the current max read ahead size is not zero and, * if the current position is inside the last read-ahead IO request, * it is the moment to try to read ahead asynchronously. * We will later force unplug device in order to force asynchronous read IO. */ else if (reada_ok && filp->f_ramax && raend >= 1 && index <= raend && index + filp->f_ralen >= raend) { /* * Add ONE page to max_ahead in order to try to have about the same IO max size * as synchronous read-ahead (MAX_READAHEAD + 1)*PAGE_CACHE_SIZE. * Compute the position of the last page we have tried to read in order to * begin to read ahead just at the next page. */ raend -= 1; if (raend < end_index) max_ahead = filp->f_ramax + 1; if (max_ahead) { filp->f_rawin = filp->f_ralen; filp->f_ralen = 0; reada_ok = 2; } } /* * Try to read ahead pages. * We hope that ll_rw_blk() plug/unplug, coalescence, requests sort and the * scheduler, will work enough for us to avoid too bad actuals IO requests. */ ahead = 0; while (ahead < max_ahead) { ahead ++; if ((raend + ahead) >= end_index) break; if (page_cache_read(filp, raend + ahead) < 0) break; } /* * If we tried to read ahead some pages, * If we tried to read ahead asynchronously, * Try to force unplug of the device in order to start an asynchronous * read IO request. * Update the read-ahead context. * Store the length of the current read-ahead window. * Double the current max read ahead size. * That heuristic avoid to do some large IO for files that are not really * accessed sequentially. */ if (ahead) { filp->f_ralen += ahead; filp->f_rawin += filp->f_ralen; filp->f_raend = raend + ahead + 1; filp->f_ramax += filp->f_ramax; if (filp->f_ramax > max_readahead) filp->f_ramax = max_readahead; /* * Move the pages that have already been passed * to the inactive list. */ drop_behind(filp, index); #ifdef PROFILE_READAHEAD profile_readahead((reada_ok == 2), filp); #endif } return; } /* * This is a generic file read routine, and uses the * inode->i_op->readpage() function for the actual low-level * stuff. * * This is really ugly. But the goto's actually try to clarify some * of the logic when it comes to error handling etc. */ void do_generic_file_read(struct file * filp, loff_t *ppos, read_descriptor_t * desc, read_actor_t actor) { struct inode *inode = filp->f_dentry->d_inode; struct address_space *mapping = inode->i_mapping; unsigned long index, offset; struct page *cached_page; int reada_ok; int error; int max_readahead = get_max_readahead(inode); cached_page = NULL; index = *ppos >> PAGE_CACHE_SHIFT; offset = *ppos & ~PAGE_CACHE_MASK; /* * If the current position is outside the previous read-ahead window, * we reset the current read-ahead context and set read ahead max to zero * (will be set to just needed value later), * otherwise, we assume that the file accesses are sequential enough to * continue read-ahead. */ if (index > filp->f_raend || index + filp->f_rawin < filp->f_raend) { reada_ok = 0; filp->f_raend = 0; filp->f_ralen = 0; filp->f_ramax = 0; filp->f_rawin = 0; } else { reada_ok = 1; } /* * Adjust the current value of read-ahead max. * If the read operation stay in the first half page, force no readahead. * Otherwise try to increase read ahead max just enough to do the read request. * Then, at least MIN_READAHEAD if read ahead is ok, * and at most MAX_READAHEAD in all cases. */ if (!index && offset + desc->count <= (PAGE_CACHE_SIZE >> 1)) { filp->f_ramax = 0; } else { unsigned long needed; needed = ((offset + desc->count) >> PAGE_CACHE_SHIFT) + 1; if (filp->f_ramax < needed) filp->f_ramax = needed; if (reada_ok && filp->f_ramax < MIN_READAHEAD) filp->f_ramax = MIN_READAHEAD; if (filp->f_ramax > max_readahead) filp->f_ramax = max_readahead; } for (;;) { struct page *page, **hash; unsigned long end_index, nr, ret; end_index = inode->i_size >> PAGE_CACHE_SHIFT; if (index > end_index) break; nr = PAGE_CACHE_SIZE; if (index == end_index) { nr = inode->i_size & ~PAGE_CACHE_MASK; if (nr <= offset) break; } nr = nr - offset; /* * Try to find the data in the page cache.. */ hash = page_hash(mapping, index); spin_lock(&pagecache_lock); page = __find_page_nolock(mapping, index, *hash); if (!page) goto no_cached_page; found_page: page_cache_get(page); spin_unlock(&pagecache_lock); if (!Page_Uptodate(page)) goto page_not_up_to_date; generic_file_readahead(reada_ok, filp, inode, page); page_ok: /* If users can be writing to this page using arbitrary * virtual addresses, take care about potential aliasing * before reading the page on the kernel side. */ if (mapping->i_mmap_shared != NULL) flush_dcache_page(page); /* * Ok, we have the page, and it's up-to-date, so * now we can copy it to user space... * * The actor routine returns how many bytes were actually used.. * NOTE! This may not be the same as how much of a user buffer * we filled up (we may be padding etc), so we can only update * "pos" here (the actor routine has to update the user buffer * pointers and the remaining count). */ ret = actor(desc, page, offset, nr); offset += ret; index += offset >> PAGE_CACHE_SHIFT; offset &= ~PAGE_CACHE_MASK; page_cache_release(page); if (ret == nr && desc->count) continue; break; /* * Ok, the page was not immediately readable, so let's try to read ahead while we're at it.. */ page_not_up_to_date: generic_file_readahead(reada_ok, filp, inode, page); if (Page_Uptodate(page)) goto page_ok; /* Get exclusive access to the page ... */ lock_page(page); /* Did it get unhashed before we got the lock? */ if (!page->mapping) { UnlockPage(page); page_cache_release(page); continue; } /* Did somebody else fill it already? */ if (Page_Uptodate(page)) { UnlockPage(page); goto page_ok; } readpage: /* ... and start the actual read. The read will unlock the page. */ error = mapping->a_ops->readpage(filp, page); if (!error) { if (Page_Uptodate(page)) goto page_ok; /* Again, try some read-ahead while waiting for the page to finish.. */ generic_file_readahead(reada_ok, filp, inode, page); wait_on_page(page); if (Page_Uptodate(page)) goto page_ok; error = -EIO; } /* UHHUH! A synchronous read error occurred. Report it */ desc->error = error; page_cache_release(page); break; no_cached_page: /* * Ok, it wasn't cached, so we need to create a new * page.. * * We get here with the page cache lock held. */ if (!cached_page) { spin_unlock(&pagecache_lock); cached_page = page_cache_alloc(mapping); if (!cached_page) { desc->error = -ENOMEM; break; } /* * Somebody may have added the page while we * dropped the page cache lock. Check for that. */ spin_lock(&pagecache_lock); page = __find_page_nolock(mapping, index, *hash); if (page) goto found_page; } /* * Ok, add the new page to the hash-queues... */ page = cached_page; __add_to_page_cache(page, mapping, index, hash); spin_unlock(&pagecache_lock); cached_page = NULL; goto readpage; } *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset; filp->f_reada = 1; if (cached_page) page_cache_free(cached_page); UPDATE_ATIME(inode); } int file_read_actor(read_descriptor_t * desc, struct page *page, unsigned long offset, unsigned long size) { char *kaddr; unsigned long left, count = desc->count; if (size > count) size = count; kaddr = kmap(page); left = __copy_to_user(desc->buf, kaddr + offset, size); kunmap(page); if (left) { size -= left; desc->error = -EFAULT; } desc->count = count - size; desc->written += size; desc->buf += size; return size; } /* * This is the "read()" routine for all filesystems * that can use the page cache directly. */ ssize_t generic_file_read(struct file * filp, char * buf, size_t count, loff_t *ppos) { ssize_t retval; retval = -EFAULT; if (access_ok(VERIFY_WRITE, buf, count)) { retval = 0; if (count) { read_descriptor_t desc; desc.written = 0; desc.count = count; desc.buf = buf; desc.error = 0; do_generic_file_read(filp, ppos, &desc, file_read_actor); retval = desc.written; if (!retval) retval = desc.error; } } return retval; } static int file_send_actor(read_descriptor_t * desc, struct page *page, unsigned long offset , unsigned long size) { ssize_t written; unsigned long count = desc->count; struct file *file = (struct file *) desc->buf; if (size > count) size = count; if (file->f_op->sendpage) { written = file->f_op->sendpage(file, page, offset, size, &file->f_pos, size<count); } else { char *kaddr; mm_segment_t old_fs; old_fs = get_fs(); set_fs(KERNEL_DS); kaddr = kmap(page); written = file->f_op->write(file, kaddr + offset, size, &file->f_pos); kunmap(page); set_fs(old_fs); } if (written < 0) { desc->error = written; written = 0; } desc->count = count - written; desc->written += written; return written; } asmlinkage ssize_t sys_sendfile(int out_fd, int in_fd, off_t *offset, size_t count) { ssize_t retval; struct file * in_file, * out_file; struct inode * in_inode, * out_inode; /* * Get input file, and verify that it is ok.. */ retval = -EBADF; in_file = fget(in_fd); if (!in_file) goto out; if (!(in_file->f_mode & FMODE_READ)) goto fput_in; retval = -EINVAL; in_inode = in_file->f_dentry->d_inode; if (!in_inode) goto fput_in; if (!in_inode->i_mapping->a_ops->readpage) goto fput_in; retval = locks_verify_area(FLOCK_VERIFY_READ, in_inode, in_file, in_file->f_pos, count); if (retval) goto fput_in; /* * Get output file, and verify that it is ok.. */ retval = -EBADF; out_file = fget(out_fd); if (!out_file) goto fput_in; if (!(out_file->f_mode & FMODE_WRITE)) goto fput_out; retval = -EINVAL; if (!out_file->f_op || !out_file->f_op->write) goto fput_out; out_inode = out_file->f_dentry->d_inode; retval = locks_verify_area(FLOCK_VERIFY_WRITE, out_inode, out_file, out_file->f_pos, count); if (retval) goto fput_out; retval = 0; if (count) { read_descriptor_t desc; loff_t pos = 0, *ppos; retval = -EFAULT; ppos = &in_file->f_pos; if (offset) { if (get_user(pos, offset)) goto fput_out; ppos = &pos; } desc.written = 0; desc.count = count; desc.buf = (char *) out_file; desc.error = 0; do_generic_file_read(in_file, ppos, &desc, file_send_actor); retval = desc.written; if (!retval) retval = desc.error; if (offset) put_user(pos, offset); } fput_out: fput(out_file); fput_in: fput(in_file); out: return retval; } /* * Read-ahead and flush behind for MADV_SEQUENTIAL areas. Since we are * sure this is sequential access, we don't need a flexible read-ahead * window size -- we can always use a large fixed size window. */ static void nopage_sequential_readahead(struct vm_area_struct * vma, unsigned long pgoff, unsigned long filesize) { unsigned long ra_window; ra_window = get_max_readahead(vma->vm_file->f_dentry->d_inode); ra_window = CLUSTER_OFFSET(ra_window + CLUSTER_PAGES - 1); /* vm_raend is zero if we haven't read ahead in this area yet. */ if (vma->vm_raend == 0) vma->vm_raend = vma->vm_pgoff + ra_window; /* * If we've just faulted the page half-way through our window, * then schedule reads for the next window, and release the * pages in the previous window. */ if ((pgoff + (ra_window >> 1)) == vma->vm_raend) { unsigned long start = vma->vm_pgoff + vma->vm_raend; unsigned long end = start + ra_window; if (end > ((vma->vm_end >> PAGE_SHIFT) + vma->vm_pgoff)) end = (vma->vm_end >> PAGE_SHIFT) + vma->vm_pgoff; if (start > end) return; while ((start < end) && (start < filesize)) { if (read_cluster_nonblocking(vma->vm_file, start, filesize) < 0) break; start += CLUSTER_PAGES; } run_task_queue(&tq_disk); /* if we're far enough past the beginning of this area, recycle pages that are in the previous window. */ if (vma->vm_raend > (vma->vm_pgoff + ra_window + ra_window)) { unsigned long window = ra_window << PAGE_SHIFT; end = vma->vm_start + (vma->vm_raend << PAGE_SHIFT); end -= window + window; filemap_sync(vma, end - window, window, MS_INVALIDATE); } vma->vm_raend += ra_window; } return; } /* * filemap_nopage() is invoked via the vma operations vector for a * mapped memory region to read in file data during a page fault. * * The goto's are kind of ugly, but this streamlines the normal case of having * it in the page cache, and handles the special cases reasonably without * having a lot of duplicated code. */ struct page * filemap_nopage(struct vm_area_struct * area, unsigned long address, int no_share) { int error; struct file *file = area->vm_file; struct inode *inode = file->f_dentry->d_inode; struct address_space *mapping = inode->i_mapping; struct page *page, **hash, *old_page; unsigned long size, pgoff; pgoff = ((address - area->vm_start) >> PAGE_CACHE_SHIFT) + area->vm_pgoff; retry_all: /* * An external ptracer can access pages that normally aren't * accessible.. */ size = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; if ((pgoff >= size) && (area->vm_mm == current->mm)) return NULL; /* * Do we have something in the page cache already? */ hash = page_hash(mapping, pgoff); retry_find: page = __find_get_page(mapping, pgoff, hash); if (!page) goto no_cached_page; /* * Ok, found a page in the page cache, now we need to check * that it's up-to-date. */ if (!Page_Uptodate(page)) goto page_not_uptodate; success: /* * Try read-ahead for sequential areas. */ if (VM_SequentialReadHint(area)) nopage_sequential_readahead(area, pgoff, size); /* * Found the page and have a reference on it, need to check sharing * and possibly copy it over to another page.. */ old_page = page; if (no_share) { struct page *new_page = alloc_page(GFP_HIGHUSER); if (new_page) { copy_user_highpage(new_page, old_page, address); flush_page_to_ram(new_page); } else new_page = NOPAGE_OOM; page_cache_release(page); return new_page; } flush_page_to_ram(old_page); return old_page; no_cached_page: /* * If the requested offset is within our file, try to read a whole * cluster of pages at once. * * Otherwise, we're off the end of a privately mapped file, * so we need to map a zero page. */ if ((pgoff < size) && !VM_RandomReadHint(area)) error = read_cluster_nonblocking(file, pgoff, size); else error = page_cache_read(file, pgoff); /* * The page we want has now been added to the page cache. * In the unlikely event that someone removed it in the * meantime, we'll just come back here and read it again. */ if (error >= 0) goto retry_find; /* * An error return from page_cache_read can result if the * system is low on memory, or a problem occurs while trying * to schedule I/O. */ if (error == -ENOMEM) return NOPAGE_OOM; return NULL; page_not_uptodate: lock_page(page); /* Did it get unhashed while we waited for it? */ if (!page->mapping) { UnlockPage(page); page_cache_release(page); goto retry_all; } /* Did somebody else get it up-to-date? */ if (Page_Uptodate(page)) { UnlockPage(page); goto success; } if (!mapping->a_ops->readpage(file, page)) { wait_on_page(page); if (Page_Uptodate(page)) goto success; } /* * Umm, take care of errors if the page isn't up-to-date. * Try to re-read it _once_. We do this synchronously, * because there really aren't any performance issues here * and we need to check for errors. */ lock_page(page); /* Somebody truncated the page on us? */ if (!page->mapping) { UnlockPage(page); page_cache_release(page); goto retry_all; } /* Somebody else successfully read it in? */ if (Page_Uptodate(page)) { UnlockPage(page); goto success; } ClearPageError(page); if (!mapping->a_ops->readpage(file, page)) { wait_on_page(page); if (Page_Uptodate(page)) goto success; } /* * Things didn't work out. Return zero to tell the * mm layer so, possibly freeing the page cache page first. */ page_cache_release(page); return NULL; } /* Called with mm->page_table_lock held to protect against other * threads/the swapper from ripping pte's out from under us. */ static inline int filemap_sync_pte(pte_t * ptep, struct vm_area_struct *vma, unsigned long address, unsigned int flags) { pte_t pte = *ptep; if (pte_present(pte) && ptep_test_and_clear_dirty(ptep)) { struct page *page = pte_page(pte); flush_tlb_page(vma, address); set_page_dirty(page); } return 0; } static inline int filemap_sync_pte_range(pmd_t * pmd, unsigned long address, unsigned long size, struct vm_area_struct *vma, unsigned long offset, unsigned int flags) { pte_t * pte; unsigned long end; int error; if (pmd_none(*pmd)) return 0; if (pmd_bad(*pmd)) { pmd_ERROR(*pmd); pmd_clear(pmd); return 0; } pte = pte_offset(pmd, address); offset += address & PMD_MASK; address &= ~PMD_MASK; end = address + size; if (end > PMD_SIZE) end = PMD_SIZE; error = 0; do { error |= filemap_sync_pte(pte, vma, address + offset, flags); address += PAGE_SIZE; pte++; } while (address && (address < end)); return error; } static inline int filemap_sync_pmd_range(pgd_t * pgd, unsigned long address, unsigned long size, struct vm_area_struct *vma, unsigned int flags) { pmd_t * pmd; unsigned long offset, end; int error; if (pgd_none(*pgd)) return 0; if (pgd_bad(*pgd)) { pgd_ERROR(*pgd); pgd_clear(pgd); return 0; } pmd = pmd_offset(pgd, address); offset = address & PGDIR_MASK; address &= ~PGDIR_MASK; end = address + size; if (end > PGDIR_SIZE) end = PGDIR_SIZE; error = 0; do { error |= filemap_sync_pte_range(pmd, address, end - address, vma, offset, flags); address = (address + PMD_SIZE) & PMD_MASK; pmd++; } while (address && (address < end)); return error; } int filemap_sync(struct vm_area_struct * vma, unsigned long address, size_t size, unsigned int flags) { pgd_t * dir; unsigned long end = address + size; int error = 0; /* Aquire the lock early; it may be possible to avoid dropping * and reaquiring it repeatedly. */ spin_lock(&vma->vm_mm->page_table_lock); dir = pgd_offset(vma->vm_mm, address); flush_cache_range(vma->vm_mm, end - size, end); if (address >= end) BUG(); do { error |= filemap_sync_pmd_range(dir, address, end - address, vma, flags); address = (address + PGDIR_SIZE) & PGDIR_MASK; dir++; } while (address && (address < end)); flush_tlb_range(vma->vm_mm, end - size, end); spin_unlock(&vma->vm_mm->page_table_lock); return error; } /* * Shared mappings need to be able to do the right thing at * close/unmap/sync. They will also use the private file as * backing-store for swapping.. */ static struct vm_operations_struct file_shared_mmap = { nopage: filemap_nopage, }; /* * Private mappings just need to be able to load in the map. * * (This is actually used for shared mappings as well, if we * know they can't ever get write permissions..) */ static struct vm_operations_struct file_private_mmap = { nopage: filemap_nopage, }; /* This is used for a general mmap of a disk file */ int generic_file_mmap(struct file * file, struct vm_area_struct * vma) { struct vm_operations_struct * ops; struct inode *inode = file->f_dentry->d_inode; ops = &file_private_mmap; if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) { if (!inode->i_mapping->a_ops->writepage) return -EINVAL; ops = &file_shared_mmap; } if (!inode->i_sb || !S_ISREG(inode->i_mode)) return -EACCES; if (!inode->i_mapping->a_ops->readpage) return -ENOEXEC; UPDATE_ATIME(inode); vma->vm_ops = ops; return 0; } /* * The msync() system call. */ static int msync_interval(struct vm_area_struct * vma, unsigned long start, unsigned long end, int flags) { struct file * file = vma->vm_file; if (file && (vma->vm_flags & VM_SHARED)) { int error; error = filemap_sync(vma, start, end-start, flags); if (!error && (flags & MS_SYNC)) { struct inode * inode = file->f_dentry->d_inode; down(&inode->i_sem); filemap_fdatasync(inode->i_mapping); if (file->f_op && file->f_op->fsync) error = file->f_op->fsync(file, file->f_dentry, 1); filemap_fdatawait(inode->i_mapping); up(&inode->i_sem); } return error; } return 0; } asmlinkage long sys_msync(unsigned long start, size_t len, int flags) { unsigned long end; struct vm_area_struct * vma; int unmapped_error, error = -EINVAL; down_read(¤t->mm->mmap_sem); if (start & ~PAGE_MASK) goto out; len = (len + ~PAGE_MASK) & PAGE_MASK; end = start + len; if (end < start) goto out; if (flags & ~(MS_ASYNC | MS_INVALIDATE | MS_SYNC)) goto out; error = 0; if (end == start) goto out; /* * If the interval [start,end) covers some unmapped address ranges, * just ignore them, but return -EFAULT at the end. */ vma = find_vma(current->mm, start); unmapped_error = 0; for (;;) { /* Still start < end. */ error = -EFAULT; if (!vma) goto out; /* Here start < vma->vm_end. */ if (start < vma->vm_start) { unmapped_error = -EFAULT; start = vma->vm_start; } /* Here vma->vm_start <= start < vma->vm_end. */ if (end <= vma->vm_end) { if (start < end) { error = msync_interval(vma, start, end, flags); if (error) goto out; } error = unmapped_error; goto out; } /* Here vma->vm_start <= start < vma->vm_end < end. */ error = msync_interval(vma, start, vma->vm_end, flags); if (error) goto out; start = vma->vm_end; vma = vma->vm_next; } out: up_read(¤t->mm->mmap_sem); return error; } static inline void setup_read_behavior(struct vm_area_struct * vma, int behavior) { VM_ClearReadHint(vma); switch(behavior) { case MADV_SEQUENTIAL: vma->vm_flags |= VM_SEQ_READ; break; case MADV_RANDOM: vma->vm_flags |= VM_RAND_READ; break; default: break; } return; } static long madvise_fixup_start(struct vm_area_struct * vma, unsigned long end, int behavior) { struct vm_area_struct * n; n = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL); if (!n) return -EAGAIN; *n = *vma; n->vm_end = end; setup_read_behavior(n, behavior); n->vm_raend = 0; if (n->vm_file) get_file(n->vm_file); if (n->vm_ops && n->vm_ops->open) n->vm_ops->open(n); lock_vma_mappings(vma); spin_lock(&vma->vm_mm->page_table_lock); vma->vm_pgoff += (end - vma->vm_start) >> PAGE_SHIFT; vma->vm_start = end; __insert_vm_struct(current->mm, n); spin_unlock(&vma->vm_mm->page_table_lock); unlock_vma_mappings(vma); return 0; } static long madvise_fixup_end(struct vm_area_struct * vma, unsigned long start, int behavior) { struct vm_area_struct * n; n = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL); if (!n) return -EAGAIN; *n = *vma; n->vm_start = start; n->vm_pgoff += (n->vm_start - vma->vm_start) >> PAGE_SHIFT; setup_read_behavior(n, behavior); n->vm_raend = 0; if (n->vm_file) get_file(n->vm_file); if (n->vm_ops && n->vm_ops->open) n->vm_ops->open(n); lock_vma_mappings(vma); spin_lock(&vma->vm_mm->page_table_lock); vma->vm_end = start; __insert_vm_struct(current->mm, n); spin_unlock(&vma->vm_mm->page_table_lock); unlock_vma_mappings(vma); return 0; } static long madvise_fixup_middle(struct vm_area_struct * vma, unsigned long start, unsigned long end, int behavior) { struct vm_area_struct * left, * right; left = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL); if (!left) return -EAGAIN; right = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL); if (!right) { kmem_cache_free(vm_area_cachep, left); return -EAGAIN; } *left = *vma; *right = *vma; left->vm_end = start; right->vm_start = end; right->vm_pgoff += (right->vm_start - left->vm_start) >> PAGE_SHIFT; left->vm_raend = 0; right->vm_raend = 0; if (vma->vm_file) atomic_add(2, &vma->vm_file->f_count); if (vma->vm_ops && vma->vm_ops->open) { vma->vm_ops->open(left); vma->vm_ops->open(right); } lock_vma_mappings(vma); spin_lock(&vma->vm_mm->page_table_lock); vma->vm_pgoff += (start - vma->vm_start) >> PAGE_SHIFT; vma->vm_start = start; vma->vm_end = end; setup_read_behavior(vma, behavior); vma->vm_raend = 0; __insert_vm_struct(current->mm, left); __insert_vm_struct(current->mm, right); spin_unlock(&vma->vm_mm->page_table_lock); unlock_vma_mappings(vma); return 0; } /* * We can potentially split a vm area into separate * areas, each area with its own behavior. */ static long madvise_behavior(struct vm_area_struct * vma, unsigned long start, unsigned long end, int behavior) { int error = 0; /* This caps the number of vma's this process can own */ if (vma->vm_mm->map_count > MAX_MAP_COUNT) return -ENOMEM; if (start == vma->vm_start) { if (end == vma->vm_end) { setup_read_behavior(vma, behavior); vma->vm_raend = 0; } else error = madvise_fixup_start(vma, end, behavior); } else { if (end == vma->vm_end) error = madvise_fixup_end(vma, start, behavior); else error = madvise_fixup_middle(vma, start, end, behavior); } return error; } /* * Schedule all required I/O operations, then run the disk queue * to make sure they are started. Do not wait for completion. */ static long madvise_willneed(struct vm_area_struct * vma, unsigned long start, unsigned long end) { long error = -EBADF; struct file * file; unsigned long size, rlim_rss; /* Doesn't work if there's no mapped file. */ if (!vma->vm_file) return error; file = vma->vm_file; size = (file->f_dentry->d_inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; start = ((start - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; if (end > vma->vm_end) end = vma->vm_end; end = ((end - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; /* Make sure this doesn't exceed the process's max rss. */ error = -EIO; rlim_rss = current->rlim ? current->rlim[RLIMIT_RSS].rlim_cur : LONG_MAX; /* default: see resource.h */ if ((vma->vm_mm->rss + (end - start)) > rlim_rss) return error; /* round to cluster boundaries if this isn't a "random" area. */ if (!VM_RandomReadHint(vma)) { start = CLUSTER_OFFSET(start); end = CLUSTER_OFFSET(end + CLUSTER_PAGES - 1); while ((start < end) && (start < size)) { error = read_cluster_nonblocking(file, start, size); start += CLUSTER_PAGES; if (error < 0) break; } } else { while ((start < end) && (start < size)) { error = page_cache_read(file, start); start++; if (error < 0) break; } } /* Don't wait for someone else to push these requests. */ run_task_queue(&tq_disk); return error; } /* * Application no longer needs these pages. If the pages are dirty, * it's OK to just throw them away. The app will be more careful about * data it wants to keep. Be sure to free swap resources too. The * zap_page_range call sets things up for refill_inactive to actually free * these pages later if no one else has touched them in the meantime, * although we could add these pages to a global reuse list for * refill_inactive to pick up before reclaiming other pages. * * NB: This interface discards data rather than pushes it out to swap, * as some implementations do. This has performance implications for * applications like large transactional databases which want to discard * pages in anonymous maps after committing to backing store the data * that was kept in them. There is no reason to write this data out to * the swap area if the application is discarding it. * * An interface that causes the system to free clean pages and flush * dirty pages is already available as msync(MS_INVALIDATE). */ static long madvise_dontneed(struct vm_area_struct * vma, unsigned long start, unsigned long end) { if (vma->vm_flags & VM_LOCKED) return -EINVAL; flush_cache_range(vma->vm_mm, start, end); zap_page_range(vma->vm_mm, start, end - start); flush_tlb_range(vma->vm_mm, start, end); return 0; } static long madvise_vma(struct vm_area_struct * vma, unsigned long start, unsigned long end, int behavior) { long error = -EBADF; switch (behavior) { case MADV_NORMAL: case MADV_SEQUENTIAL: case MADV_RANDOM: error = madvise_behavior(vma, start, end, behavior); break; case MADV_WILLNEED: error = madvise_willneed(vma, start, end); break; case MADV_DONTNEED: error = madvise_dontneed(vma, start, end); break; default: error = -EINVAL; break; } return error; } /* * The madvise(2) system call. * * Applications can use madvise() to advise the kernel how it should * handle paging I/O in this VM area. The idea is to help the kernel * use appropriate read-ahead and caching techniques. The information * provided is advisory only, and can be safely disregarded by the * kernel without affecting the correct operation of the application. * * behavior values: * MADV_NORMAL - the default behavior is to read clusters. This * results in some read-ahead and read-behind. * MADV_RANDOM - the system should read the minimum amount of data * on any access, since it is unlikely that the appli- * cation will need more than what it asks for. * MADV_SEQUENTIAL - pages in the given range will probably be accessed * once, so they can be aggressively read ahead, and * can be freed soon after they are accessed. * MADV_WILLNEED - the application is notifying the system to read * some pages ahead. * MADV_DONTNEED - the application is finished with the given range, * so the kernel can free resources associated with it. * * return values: * zero - success * -EINVAL - start + len < 0, start is not page-aligned, * "behavior" is not a valid value, or application * is attempting to release locked or shared pages. * -ENOMEM - addresses in the specified range are not currently * mapped, or are outside the AS of the process. * -EIO - an I/O error occurred while paging in data. * -EBADF - map exists, but area maps something that isn't a file. * -EAGAIN - a kernel resource was temporarily unavailable. */ asmlinkage long sys_madvise(unsigned long start, size_t len, int behavior) { unsigned long end; struct vm_area_struct * vma; int unmapped_error = 0; int error = -EINVAL; down_write(¤t->mm->mmap_sem); if (start & ~PAGE_MASK) goto out; len = (len + ~PAGE_MASK) & PAGE_MASK; end = start + len; if (end < start) goto out; error = 0; if (end == start) goto out; /* * If the interval [start,end) covers some unmapped address * ranges, just ignore them, but return -ENOMEM at the end. */ vma = find_vma(current->mm, start); for (;;) { /* Still start < end. */ error = -ENOMEM; if (!vma) goto out; /* Here start < vma->vm_end. */ if (start < vma->vm_start) { unmapped_error = -ENOMEM; start = vma->vm_start; } /* Here vma->vm_start <= start < vma->vm_end. */ if (end <= vma->vm_end) { if (start < end) { error = madvise_vma(vma, start, end, behavior); if (error) goto out; } error = unmapped_error; goto out; } /* Here vma->vm_start <= start < vma->vm_end < end. */ error = madvise_vma(vma, start, vma->vm_end, behavior); if (error) goto out; start = vma->vm_end; vma = vma->vm_next; } out: up_write(¤t->mm->mmap_sem); return error; } /* * Later we can get more picky about what "in core" means precisely. * For now, simply check to see if the page is in the page cache, * and is up to date; i.e. that no page-in operation would be required * at this time if an application were to map and access this page. */ static unsigned char mincore_page(struct vm_area_struct * vma, unsigned long pgoff) { unsigned char present = 0; struct address_space * as = &vma->vm_file->f_dentry->d_inode->i_data; struct page * page, ** hash = page_hash(as, pgoff); spin_lock(&pagecache_lock); page = __find_page_nolock(as, pgoff, *hash); if ((page) && (Page_Uptodate(page))) present = 1; spin_unlock(&pagecache_lock); return present; } static long mincore_vma(struct vm_area_struct * vma, unsigned long start, unsigned long end, unsigned char * vec) { long error, i, remaining; unsigned char * tmp; error = -ENOMEM; if (!vma->vm_file) return error; start = ((start - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; if (end > vma->vm_end) end = vma->vm_end; end = ((end - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; error = -EAGAIN; tmp = (unsigned char *) __get_free_page(GFP_KERNEL); if (!tmp) return error; /* (end - start) is # of pages, and also # of bytes in "vec */ remaining = (end - start), error = 0; for (i = 0; remaining > 0; remaining -= PAGE_SIZE, i++) { int j = 0; long thispiece = (remaining < PAGE_SIZE) ? remaining : PAGE_SIZE; while (j < thispiece) tmp[j++] = mincore_page(vma, start++); if (copy_to_user(vec + PAGE_SIZE * i, tmp, thispiece)) { error = -EFAULT; break; } } free_page((unsigned long) tmp); return error; } /* * The mincore(2) system call. * * mincore() returns the memory residency status of the pages in the * current process's address space specified by [addr, addr + len). * The status is returned in a vector of bytes. The least significant * bit of each byte is 1 if the referenced page is in memory, otherwise * it is zero. * * Because the status of a page can change after mincore() checks it * but before it returns to the application, the returned vector may * contain stale information. Only locked pages are guaranteed to * remain in memory. * * return values: * zero - success * -EFAULT - vec points to an illegal address * -EINVAL - addr is not a multiple of PAGE_CACHE_SIZE, * or len has a nonpositive value * -ENOMEM - Addresses in the range [addr, addr + len] are * invalid for the address space of this process, or * specify one or more pages which are not currently * mapped * -EAGAIN - A kernel resource was temporarily unavailable. */ asmlinkage long sys_mincore(unsigned long start, size_t len, unsigned char * vec) { int index = 0; unsigned long end; struct vm_area_struct * vma; int unmapped_error = 0; long error = -EINVAL; down_read(¤t->mm->mmap_sem); if (start & ~PAGE_CACHE_MASK) goto out; len = (len + ~PAGE_CACHE_MASK) & PAGE_CACHE_MASK; end = start + len; if (end < start) goto out; error = 0; if (end == start) goto out; /* * If the interval [start,end) covers some unmapped address * ranges, just ignore them, but return -ENOMEM at the end. */ vma = find_vma(current->mm, start); for (;;) { /* Still start < end. */ error = -ENOMEM; if (!vma) goto out; /* Here start < vma->vm_end. */ if (start < vma->vm_start) { unmapped_error = -ENOMEM; start = vma->vm_start; } /* Here vma->vm_start <= start < vma->vm_end. */ if (end <= vma->vm_end) { if (start < end) { error = mincore_vma(vma, start, end, &vec[index]); if (error) goto out; } error = unmapped_error; goto out; } /* Here vma->vm_start <= start < vma->vm_end < end. */ error = mincore_vma(vma, start, vma->vm_end, &vec[index]); if (error) goto out; index += (vma->vm_end - start) >> PAGE_CACHE_SHIFT; start = vma->vm_end; vma = vma->vm_next; } out: up_read(¤t->mm->mmap_sem); return error; } static inline struct page *__read_cache_page(struct address_space *mapping, unsigned long index, int (*filler)(void *,struct page*), void *data) { struct page **hash = page_hash(mapping, index); struct page *page, *cached_page = NULL; int err; repeat: page = __find_get_page(mapping, index, hash); if (!page) { if (!cached_page) { cached_page = page_cache_alloc(mapping); if (!cached_page) return ERR_PTR(-ENOMEM); } page = cached_page; if (add_to_page_cache_unique(page, mapping, index, hash)) goto repeat; cached_page = NULL; err = filler(data, page); if (err < 0) { page_cache_release(page); page = ERR_PTR(err); } } if (cached_page) page_cache_free(cached_page); return page; } /* * Read into the page cache. If a page already exists, * and Page_Uptodate() is not set, try to fill the page. */ struct page *read_cache_page(struct address_space *mapping, unsigned long index, int (*filler)(void *,struct page*), void *data) { struct page *page; int err; retry: page = __read_cache_page(mapping, index, filler, data); if (IS_ERR(page) || Page_Uptodate(page)) goto out; lock_page(page); if (!page->mapping) { UnlockPage(page); page_cache_release(page); goto retry; } if (Page_Uptodate(page)) { UnlockPage(page); goto out; } err = filler(data, page); if (err < 0) { page_cache_release(page); page = ERR_PTR(err); } out: return page; } static inline struct page * __grab_cache_page(struct address_space *mapping, unsigned long index, struct page **cached_page) { struct page *page, **hash = page_hash(mapping, index); repeat: page = __find_lock_page(mapping, index, hash); if (!page) { if (!*cached_page) { *cached_page = page_cache_alloc(mapping); if (!*cached_page) return NULL; } page = *cached_page; if (add_to_page_cache_unique(page, mapping, index, hash)) goto repeat; *cached_page = NULL; } return page; } /* * Returns locked page at given index in given cache, creating it if needed. */ struct page *grab_cache_page(struct address_space *mapping, unsigned long index) { struct page *cached_page = NULL; struct page *page = __grab_cache_page(mapping,index,&cached_page); if (cached_page) page_cache_free(cached_page); return page; } inline void remove_suid(struct inode *inode) { unsigned int mode; /* set S_IGID if S_IXGRP is set, and always set S_ISUID */ mode = (inode->i_mode & S_IXGRP)*(S_ISGID/S_IXGRP) | S_ISUID; /* was any of the uid bits set? */ mode &= inode->i_mode; if (mode && !capable(CAP_FSETID)) { inode->i_mode &= ~mode; mark_inode_dirty(inode); } } /* * Write to a file through the page cache. * * We currently put everything into the page cache prior to writing it. * This is not a problem when writing full pages. With partial pages, * however, we first have to read the data into the cache, then * dirty the page, and finally schedule it for writing. Alternatively, we * could write-through just the portion of data that would go into that * page, but that would kill performance for applications that write data * line by line, and it's prone to race conditions. * * Note that this routine doesn't try to keep track of dirty pages. Each * file system has to do this all by itself, unfortunately. * okir@monad.swb.de */ ssize_t generic_file_write(struct file *file,const char *buf,size_t count,loff_t *ppos) { struct inode *inode = file->f_dentry->d_inode; struct address_space *mapping = inode->i_mapping; unsigned long limit = current->rlim[RLIMIT_FSIZE].rlim_cur; loff_t pos; struct page *page, *cached_page; unsigned long written; long status; int err; unsigned bytes; cached_page = NULL; if (!access_ok(VERIFY_READ, buf, count)) return -EFAULT; down(&inode->i_sem); pos = *ppos; err = -EINVAL; if (pos < 0) goto out; err = file->f_error; if (err) { file->f_error = 0; goto out; } written = 0; if (file->f_flags & O_APPEND) pos = inode->i_size; /* * Check whether we've reached the file size limit. */ err = -EFBIG; if (limit != RLIM_INFINITY) { if (pos >= limit) { send_sig(SIGXFSZ, current, 0); goto out; } if (pos > 0xFFFFFFFFULL || count > limit - (u32)pos) { /* send_sig(SIGXFSZ, current, 0); */ count = limit - (u32)pos; } } /* * LFS rule */ if ( pos + count > MAX_NON_LFS && !(file->f_flags&O_LARGEFILE)) { if (pos >= MAX_NON_LFS) { send_sig(SIGXFSZ, current, 0); goto out; } if (count > MAX_NON_LFS - (u32)pos) { /* send_sig(SIGXFSZ, current, 0); */ count = MAX_NON_LFS - (u32)pos; } } /* * Are we about to exceed the fs block limit ? * * If we have written data it becomes a short write * If we have exceeded without writing data we send * a signal and give them an EFBIG. * * Linus frestrict idea will clean these up nicely.. */ if (pos > inode->i_sb->s_maxbytes) { send_sig(SIGXFSZ, current, 0); err = -EFBIG; goto out; } if (pos + count > inode->i_sb->s_maxbytes) count = inode->i_sb->s_maxbytes - pos; if (count == 0) { err = 0; goto out; } status = 0; remove_suid(inode); inode->i_ctime = inode->i_mtime = CURRENT_TIME; mark_inode_dirty_sync(inode); while (count) { unsigned long index, offset; char *kaddr; int deactivate = 1; /* * Try to find the page in the cache. If it isn't there, * allocate a free page. */ offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */ index = pos >> PAGE_CACHE_SHIFT; bytes = PAGE_CACHE_SIZE - offset; if (bytes > count) { bytes = count; deactivate = 0; } /* * Bring in the user page that we will copy from _first_. * Otherwise there's a nasty deadlock on copying from the * same page as we're writing to, without it being marked * up-to-date. */ { volatile unsigned char dummy; __get_user(dummy, buf); __get_user(dummy, buf+bytes-1); } status = -ENOMEM; /* we'll assign it later anyway */ page = __grab_cache_page(mapping, index, &cached_page); if (!page) break; /* We have exclusive IO access to the page.. */ if (!PageLocked(page)) { PAGE_BUG(page); } status = mapping->a_ops->prepare_write(file, page, offset, offset+bytes); if (status) goto unlock; kaddr = page_address(page); status = __copy_from_user(kaddr+offset, buf, bytes); flush_dcache_page(page); if (status) goto fail_write; status = mapping->a_ops->commit_write(file, page, offset, offset+bytes); if (!status) status = bytes; if (status >= 0) { written += status; count -= status; pos += status; buf += status; } unlock: /* Mark it unlocked again and drop the page.. */ UnlockPage(page); if (deactivate) deactivate_page(page); page_cache_release(page); if (status < 0) break; } *ppos = pos; if (cached_page) page_cache_free(cached_page); /* For now, when the user asks for O_SYNC, we'll actually * provide O_DSYNC. */ if ((status >= 0) && (file->f_flags & O_SYNC)) status = generic_osync_inode(inode, 1); /* 1 means datasync */ err = written ? written : status; out: up(&inode->i_sem); return err; fail_write: status = -EFAULT; ClearPageUptodate(page); kunmap(page); goto unlock; } void __init page_cache_init(unsigned long mempages) { unsigned long htable_size, order; htable_size = mempages; htable_size *= sizeof(struct page *); for(order = 0; (PAGE_SIZE << order) < htable_size; order++) ; do { unsigned long tmp = (PAGE_SIZE << order) / sizeof(struct page *); page_hash_bits = 0; while((tmp >>= 1UL) != 0UL) page_hash_bits++; page_hash_table = (struct page **) __get_free_pages(GFP_ATOMIC, order); } while(page_hash_table == NULL && --order > 0); printk("Page-cache hash table entries: %d (order: %ld, %ld bytes)\n", (1 << page_hash_bits), order, (PAGE_SIZE << order)); if (!page_hash_table) panic("Failed to allocate page hash table\n"); memset((void *)page_hash_table, 0, PAGE_HASH_SIZE * sizeof(struct page *)); } |