Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
/*
 *	linux/mm/filemap.c
 *
 * Copyright (C) 1994, 1995  Linus Torvalds
 */

/*
 * This file handles the generic file mmap semantics used by
 * most "normal" filesystems (but you don't /have/ to use this:
 * the NFS filesystem does this differently, for example)
 */
#include <linux/stat.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/shm.h>
#include <linux/errno.h>
#include <linux/mman.h>
#include <linux/string.h>
#include <linux/malloc.h>
#include <linux/fs.h>
#include <linux/locks.h>
#include <linux/pagemap.h>
#include <linux/swap.h>

#include <asm/segment.h>
#include <asm/system.h>
#include <asm/pgtable.h>

/*
 * Shared mappings implemented 30.11.1994. It's not fully working yet,
 * though.
 *
 * Shared mappings now work. 15.8.1995  Bruno.
 */

unsigned long page_cache_size = 0;
struct page * page_hash_table[PAGE_HASH_SIZE];

/*
 * Simple routines for both non-shared and shared mappings.
 */

/*
 * Invalidate the pages of an inode, removing all pages that aren't
 * locked down (those are sure to be up-to-date anyway, so we shouldn't
 * invalidate them).
 */
void invalidate_inode_pages(struct inode * inode)
{
	struct page ** p;
	struct page * page;

	p = &inode->i_pages;
	while ((page = *p) != NULL) {
		if (page->locked) {
			p = &page->next;
			continue;
		}
		inode->i_nrpages--;
		if ((*p = page->next) != NULL)
			(*p)->prev = page->prev;
		page->dirty = 0;
		page->next = NULL;
		page->prev = NULL;
		remove_page_from_hash_queue(page);
		page->inode = NULL;
		free_page(page_address(page));
		continue;
	}
}

/*
 * Truncate the page cache at a set offset, removing the pages
 * that are beyond that offset (and zeroing out partial pages).
 */
void truncate_inode_pages(struct inode * inode, unsigned long start)
{
	struct page ** p;
	struct page * page;

repeat:
	p = &inode->i_pages;
	while ((page = *p) != NULL) {
		unsigned long offset = page->offset;

		/* page wholly truncated - free it */
		if (offset >= start) {
			if (page->locked) {
				wait_on_page(page);
				goto repeat;
			}
			inode->i_nrpages--;
			if ((*p = page->next) != NULL)
				(*p)->prev = page->prev;
			page->dirty = 0;
			page->next = NULL;
			page->prev = NULL;
			remove_page_from_hash_queue(page);
			page->inode = NULL;
			free_page(page_address(page));
			continue;
		}
		p = &page->next;
		offset = start - offset;
		/* partial truncate, clear end of page */
		if (offset < PAGE_SIZE)
			memset((void *) (offset + page_address(page)), 0, PAGE_SIZE - offset);
	}
}

int shrink_mmap(int priority, int dma)
{
	static int clock = 0;
	struct page * page;
	unsigned long limit = MAP_NR(high_memory);
	struct buffer_head *tmp, *bh;

	priority = (limit<<2) >> priority;
	page = mem_map + clock;
	while (priority-- > 0) {
		if (page->locked)
			goto next;
		if (dma && !page->dma)
			goto next;
		/* First of all, regenerate the page's referenced bit
                   from any buffers in the page */
		bh = page->buffers;
		if (bh) {
			tmp = bh;
			do {
				if (buffer_touched(tmp)) {
					clear_bit(BH_Touched, &tmp->b_state);
					page->referenced = 1;
				}
				tmp = tmp->b_this_page;
			} while (tmp != bh);
		}

		/* We can't throw away shared pages, but we do mark
		   them as referenced.  This relies on the fact that
		   no page is currently in both the page cache and the
		   buffer cache; we'd have to modify the following
		   test to allow for that case. */
		if (page->count > 1)
			page->referenced = 1;
		else if (page->referenced)
			page->referenced = 0;
		else if (page->count) {
			/* The page is an old, unshared page --- try
                           to discard it. */
			if (page->inode) {
				remove_page_from_hash_queue(page);
				remove_page_from_inode_queue(page);
				free_page(page_address(page));
				return 1;
			}
			if (bh && try_to_free_buffer(bh, &bh, 6))
				return 1;
		}
next:
		page++;
		clock++;
		if (clock >= limit) {
			clock = 0;
			page = mem_map;
		}
	}
	return 0;
}

/*
 * This is called from try_to_swap_out() when we try to get rid of some
 * pages..  If we're unmapping the last occurrence of this page, we also
 * free it from the page hash-queues etc, as we don't want to keep it
 * in-core unnecessarily.
 */
unsigned long page_unuse(unsigned long page)
{
	struct page * p = mem_map + MAP_NR(page);
	int count = p->count;

	if (count != 2)
		return count;
	if (!p->inode)
		return count;
	remove_page_from_hash_queue(p);
	remove_page_from_inode_queue(p);
	free_page(page);
	return 1;
}

/*
 * Update a page cache copy, when we're doing a "write()" system call
 * See also "update_vm_cache()".
 */
void update_vm_cache(struct inode * inode, unsigned long pos, const char * buf, int count)
{
	unsigned long offset, len;

	offset = (pos & ~PAGE_MASK);
	pos = pos & PAGE_MASK;
	len = PAGE_SIZE - offset;
	do {
		struct page * page;

		if (len > count)
			len = count;
		page = find_page(inode, pos);
		if (page) {
			unsigned long addr;

			wait_on_page(page);
			addr = page_address(page);
			memcpy((void *) (offset + addr), buf, len);
			free_page(addr);
		}
		count -= len;
		buf += len;
		len = PAGE_SIZE;
		offset = 0;
		pos += PAGE_SIZE;
	} while (count);
}

/*
 * Try to read ahead in the file. "page_cache" is a potentially free page
 * that we could use for the cache (if it is 0 we can try to create one,
 * this is all overlapped with the IO on the previous page finishing anyway)
 */
static unsigned long try_to_read_ahead(struct inode * inode, unsigned long offset, unsigned long page_cache)
{
	struct page * page;

	offset &= PAGE_MASK;
	if (!page_cache) {
		page_cache = __get_free_page(GFP_KERNEL);
		if (!page_cache)
			return 0;
	}
	if (offset >= inode->i_size)
		return page_cache;
#if 1
	page = find_page(inode, offset);
	if (page) {
		page->count--;
		return page_cache;
	}
	/*
	 * Ok, add the new page to the hash-queues...
	 */
	page = mem_map + MAP_NR(page_cache);
	page->count++;
	page->uptodate = 0;
	page->error = 0;
	page->offset = offset;
	add_page_to_inode_queue(inode, page);
	add_page_to_hash_queue(inode, page);

	inode->i_op->readpage(inode, page);

	free_page(page_cache);
	return 0;
#else
	return page_cache;
#endif
}

/* 
 * Wait for IO to complete on a locked page.
 */
void __wait_on_page(struct page *page)
{
	struct wait_queue wait = { current, NULL };

	page->count++;
	add_wait_queue(&page->wait, &wait);
repeat:
	current->state = TASK_UNINTERRUPTIBLE;
	if (page->locked) {
		schedule();
		goto repeat;
	}
	remove_wait_queue(&page->wait, &wait);
	page->count--;
	current->state = TASK_RUNNING;
}


/*
 * This is a generic file read routine, and uses the
 * inode->i_op->readpage() function for the actual low-level
 * stuff.
 *
 * This is really ugly. But the goto's actually try to clarify some
 * of the logic when it comes to error handling etc.
 */
#define MAX_READAHEAD (PAGE_SIZE*4)
int generic_file_read(struct inode * inode, struct file * filp, char * buf, int count)
{
	int error, read;
	unsigned long pos, page_cache;
	
	if (count <= 0)
		return 0;
	error = 0;
	read = 0;
	page_cache = 0;

	pos = filp->f_pos;
	for (;;) {
		struct page *page;
		unsigned long offset, addr, nr;

		if (pos >= inode->i_size)
			break;
		offset = pos & ~PAGE_MASK;
		nr = PAGE_SIZE - offset;
		/*
		 * Try to find the data in the page cache..
		 */
		page = find_page(inode, pos & PAGE_MASK);
		if (page)
			goto found_page;

		/*
		 * Ok, it wasn't cached, so we need to create a new
		 * page..
		 */
		if (page_cache)
			goto new_page;

		error = -ENOMEM;
		page_cache = __get_free_page(GFP_KERNEL);
		if (!page_cache)
			break;
		error = 0;

		/*
		 * That could have slept, so we need to check again..
		 */
		if (pos >= inode->i_size)
			break;
		page = find_page(inode, pos & PAGE_MASK);
		if (!page)
			goto new_page;

found_page:
		addr = page_address(page);
		if (nr > count)
			nr = count;

		/*
		 * We may want to do read-ahead.. Do this only
		 * if we're waiting for the current page to be
		 * filled in, and if
		 *  - we're going to read more than this page
		 *  - if "f_reada" is set
		 */
		if (page->locked) {
			unsigned long max_ahead, ahead;

			max_ahead = count - nr;
			if (filp->f_reada || max_ahead > MAX_READAHEAD)
				max_ahead = MAX_READAHEAD;
			ahead = 0;
			while (ahead < max_ahead) {
				ahead += PAGE_SIZE;
				page_cache = try_to_read_ahead(inode, pos + ahead, page_cache);
			}
			__wait_on_page(page);
		}
		if (!page->uptodate)
			goto read_page;
		if (nr > inode->i_size - pos)
			nr = inode->i_size - pos;
		memcpy_tofs(buf, (void *) (addr + offset), nr);
		free_page(addr);
		buf += nr;
		pos += nr;
		read += nr;
		count -= nr;
		if (count)
			continue;
		break;
	

new_page:
		/*
		 * Ok, add the new page to the hash-queues...
		 */
		addr = page_cache;
		page = mem_map + MAP_NR(page_cache);
		page_cache = 0;
		page->count++;
		page->uptodate = 0;
		page->error = 0;
		page->offset = pos & PAGE_MASK;
		add_page_to_inode_queue(inode, page);
		add_page_to_hash_queue(inode, page);

		/*
		 * Error handling is tricky. If we get a read error,
		 * the cached page stays in the cache (but uptodate=0),
		 * and the next process that accesses it will try to
		 * re-read it. This is needed for NFS etc, where the
		 * identity of the reader can decide if we can read the
		 * page or not..
		 */
read_page:
		error = inode->i_op->readpage(inode, page);
		if (!error)
			goto found_page;
		free_page(addr);
		break;
	}

	filp->f_pos = pos;
	filp->f_reada = 1;
	if (page_cache)
		free_page(page_cache);
	if (!IS_RDONLY(inode)) {
		inode->i_atime = CURRENT_TIME;
		inode->i_dirt = 1;
	}
	if (!read)
		read = error;
	return read;
}

/*
 * Find a cached page and wait for it to become up-to-date, return
 * the page address.  Increments the page count.
 */
static inline unsigned long fill_page(struct inode * inode, unsigned long offset)
{
	struct page * page;
	unsigned long new_page;

	page = find_page(inode, offset);
	if (page)
		goto found_page;
	new_page = __get_free_page(GFP_KERNEL);
	page = find_page(inode, offset);
	if (page) {
		if (new_page)
			free_page(new_page);
		goto found_page;
	}
	if (!new_page)
		return 0;
	page = mem_map + MAP_NR(new_page);
	new_page = 0;
	page->count++;
	page->uptodate = 0;
	page->error = 0;
	page->offset = offset;
	add_page_to_inode_queue(inode, page);
	add_page_to_hash_queue(inode, page);
	inode->i_op->readpage(inode, page);
found_page:
	wait_on_page(page);
	return page_address(page);
}

/*
 * Semantics for shared and private memory areas are different past the end
 * of the file. A shared mapping past the last page of the file is an error
 * and results in a SIBGUS, while a private mapping just maps in a zero page.
 */
static unsigned long filemap_nopage(struct vm_area_struct * area, unsigned long address, int no_share)
{
	unsigned long offset;
	struct inode * inode = area->vm_inode;
	unsigned long page;

	offset = (address & PAGE_MASK) - area->vm_start + area->vm_offset;
	if (offset >= inode->i_size && (area->vm_flags & VM_SHARED) && area->vm_mm == current->mm)
		return 0;

	page = fill_page(inode, offset);
	if (page && no_share) {
		unsigned long new_page = __get_free_page(GFP_KERNEL);
		if (new_page)
			memcpy((void *) new_page, (void *) page, PAGE_SIZE);
		free_page(page);
		return new_page;
	}
	return page;
}

/*
 * Tries to write a shared mapped page to its backing store. May return -EIO
 * if the disk is full.
 */
static inline int do_write_page(struct inode * inode, struct file * file,
	const char * page, unsigned long offset)
{
	int old_fs, retval;
	unsigned long size;

	size = offset + PAGE_SIZE;
	/* refuse to extend file size.. */
	if (S_ISREG(inode->i_mode)) {
		if (size > inode->i_size)
			size = inode->i_size;
		/* Ho humm.. We should have tested for this earlier */
		if (size < offset)
			return -EIO;
	}
	size -= offset;
	old_fs = get_fs();
	set_fs(KERNEL_DS);
	retval = -EIO;
	if (size == file->f_op->write(inode, file, (const char *) page, size))
		retval = 0;
	set_fs(old_fs);
	return retval;
}

static int filemap_write_page(struct vm_area_struct * vma,
	unsigned long offset,
	unsigned long page)
{
	int result;
	struct file file;
	struct inode * inode;
	struct buffer_head * bh;

	bh = mem_map[MAP_NR(page)].buffers;
	if (bh) {
		/* whee.. just mark the buffer heads dirty */
		struct buffer_head * tmp = bh;
		do {
			mark_buffer_dirty(tmp, 0);
			tmp = tmp->b_this_page;
		} while (tmp != bh);
		return 0;
	}

	inode = vma->vm_inode;
	file.f_op = inode->i_op->default_file_ops;
	if (!file.f_op->write)
		return -EIO;
	file.f_mode = 3;
	file.f_flags = 0;
	file.f_count = 1;
	file.f_inode = inode;
	file.f_pos = offset;
	file.f_reada = 0;

	down(&inode->i_sem);
	result = do_write_page(inode, &file, (const char *) page, offset);
	up(&inode->i_sem);
	return result;
}


/*
 * Swapping to a shared file: while we're busy writing out the page
 * (and the page still exists in memory), we save the page information
 * in the page table, so that "filemap_swapin()" can re-use the page
 * immediately if it is called while we're busy swapping it out..
 *
 * Once we've written it all out, we mark the page entry "empty", which
 * will result in a normal page-in (instead of a swap-in) from the now
 * up-to-date disk file.
 */
int filemap_swapout(struct vm_area_struct * vma,
	unsigned long offset,
	pte_t *page_table)
{
	int error;
	unsigned long page = pte_page(*page_table);
	unsigned long entry = SWP_ENTRY(SHM_SWP_TYPE, MAP_NR(page));

	set_pte(page_table, __pte(entry));
	/* Yuck, perhaps a slightly modified swapout parameter set? */
	invalidate_page(vma, (offset + vma->vm_start - vma->vm_offset));
	error = filemap_write_page(vma, offset, page);
	if (pte_val(*page_table) == entry)
		pte_clear(page_table);
	return error;
}

/*
 * filemap_swapin() is called only if we have something in the page
 * tables that is non-zero (but not present), which we know to be the
 * page index of a page that is busy being swapped out (see above).
 * So we just use it directly..
 */
static pte_t filemap_swapin(struct vm_area_struct * vma,
	unsigned long offset,
	unsigned long entry)
{
	unsigned long page = SWP_OFFSET(entry);

	mem_map[page].count++;
	page = (page << PAGE_SHIFT) + PAGE_OFFSET;
	return mk_pte(page,vma->vm_page_prot);
}


static inline int filemap_sync_pte(pte_t * ptep, struct vm_area_struct *vma,
	unsigned long address, unsigned int flags)
{
	pte_t pte = *ptep;
	unsigned long page;
	int error;

	if (!(flags & MS_INVALIDATE)) {
		if (!pte_present(pte))
			return 0;
		if (!pte_dirty(pte))
			return 0;
		set_pte(ptep, pte_mkclean(pte));
		invalidate_page(vma, address);
		page = pte_page(pte);
		mem_map[MAP_NR(page)].count++;
	} else {
		if (pte_none(pte))
			return 0;
		pte_clear(ptep);
		invalidate_page(vma, address);
		if (!pte_present(pte)) {
			swap_free(pte_val(pte));
			return 0;
		}
		page = pte_page(pte);
		if (!pte_dirty(pte) || flags == MS_INVALIDATE) {
			free_page(page);
			return 0;
		}
	}
	error = filemap_write_page(vma, address - vma->vm_start + vma->vm_offset, page);
	free_page(page);
	return error;
}

static inline int filemap_sync_pte_range(pmd_t * pmd,
	unsigned long address, unsigned long size, 
	struct vm_area_struct *vma, unsigned long offset, unsigned int flags)
{
	pte_t * pte;
	unsigned long end;
	int error;

	if (pmd_none(*pmd))
		return 0;
	if (pmd_bad(*pmd)) {
		printk("filemap_sync_pte_range: bad pmd (%08lx)\n", pmd_val(*pmd));
		pmd_clear(pmd);
		return 0;
	}
	pte = pte_offset(pmd, address);
	offset += address & PMD_MASK;
	address &= ~PMD_MASK;
	end = address + size;
	if (end > PMD_SIZE)
		end = PMD_SIZE;
	error = 0;
	do {
		error |= filemap_sync_pte(pte, vma, address + offset, flags);
		address += PAGE_SIZE;
		pte++;
	} while (address < end);
	return error;
}

static inline int filemap_sync_pmd_range(pgd_t * pgd,
	unsigned long address, unsigned long size, 
	struct vm_area_struct *vma, unsigned int flags)
{
	pmd_t * pmd;
	unsigned long offset, end;
	int error;

	if (pgd_none(*pgd))
		return 0;
	if (pgd_bad(*pgd)) {
		printk("filemap_sync_pmd_range: bad pgd (%08lx)\n", pgd_val(*pgd));
		pgd_clear(pgd);
		return 0;
	}
	pmd = pmd_offset(pgd, address);
	offset = address & PMD_MASK;
	address &= ~PMD_MASK;
	end = address + size;
	if (end > PGDIR_SIZE)
		end = PGDIR_SIZE;
	error = 0;
	do {
		error |= filemap_sync_pte_range(pmd, address, end - address, vma, offset, flags);
		address = (address + PMD_SIZE) & PMD_MASK;
		pmd++;
	} while (address < end);
	return error;
}

static int filemap_sync(struct vm_area_struct * vma, unsigned long address,
	size_t size, unsigned int flags)
{
	pgd_t * dir;
	unsigned long end = address + size;
	int error = 0;

	dir = pgd_offset(current->mm, address);
	while (address < end) {
		error |= filemap_sync_pmd_range(dir, address, end - address, vma, flags);
		address = (address + PGDIR_SIZE) & PGDIR_MASK;
		dir++;
	}
	invalidate_range(vma->vm_mm, end - size, end);
	return error;
}

/*
 * This handles (potentially partial) area unmaps..
 */
static void filemap_unmap(struct vm_area_struct *vma, unsigned long start, size_t len)
{
	filemap_sync(vma, start, len, MS_ASYNC);
}

/*
 * Shared mappings need to be able to do the right thing at
 * close/unmap/sync. They will also use the private file as
 * backing-store for swapping..
 */
static struct vm_operations_struct file_shared_mmap = {
	NULL,			/* no special open */
	NULL,			/* no special close */
	filemap_unmap,		/* unmap - we need to sync the pages */
	NULL,			/* no special protect */
	filemap_sync,		/* sync */
	NULL,			/* advise */
	filemap_nopage,		/* nopage */
	NULL,			/* wppage */
	filemap_swapout,	/* swapout */
	filemap_swapin,		/* swapin */
};

/*
 * Private mappings just need to be able to load in the map.
 *
 * (This is actually used for shared mappings as well, if we
 * know they can't ever get write permissions..)
 */
static struct vm_operations_struct file_private_mmap = {
	NULL,			/* open */
	NULL,			/* close */
	NULL,			/* unmap */
	NULL,			/* protect */
	NULL,			/* sync */
	NULL,			/* advise */
	filemap_nopage,		/* nopage */
	NULL,			/* wppage */
	NULL,			/* swapout */
	NULL,			/* swapin */
};

/* This is used for a general mmap of a disk file */
int generic_file_mmap(struct inode * inode, struct file * file, struct vm_area_struct * vma)
{
	struct vm_operations_struct * ops;

	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) {
		ops = &file_shared_mmap;
		/* share_page() can only guarantee proper page sharing if
		 * the offsets are all page aligned. */
		if (vma->vm_offset & (PAGE_SIZE - 1))
			return -EINVAL;
	} else {
		ops = &file_private_mmap;
		if (vma->vm_offset & (inode->i_sb->s_blocksize - 1))
			return -EINVAL;
	}
	if (!inode->i_sb || !S_ISREG(inode->i_mode))
		return -EACCES;
	if (!inode->i_op || !inode->i_op->readpage)
		return -ENOEXEC;
	if (!IS_RDONLY(inode)) {
		inode->i_atime = CURRENT_TIME;
		inode->i_dirt = 1;
	}
	vma->vm_inode = inode;
	inode->i_count++;
	vma->vm_ops = ops;
	return 0;
}


/*
 * The msync() system call.
 */

static int msync_interval(struct vm_area_struct * vma,
	unsigned long start, unsigned long end, int flags)
{
	if (!vma->vm_inode)
		return 0;
	if (vma->vm_ops->sync) {
		int error;
		error = vma->vm_ops->sync(vma, start, end-start, flags);
		if (error)
			return error;
		if (flags & MS_SYNC)
			return file_fsync(vma->vm_inode, NULL);
		return 0;
	}
	return 0;
}

asmlinkage int sys_msync(unsigned long start, size_t len, int flags)
{
	unsigned long end;
	struct vm_area_struct * vma;
	int unmapped_error, error;

	if (start & ~PAGE_MASK)
		return -EINVAL;
	len = (len + ~PAGE_MASK) & PAGE_MASK;
	end = start + len;
	if (end < start)
		return -EINVAL;
	if (flags & ~(MS_ASYNC | MS_INVALIDATE | MS_SYNC))
		return -EINVAL;
	if (end == start)
		return 0;
	/*
	 * If the interval [start,end) covers some unmapped address ranges,
	 * just ignore them, but return -EFAULT at the end.
	 */
	vma = find_vma(current, start);
	unmapped_error = 0;
	for (;;) {
		/* Still start < end. */
		if (!vma)
			return -EFAULT;
		/* Here start < vma->vm_end. */
		if (start < vma->vm_start) {
			unmapped_error = -EFAULT;
			start = vma->vm_start;
		}
		/* Here vma->vm_start <= start < vma->vm_end. */
		if (end <= vma->vm_end) {
			if (start < end) {
				error = msync_interval(vma, start, end, flags);
				if (error)
					return error;
			}
			return unmapped_error;
		}
		/* Here vma->vm_start <= start < vma->vm_end < end. */
		error = msync_interval(vma, start, vma->vm_end, flags);
		if (error)
			return error;
		start = vma->vm_end;
		vma = vma->vm_next;
	}
}