Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 | /* * linux/mm/filemap.c * * Copyright (C) 1994, 1995 Linus Torvalds */ /* * This file handles the generic file mmap semantics used by * most "normal" filesystems (but you don't /have/ to use this: * the NFS filesystem does this differently, for example) */ #include <linux/stat.h> #include <linux/sched.h> #include <linux/kernel.h> #include <linux/mm.h> #include <linux/shm.h> #include <linux/errno.h> #include <linux/mman.h> #include <linux/string.h> #include <linux/malloc.h> #include <linux/fs.h> #include <linux/locks.h> #include <linux/pagemap.h> #include <linux/swap.h> #include <asm/segment.h> #include <asm/system.h> #include <asm/pgtable.h> /* * Shared mappings implemented 30.11.1994. It's not fully working yet, * though. * * Shared mappings now work. 15.8.1995 Bruno. */ unsigned long page_cache_size = 0; struct page * page_hash_table[PAGE_HASH_SIZE]; /* * Simple routines for both non-shared and shared mappings. */ /* * Invalidate the pages of an inode, removing all pages that aren't * locked down (those are sure to be up-to-date anyway, so we shouldn't * invalidate them). */ void invalidate_inode_pages(struct inode * inode) { struct page ** p; struct page * page; p = &inode->i_pages; while ((page = *p) != NULL) { if (page->locked) { p = &page->next; continue; } inode->i_nrpages--; if ((*p = page->next) != NULL) (*p)->prev = page->prev; page->dirty = 0; page->next = NULL; page->prev = NULL; remove_page_from_hash_queue(page); page->inode = NULL; free_page(page_address(page)); continue; } } /* * Truncate the page cache at a set offset, removing the pages * that are beyond that offset (and zeroing out partial pages). */ void truncate_inode_pages(struct inode * inode, unsigned long start) { struct page ** p; struct page * page; repeat: p = &inode->i_pages; while ((page = *p) != NULL) { unsigned long offset = page->offset; /* page wholly truncated - free it */ if (offset >= start) { if (page->locked) { wait_on_page(page); goto repeat; } inode->i_nrpages--; if ((*p = page->next) != NULL) (*p)->prev = page->prev; page->dirty = 0; page->next = NULL; page->prev = NULL; remove_page_from_hash_queue(page); page->inode = NULL; free_page(page_address(page)); continue; } p = &page->next; offset = start - offset; /* partial truncate, clear end of page */ if (offset < PAGE_SIZE) memset((void *) (offset + page_address(page)), 0, PAGE_SIZE - offset); } } int shrink_mmap(int priority, unsigned long limit) { static int clock = 0; struct page * page; struct buffer_head *tmp, *bh; if (limit > high_memory) limit = high_memory; limit = MAP_NR(limit); if (clock >= limit) clock = 0; priority = (limit<<2) >> priority; page = mem_map + clock; while (priority-- > 0) { if (page->locked) goto next; /* First of all, regenerate the page's referenced bit from any buffers in the page */ bh = buffer_pages[MAP_NR(page_address(page))]; if (bh) { tmp = bh; do { if (buffer_touched(tmp)) { clear_bit(BH_Touched, &tmp->b_state); page->referenced = 1; } tmp = tmp->b_this_page; } while (tmp != bh); } /* We can't throw away shared pages, but we do mark them as referenced. This relies on the fact that no page is currently in both the page cache and the buffer cache; we'd have to modify the following test to allow for that case. */ if (page->count > 1) page->referenced = 1; else if (page->referenced) page->referenced = 0; else if (page->count) { /* The page is an old, unshared page --- try to discard it. */ if (page->inode) { remove_page_from_hash_queue(page); remove_page_from_inode_queue(page); free_page(page_address(page)); return 1; } if (bh && try_to_free_buffer(bh, &bh, 6)) return 1; } next: page++; clock++; if (clock >= limit) { clock = 0; page = mem_map; } } return 0; } /* * This is called from try_to_swap_out() when we try to get rid of some * pages.. If we're unmapping the last occurrence of this page, we also * free it from the page hash-queues etc, as we don't want to keep it * in-core unnecessarily. */ unsigned long page_unuse(unsigned long page) { struct page * p = mem_map + MAP_NR(page); int count = p->count; if (count != 2) return count; if (!p->inode) return count; remove_page_from_hash_queue(p); remove_page_from_inode_queue(p); free_page(page); return 1; } /* * Update a page cache copy, when we're doing a "write()" system call * See also "update_vm_cache()". */ void update_vm_cache(struct inode * inode, unsigned long pos, const char * buf, int count) { unsigned long offset, len; offset = (pos & ~PAGE_MASK); pos = pos & PAGE_MASK; len = PAGE_SIZE - offset; do { struct page * page; if (len > count) len = count; page = find_page(inode, pos); if (page) { unsigned long addr; wait_on_page(page); addr = page_address(page); memcpy((void *) (offset + addr), buf, len); free_page(addr); } count -= len; buf += len; len = PAGE_SIZE; offset = 0; pos += PAGE_SIZE; } while (count); } /* * Try to read ahead in the file. "page_cache" is a potentially free page * that we could use for the cache (if it is 0 we can try to create one, * this is all overlapped with the IO on the previous page finishing anyway) */ static unsigned long try_to_read_ahead(struct inode * inode, unsigned long offset, unsigned long page_cache) { struct page * page; offset &= PAGE_MASK; if (!page_cache) { page_cache = __get_free_page(GFP_KERNEL); if (!page_cache) return 0; } if (offset >= inode->i_size) return page_cache; #if 1 page = find_page(inode, offset); if (page) { page->count--; return page_cache; } /* * Ok, add the new page to the hash-queues... */ page = mem_map + MAP_NR(page_cache); page->count++; page->uptodate = 0; page->error = 0; page->offset = offset; add_page_to_inode_queue(inode, page); add_page_to_hash_queue(inode, page); inode->i_op->readpage(inode, page); free_page(page_cache); return 0; #else return page_cache; #endif } /* * Wait for IO to complete on a locked page. */ void __wait_on_page(struct page *page) { struct wait_queue wait = { current, NULL }; page->count++; add_wait_queue(&page->wait, &wait); repeat: current->state = TASK_UNINTERRUPTIBLE; if (page->locked) { schedule(); goto repeat; } remove_wait_queue(&page->wait, &wait); page->count--; current->state = TASK_RUNNING; } /* * This is a generic file read routine, and uses the * inode->i_op->readpage() function for the actual low-level * stuff. * * This is really ugly. But the goto's actually try to clarify some * of the logic when it comes to error handling etc. */ #define MAX_READAHEAD (PAGE_SIZE*4) int generic_file_read(struct inode * inode, struct file * filp, char * buf, int count) { int error, read; unsigned long pos, page_cache; if (count <= 0) return 0; error = 0; read = 0; page_cache = 0; pos = filp->f_pos; for (;;) { struct page *page; unsigned long offset, addr, nr; if (pos >= inode->i_size) break; offset = pos & ~PAGE_MASK; nr = PAGE_SIZE - offset; /* * Try to find the data in the page cache.. */ page = find_page(inode, pos & PAGE_MASK); if (page) goto found_page; /* * Ok, it wasn't cached, so we need to create a new * page.. */ if (page_cache) goto new_page; error = -ENOMEM; page_cache = __get_free_page(GFP_KERNEL); if (!page_cache) break; error = 0; /* * That could have slept, so we need to check again.. */ if (pos >= inode->i_size) break; page = find_page(inode, pos & PAGE_MASK); if (!page) goto new_page; found_page: addr = page_address(page); if (nr > count) nr = count; /* * We may want to do read-ahead.. Do this only * if we're waiting for the current page to be * filled in, and if * - we're going to read more than this page * - if "f_reada" is set */ if (page->locked) { unsigned long max_ahead, ahead; max_ahead = count - nr; if (filp->f_reada || max_ahead > MAX_READAHEAD) max_ahead = MAX_READAHEAD; ahead = 0; while (ahead < max_ahead) { ahead += PAGE_SIZE; page_cache = try_to_read_ahead(inode, pos + ahead, page_cache); } __wait_on_page(page); } if (!page->uptodate) goto read_page; if (nr > inode->i_size - pos) nr = inode->i_size - pos; memcpy_tofs(buf, (void *) (addr + offset), nr); free_page(addr); buf += nr; pos += nr; read += nr; count -= nr; if (count) continue; break; new_page: /* * Ok, add the new page to the hash-queues... */ addr = page_cache; page = mem_map + MAP_NR(page_cache); page_cache = 0; page->count++; page->uptodate = 0; page->error = 0; page->offset = pos & PAGE_MASK; add_page_to_inode_queue(inode, page); add_page_to_hash_queue(inode, page); /* * Error handling is tricky. If we get a read error, * the cached page stays in the cache (but uptodate=0), * and the next process that accesses it will try to * re-read it. This is needed for NFS etc, where the * identity of the reader can decide if we can read the * page or not.. */ read_page: error = inode->i_op->readpage(inode, page); if (!error) goto found_page; free_page(addr); break; } filp->f_pos = pos; filp->f_reada = 1; if (page_cache) free_page(page_cache); if (!IS_RDONLY(inode)) { inode->i_atime = CURRENT_TIME; inode->i_dirt = 1; } if (!read) read = error; return read; } /* * Find a cached page and wait for it to become up-to-date, return * the page address. Increments the page count. */ static inline unsigned long fill_page(struct inode * inode, unsigned long offset) { struct page * page; unsigned long new_page; page = find_page(inode, offset); if (page) goto found_page; new_page = __get_free_page(GFP_KERNEL); page = find_page(inode, offset); if (page) { if (new_page) free_page(new_page); goto found_page; } if (!new_page) return 0; page = mem_map + MAP_NR(new_page); new_page = 0; page->count++; page->uptodate = 0; page->error = 0; page->offset = offset; add_page_to_inode_queue(inode, page); add_page_to_hash_queue(inode, page); inode->i_op->readpage(inode, page); found_page: wait_on_page(page); return page_address(page); } /* * Semantics for shared and private memory areas are different past the end * of the file. A shared mapping past the last page of the file is an error * and results in a SIBGUS, while a private mapping just maps in a zero page. */ static unsigned long filemap_nopage(struct vm_area_struct * area, unsigned long address, int no_share) { unsigned long offset; struct inode * inode = area->vm_inode; unsigned long page; offset = (address & PAGE_MASK) - area->vm_start + area->vm_offset; if (offset >= inode->i_size && (area->vm_flags & VM_SHARED) && area->vm_mm == current->mm) return 0; page = fill_page(inode, offset); if (page && no_share) { unsigned long new_page = __get_free_page(GFP_KERNEL); if (new_page) memcpy((void *) new_page, (void *) page, PAGE_SIZE); free_page(page); return new_page; } return page; } /* * Tries to write a shared mapped page to its backing store. May return -EIO * if the disk is full. */ static int filemap_write_page(struct vm_area_struct * vma, unsigned long offset, unsigned long page) { int old_fs; unsigned long size, result; struct file file; struct inode * inode; struct buffer_head * bh; bh = buffer_pages[MAP_NR(page)]; if (bh) { /* whee.. just mark the buffer heads dirty */ struct buffer_head * tmp = bh; do { mark_buffer_dirty(tmp, 0); tmp = tmp->b_this_page; } while (tmp != bh); return 0; } inode = vma->vm_inode; file.f_op = inode->i_op->default_file_ops; if (!file.f_op->write) return -EIO; size = offset + PAGE_SIZE; /* refuse to extend file size.. */ if (S_ISREG(inode->i_mode)) { if (size > inode->i_size) size = inode->i_size; /* Ho humm.. We should have tested for this earlier */ if (size < offset) return -EIO; } size -= offset; file.f_mode = 3; file.f_flags = 0; file.f_count = 1; file.f_inode = inode; file.f_pos = offset; file.f_reada = 0; old_fs = get_fs(); set_fs(KERNEL_DS); result = file.f_op->write(inode, &file, (const char *) page, size); set_fs(old_fs); if (result != size) return -EIO; return 0; } /* * Swapping to a shared file: while we're busy writing out the page * (and the page still exists in memory), we save the page information * in the page table, so that "filemap_swapin()" can re-use the page * immediately if it is called while we're busy swapping it out.. * * Once we've written it all out, we mark the page entry "empty", which * will result in a normal page-in (instead of a swap-in) from the now * up-to-date disk file. */ int filemap_swapout(struct vm_area_struct * vma, unsigned long offset, pte_t *page_table) { int error; unsigned long page = pte_page(*page_table); unsigned long entry = SWP_ENTRY(SHM_SWP_TYPE, MAP_NR(page)); set_pte(page_table, __pte(entry)); /* Yuck, perhaps a slightly modified swapout parameter set? */ invalidate_page(vma, (offset + vma->vm_start - vma->vm_offset)); error = filemap_write_page(vma, offset, page); if (pte_val(*page_table) == entry) pte_clear(page_table); return error; } /* * filemap_swapin() is called only if we have something in the page * tables that is non-zero (but not present), which we know to be the * page index of a page that is busy being swapped out (see above). * So we just use it directly.. */ static pte_t filemap_swapin(struct vm_area_struct * vma, unsigned long offset, unsigned long entry) { unsigned long page = SWP_OFFSET(entry); mem_map[page].count++; page = (page << PAGE_SHIFT) + PAGE_OFFSET; return mk_pte(page,vma->vm_page_prot); } static inline int filemap_sync_pte(pte_t * ptep, struct vm_area_struct *vma, unsigned long address, unsigned int flags) { pte_t pte = *ptep; unsigned long page; int error; if (!(flags & MS_INVALIDATE)) { if (!pte_present(pte)) return 0; if (!pte_dirty(pte)) return 0; set_pte(ptep, pte_mkclean(pte)); invalidate_page(vma, address); page = pte_page(pte); mem_map[MAP_NR(page)].count++; } else { if (pte_none(pte)) return 0; pte_clear(ptep); invalidate_page(vma, address); if (!pte_present(pte)) { swap_free(pte_val(pte)); return 0; } page = pte_page(pte); if (!pte_dirty(pte) || flags == MS_INVALIDATE) { free_page(page); return 0; } } error = filemap_write_page(vma, address - vma->vm_start + vma->vm_offset, page); free_page(page); return error; } static inline int filemap_sync_pte_range(pmd_t * pmd, unsigned long address, unsigned long size, struct vm_area_struct *vma, unsigned long offset, unsigned int flags) { pte_t * pte; unsigned long end; int error; if (pmd_none(*pmd)) return 0; if (pmd_bad(*pmd)) { printk("filemap_sync_pte_range: bad pmd (%08lx)\n", pmd_val(*pmd)); pmd_clear(pmd); return 0; } pte = pte_offset(pmd, address); offset += address & PMD_MASK; address &= ~PMD_MASK; end = address + size; if (end > PMD_SIZE) end = PMD_SIZE; error = 0; do { error |= filemap_sync_pte(pte, vma, address + offset, flags); address += PAGE_SIZE; pte++; } while (address < end); return error; } static inline int filemap_sync_pmd_range(pgd_t * pgd, unsigned long address, unsigned long size, struct vm_area_struct *vma, unsigned int flags) { pmd_t * pmd; unsigned long offset, end; int error; if (pgd_none(*pgd)) return 0; if (pgd_bad(*pgd)) { printk("filemap_sync_pmd_range: bad pgd (%08lx)\n", pgd_val(*pgd)); pgd_clear(pgd); return 0; } pmd = pmd_offset(pgd, address); offset = address & PMD_MASK; address &= ~PMD_MASK; end = address + size; if (end > PGDIR_SIZE) end = PGDIR_SIZE; error = 0; do { error |= filemap_sync_pte_range(pmd, address, end - address, vma, offset, flags); address = (address + PMD_SIZE) & PMD_MASK; pmd++; } while (address < end); return error; } static int filemap_sync(struct vm_area_struct * vma, unsigned long address, size_t size, unsigned int flags) { pgd_t * dir; unsigned long end = address + size; int error = 0; dir = pgd_offset(current->mm, address); while (address < end) { error |= filemap_sync_pmd_range(dir, address, end - address, vma, flags); address = (address + PGDIR_SIZE) & PGDIR_MASK; dir++; } invalidate_range(vma->vm_mm, end - size, end); return error; } /* * This handles (potentially partial) area unmaps.. */ static void filemap_unmap(struct vm_area_struct *vma, unsigned long start, size_t len) { filemap_sync(vma, start, len, MS_ASYNC); } /* * Shared mappings need to be able to do the right thing at * close/unmap/sync. They will also use the private file as * backing-store for swapping.. */ static struct vm_operations_struct file_shared_mmap = { NULL, /* no special open */ NULL, /* no special close */ filemap_unmap, /* unmap - we need to sync the pages */ NULL, /* no special protect */ filemap_sync, /* sync */ NULL, /* advise */ filemap_nopage, /* nopage */ NULL, /* wppage */ filemap_swapout, /* swapout */ filemap_swapin, /* swapin */ }; /* * Private mappings just need to be able to load in the map. * * (This is actually used for shared mappings as well, if we * know they can't ever get write permissions..) */ static struct vm_operations_struct file_private_mmap = { NULL, /* open */ NULL, /* close */ NULL, /* unmap */ NULL, /* protect */ NULL, /* sync */ NULL, /* advise */ filemap_nopage, /* nopage */ NULL, /* wppage */ NULL, /* swapout */ NULL, /* swapin */ }; /* This is used for a general mmap of a disk file */ int generic_file_mmap(struct inode * inode, struct file * file, struct vm_area_struct * vma) { struct vm_operations_struct * ops; if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) { ops = &file_shared_mmap; /* share_page() can only guarantee proper page sharing if * the offsets are all page aligned. */ if (vma->vm_offset & (PAGE_SIZE - 1)) return -EINVAL; } else { ops = &file_private_mmap; if (vma->vm_offset & (inode->i_sb->s_blocksize - 1)) return -EINVAL; } if (!inode->i_sb || !S_ISREG(inode->i_mode)) return -EACCES; if (!inode->i_op || !inode->i_op->readpage) return -ENOEXEC; if (!IS_RDONLY(inode)) { inode->i_atime = CURRENT_TIME; inode->i_dirt = 1; } vma->vm_inode = inode; inode->i_count++; vma->vm_ops = ops; return 0; } /* * The msync() system call. */ static int msync_interval(struct vm_area_struct * vma, unsigned long start, unsigned long end, int flags) { if (!vma->vm_inode) return 0; if (vma->vm_ops->sync) { int error; error = vma->vm_ops->sync(vma, start, end-start, flags); if (error) return error; if (flags & MS_SYNC) return file_fsync(vma->vm_inode, NULL); return 0; } return 0; } asmlinkage int sys_msync(unsigned long start, size_t len, int flags) { unsigned long end; struct vm_area_struct * vma; int unmapped_error, error; if (start & ~PAGE_MASK) return -EINVAL; len = (len + ~PAGE_MASK) & PAGE_MASK; end = start + len; if (end < start) return -EINVAL; if (flags & ~(MS_ASYNC | MS_INVALIDATE | MS_SYNC)) return -EINVAL; if (end == start) return 0; /* * If the interval [start,end) covers some unmapped address ranges, * just ignore them, but return -EFAULT at the end. */ vma = find_vma(current, start); unmapped_error = 0; for (;;) { /* Still start < end. */ if (!vma) return -EFAULT; /* Here start < vma->vm_end. */ if (start < vma->vm_start) { unmapped_error = -EFAULT; start = vma->vm_start; } /* Here vma->vm_start <= start < vma->vm_end. */ if (end <= vma->vm_end) { if (start < end) { error = msync_interval(vma, start, end, flags); if (error) return error; } return unmapped_error; } /* Here vma->vm_start <= start < vma->vm_end < end. */ error = msync_interval(vma, start, vma->vm_end, flags); if (error) return error; start = vma->vm_end; vma = vma->vm_next; } } |