Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
/*
 *	linux/mm/filemap.c
 *
 * Copyright (C) 1994, 1995  Linus Torvalds
 */

/*
 * This file handles the generic file mmap semantics used by
 * most "normal" filesystems (but you don't /have/ to use this:
 * the NFS filesystem does this differently, for example)
 */
#include <linux/stat.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/shm.h>
#include <linux/errno.h>
#include <linux/mman.h>
#include <linux/string.h>
#include <linux/malloc.h>
#include <linux/fs.h>
#include <linux/locks.h>
#include <linux/pagemap.h>
#include <linux/swap.h>
#include <linux/smp.h>
#include <linux/smp_lock.h>
#include <linux/blkdev.h>

#include <asm/system.h>
#include <asm/pgtable.h>
#include <asm/uaccess.h>

/*
 * Shared mappings implemented 30.11.1994. It's not fully working yet,
 * though.
 *
 * Shared mappings now work. 15.8.1995  Bruno.
 */

unsigned long page_cache_size = 0;
struct page * page_hash_table[PAGE_HASH_SIZE];

/*
 * Simple routines for both non-shared and shared mappings.
 */

#define release_page(page) __free_page((page))

/*
 * Invalidate the pages of an inode, removing all pages that aren't
 * locked down (those are sure to be up-to-date anyway, so we shouldn't
 * invalidate them).
 */
void invalidate_inode_pages(struct inode * inode)
{
	struct page ** p;
	struct page * page;

	p = &inode->i_pages;
	while ((page = *p) != NULL) {
		if (PageLocked(page)) {
			p = &page->next;
			continue;
		}
		inode->i_nrpages--;
		if ((*p = page->next) != NULL)
			(*p)->prev = page->prev;
		page->next = NULL;
		page->prev = NULL;
		remove_page_from_hash_queue(page);
		page->inode = NULL;
		__free_page(page);
		continue;
	}
}

/*
 * Truncate the page cache at a set offset, removing the pages
 * that are beyond that offset (and zeroing out partial pages).
 */
void truncate_inode_pages(struct inode * inode, unsigned long start)
{
	struct page ** p;
	struct page * page;

repeat:
	p = &inode->i_pages;
	while ((page = *p) != NULL) {
		unsigned long offset = page->offset;

		/* page wholly truncated - free it */
		if (offset >= start) {
			if (PageLocked(page)) {
				wait_on_page(page);
				goto repeat;
			}
			inode->i_nrpages--;
			if ((*p = page->next) != NULL)
				(*p)->prev = page->prev;
			page->next = NULL;
			page->prev = NULL;
			remove_page_from_hash_queue(page);
			page->inode = NULL;
			__free_page(page);
			continue;
		}
		p = &page->next;
		offset = start - offset;
		/* partial truncate, clear end of page */
		if (offset < PAGE_SIZE) {
			unsigned long address = page_address(page);
			memset((void *) (offset + address), 0, PAGE_SIZE - offset);
			flush_page_to_ram(address);
		}
	}
}

int shrink_mmap(int priority, int dma)
{
	static unsigned long clock = 0;
	struct page * page;
	unsigned long limit = num_physpages;
	struct buffer_head *tmp, *bh;
	int count_max, count_min;

	count_max = (limit<<1) >> (priority>>1);
	count_min = (limit<<1) >> (priority);

	page = mem_map + clock;
	do {
		count_max--;
		if (page->inode || page->buffers)
			count_min--;

		if (PageLocked(page))
			goto next;
		if (dma && !PageDMA(page))
			goto next;
		/* First of all, regenerate the page's referenced bit
                   from any buffers in the page */
		bh = page->buffers;
		if (bh) {
			tmp = bh;
			do {
				if (buffer_touched(tmp)) {
					clear_bit(BH_Touched, &tmp->b_state);
					set_bit(PG_referenced, &page->flags);
				}
				tmp = tmp->b_this_page;
			} while (tmp != bh);
		}

		/* We can't throw away shared pages, but we do mark
		   them as referenced.  This relies on the fact that
		   no page is currently in both the page cache and the
		   buffer cache; we'd have to modify the following
		   test to allow for that case. */

		switch (atomic_read(&page->count)) {
			case 1:
				/* If it has been referenced recently, don't free it */
				if (test_and_clear_bit(PG_referenced, &page->flags))
					break;

				/* is it a page cache page? */
				if (page->inode) {
					remove_page_from_hash_queue(page);
					remove_page_from_inode_queue(page);
					__free_page(page);
					return 1;
				}

				/* is it a buffer cache page? */
				if (bh && try_to_free_buffer(bh, &bh, 6))
					return 1;
				break;

			default:
				/* more than one users: we can't throw it away */
				set_bit(PG_referenced, &page->flags);
				/* fall through */
			case 0:
				/* nothing */
		}
next:
		page++;
		clock++;
		if (clock >= limit) {
			clock = 0;
			page = mem_map;
		}
	} while (count_max > 0 && count_min > 0);
	return 0;
}

/*
 * This is called from try_to_swap_out() when we try to get rid of some
 * pages..  If we're unmapping the last occurrence of this page, we also
 * free it from the page hash-queues etc, as we don't want to keep it
 * in-core unnecessarily.
 */
unsigned long page_unuse(unsigned long page)
{
	struct page * p = mem_map + MAP_NR(page);
	int count = atomic_read(&p->count);

	if (count != 2)
		return count;
	if (!p->inode)
		return count;
	remove_page_from_hash_queue(p);
	remove_page_from_inode_queue(p);
	free_page(page);
	return 1;
}

/*
 * Update a page cache copy, when we're doing a "write()" system call
 * See also "update_vm_cache()".
 */
void update_vm_cache(struct inode * inode, unsigned long pos, const char * buf, int count)
{
	unsigned long offset, len;

	offset = (pos & ~PAGE_MASK);
	pos = pos & PAGE_MASK;
	len = PAGE_SIZE - offset;
	do {
		struct page * page;

		if (len > count)
			len = count;
		page = find_page(inode, pos);
		if (page) {
			wait_on_page(page);
			memcpy((void *) (offset + page_address(page)), buf, len);
			release_page(page);
		}
		count -= len;
		buf += len;
		len = PAGE_SIZE;
		offset = 0;
		pos += PAGE_SIZE;
	} while (count);
}

static inline void add_to_page_cache(struct page * page,
	struct inode * inode, unsigned long offset,
	struct page **hash)
{
	atomic_inc(&page->count);
	page->flags &= ~((1 << PG_uptodate) | (1 << PG_error));
	page->offset = offset;
	add_page_to_inode_queue(inode, page);
	__add_page_to_hash_queue(page, hash);
}

/*
 * Try to read ahead in the file. "page_cache" is a potentially free page
 * that we could use for the cache (if it is 0 we can try to create one,
 * this is all overlapped with the IO on the previous page finishing anyway)
 */
static unsigned long try_to_read_ahead(struct inode * inode, unsigned long offset, unsigned long page_cache)
{
	struct page * page;
	struct page ** hash;

	offset &= PAGE_MASK;
	switch (page_cache) {
	case 0:
		page_cache = __get_free_page(GFP_KERNEL);
		if (!page_cache)
			break;
	default:
		if (offset >= inode->i_size)
			break;
		hash = page_hash(inode, offset);
		page = __find_page(inode, offset, *hash);
		if (!page) {
			/*
			 * Ok, add the new page to the hash-queues...
			 */
			page = mem_map + MAP_NR(page_cache);
			add_to_page_cache(page, inode, offset, hash);
			inode->i_op->readpage(inode, page);
			page_cache = 0;
		}
		release_page(page);
	}
	return page_cache;
}

/* 
 * Wait for IO to complete on a locked page.
 *
 * This must be called with the caller "holding" the page,
 * ie with increased "page->count" so that the page won't
 * go away during the wait..
 */
void __wait_on_page(struct page *page)
{
	struct wait_queue wait = { current, NULL };

	add_wait_queue(&page->wait, &wait);
repeat:
	run_task_queue(&tq_disk);
	current->state = TASK_UNINTERRUPTIBLE;
	if (PageLocked(page)) {
		schedule();
		goto repeat;
	}
	remove_wait_queue(&page->wait, &wait);
	current->state = TASK_RUNNING;
}

#if 0
#define PROFILE_READAHEAD
#define DEBUG_READAHEAD
#endif

/*
 * Read-ahead profiling information
 * --------------------------------
 * Every PROFILE_MAXREADCOUNT, the following information is written 
 * to the syslog:
 *   Percentage of asynchronous read-ahead.
 *   Average of read-ahead fields context value.
 * If DEBUG_READAHEAD is defined, a snapshot of these fields is written 
 * to the syslog.
 */

#ifdef PROFILE_READAHEAD

#define PROFILE_MAXREADCOUNT 1000

static unsigned long total_reada;
static unsigned long total_async;
static unsigned long total_ramax;
static unsigned long total_ralen;
static unsigned long total_rawin;

static void profile_readahead(int async, struct file *filp)
{
	unsigned long flags;

	++total_reada;
	if (async)
		++total_async;

	total_ramax	+= filp->f_ramax;
	total_ralen	+= filp->f_ralen;
	total_rawin	+= filp->f_rawin;

	if (total_reada > PROFILE_MAXREADCOUNT) {
		save_flags(flags);
		cli();
		if (!(total_reada > PROFILE_MAXREADCOUNT)) {
			restore_flags(flags);
			return;
		}

		printk("Readahead average:  max=%ld, len=%ld, win=%ld, async=%ld%%\n",
			total_ramax/total_reada,
			total_ralen/total_reada,
			total_rawin/total_reada,
			(total_async*100)/total_reada);
#ifdef DEBUG_READAHEAD
		printk("Readahead snapshot: max=%ld, len=%ld, win=%ld, raend=%ld\n",
			filp->f_ramax, filp->f_ralen, filp->f_rawin, filp->f_raend);
#endif

		total_reada	= 0;
		total_async	= 0;
		total_ramax	= 0;
		total_ralen	= 0;
		total_rawin	= 0;

		restore_flags(flags);
	}
}
#endif  /* defined PROFILE_READAHEAD */

/*
 * Read-ahead context:
 * -------------------
 * The read ahead context fields of the "struct file" are the following:
 * - f_raend : position of the first byte after the last page we tried to
 *             read ahead.
 * - f_ramax : current read-ahead maximum size.
 * - f_ralen : length of the current IO read block we tried to read-ahead.
 * - f_rawin : length of the current read-ahead window.
 *             if last read-ahead was synchronous then
 *                  f_rawin = f_ralen
 *             otherwise (was asynchronous)
 *                  f_rawin = previous value of f_ralen + f_ralen
 *
 * Read-ahead limits:
 * ------------------
 * MIN_READAHEAD   : minimum read-ahead size when read-ahead.
 * MAX_READAHEAD   : maximum read-ahead size when read-ahead.
 *
 * Synchronous read-ahead benefits:
 * --------------------------------
 * Using reasonable IO xfer length from peripheral devices increase system 
 * performances.
 * Reasonable means, in this context, not too large but not too small.
 * The actual maximum value is:
 *	MAX_READAHEAD + PAGE_SIZE = 76k is CONFIG_READA_SMALL is undefined
 *      and 32K if defined (4K page size assumed).
 *
 * Asynchronous read-ahead benefits:
 * ---------------------------------
 * Overlapping next read request and user process execution increase system 
 * performance.
 *
 * Read-ahead risks:
 * -----------------
 * We have to guess which further data are needed by the user process.
 * If these data are often not really needed, it's bad for system 
 * performances.
 * However, we know that files are often accessed sequentially by 
 * application programs and it seems that it is possible to have some good 
 * strategy in that guessing.
 * We only try to read-ahead files that seems to be read sequentially.
 *
 * Asynchronous read-ahead risks:
 * ------------------------------
 * In order to maximize overlapping, we must start some asynchronous read 
 * request from the device, as soon as possible.
 * We must be very careful about:
 * - The number of effective pending IO read requests.
 *   ONE seems to be the only reasonable value.
 * - The total memory pool usage for the file access stream.
 *   This maximum memory usage is implicitly 2 IO read chunks:
 *   2*(MAX_READAHEAD + PAGE_SIZE) = 156K if CONFIG_READA_SMALL is undefined,
 *   64k if defined (4K page size assumed).
 */

#define PageAlignSize(size) (((size) + PAGE_SIZE -1) & PAGE_MASK)

#if 0  /* small readahead */
#define MAX_READAHEAD PageAlignSize(4096*7)
#define MIN_READAHEAD PageAlignSize(4096*2)
#else /* large readahead */
#define MAX_READAHEAD PageAlignSize(4096*18)
#define MIN_READAHEAD PageAlignSize(4096*3)
#endif

static inline int get_max_readahead(struct inode * inode)
{
	if (!inode->i_dev || !max_readahead[MAJOR(inode->i_dev)])
		return MAX_READAHEAD;
	return max_readahead[MAJOR(inode->i_dev)][MINOR(inode->i_dev)];
}

static inline unsigned long generic_file_readahead(int reada_ok, struct file * filp, struct inode * inode,
	unsigned long ppos, struct page * page,
	unsigned long page_cache)
{
	unsigned long max_ahead, ahead;
	unsigned long raend;
	int max_readahead = get_max_readahead(inode);

	raend = filp->f_raend & PAGE_MASK;
	max_ahead = 0;

/*
 * The current page is locked.
 * If the current position is inside the previous read IO request, do not
 * try to reread previously read ahead pages.
 * Otherwise decide or not to read ahead some pages synchronously.
 * If we are not going to read ahead, set the read ahead context for this 
 * page only.
 */
	if (PageLocked(page)) {
		if (!filp->f_ralen || ppos >= raend || ppos + filp->f_ralen < raend) {
			raend = ppos;
			if (raend < inode->i_size)
				max_ahead = filp->f_ramax;
			filp->f_rawin = 0;
			filp->f_ralen = PAGE_SIZE;
			if (!max_ahead) {
				filp->f_raend  = ppos + filp->f_ralen;
				filp->f_rawin += filp->f_ralen;
			}
		}
	}
/*
 * The current page is not locked.
 * If we were reading ahead and,
 * if the current max read ahead size is not zero and,
 * if the current position is inside the last read-ahead IO request,
 *   it is the moment to try to read ahead asynchronously.
 * We will later force unplug device in order to force asynchronous read IO.
 */
	else if (reada_ok && filp->f_ramax && raend >= PAGE_SIZE &&
	         ppos <= raend && ppos + filp->f_ralen >= raend) {
/*
 * Add ONE page to max_ahead in order to try to have about the same IO max size
 * as synchronous read-ahead (MAX_READAHEAD + 1)*PAGE_SIZE.
 * Compute the position of the last page we have tried to read in order to 
 * begin to read ahead just at the next page.
 */
		raend -= PAGE_SIZE;
		if (raend < inode->i_size)
			max_ahead = filp->f_ramax + PAGE_SIZE;

		if (max_ahead) {
			filp->f_rawin = filp->f_ralen;
			filp->f_ralen = 0;
			reada_ok      = 2;
		}
	}
/*
 * Try to read ahead pages.
 * We hope that ll_rw_blk() plug/unplug, coalescence, requests sort and the
 * scheduler, will work enough for us to avoid too bad actuals IO requests.
 */
	ahead = 0;
	while (ahead < max_ahead) {
		ahead += PAGE_SIZE;
		page_cache = try_to_read_ahead(inode, raend + ahead, page_cache);
	}
/*
 * If we tried to read ahead some pages,
 * If we tried to read ahead asynchronously,
 *   Try to force unplug of the device in order to start an asynchronous
 *   read IO request.
 * Update the read-ahead context.
 * Store the length of the current read-ahead window.
 * Double the current max read ahead size.
 *   That heuristic avoid to do some large IO for files that are not really
 *   accessed sequentially.
 */
	if (ahead) {
		if (reada_ok == 2) {
			run_task_queue(&tq_disk);
		}

		filp->f_ralen += ahead;
		filp->f_rawin += filp->f_ralen;
		filp->f_raend = raend + ahead + PAGE_SIZE;

		filp->f_ramax += filp->f_ramax;

		if (filp->f_ramax > max_readahead)
			filp->f_ramax = max_readahead;

#ifdef PROFILE_READAHEAD
		profile_readahead((reada_ok == 2), filp);
#endif
	}

	return page_cache;
}


/*
 * This is a generic file read routine, and uses the
 * inode->i_op->readpage() function for the actual low-level
 * stuff.
 *
 * This is really ugly. But the goto's actually try to clarify some
 * of the logic when it comes to error handling etc.
 */

ssize_t generic_file_read(struct file * filp, char * buf,
			  size_t count, loff_t *ppos)
{
	struct inode *inode = filp->f_dentry->d_inode;
	ssize_t error, read;
	size_t pos, pgpos, page_cache;
	int reada_ok;
	int max_readahead = get_max_readahead(inode);

	if (!access_ok(VERIFY_WRITE, buf, count))
		return -EFAULT;
	if (!count)
		return 0;
	error = 0;
	read = 0;
	page_cache = 0;

	pos = *ppos;
	pgpos = pos & PAGE_MASK;
/*
 * If the current position is outside the previous read-ahead window, 
 * we reset the current read-ahead context and set read ahead max to zero
 * (will be set to just needed value later),
 * otherwise, we assume that the file accesses are sequential enough to
 * continue read-ahead.
 */
	if (pgpos > filp->f_raend || pgpos + filp->f_rawin < filp->f_raend) {
		reada_ok = 0;
		filp->f_raend = 0;
		filp->f_ralen = 0;
		filp->f_ramax = 0;
		filp->f_rawin = 0;
	} else {
		reada_ok = 1;
	}
/*
 * Adjust the current value of read-ahead max.
 * If the read operation stay in the first half page, force no readahead.
 * Otherwise try to increase read ahead max just enough to do the read request.
 * Then, at least MIN_READAHEAD if read ahead is ok,
 * and at most MAX_READAHEAD in all cases.
 */
	if (pos + count <= (PAGE_SIZE >> 1)) {
		filp->f_ramax = 0;
	} else {
		unsigned long needed;

		needed = ((pos + count) & PAGE_MASK) - pgpos;

		if (filp->f_ramax < needed)
			filp->f_ramax = needed;

		if (reada_ok && filp->f_ramax < MIN_READAHEAD)
				filp->f_ramax = MIN_READAHEAD;
		if (filp->f_ramax > max_readahead)
			filp->f_ramax = max_readahead;
	}

	for (;;) {
		struct page *page, **hash;

		if (pos >= inode->i_size)
			break;

		/*
		 * Try to find the data in the page cache..
		 */
		hash = page_hash(inode, pos & PAGE_MASK);
		page = __find_page(inode, pos & PAGE_MASK, *hash);
		if (!page)
			goto no_cached_page;

found_page:
/*
 * Try to read ahead only if the current page is filled or being filled.
 * Otherwise, if we were reading ahead, decrease max read ahead size to
 * the minimum value.
 * In this context, that seems to may happen only on some read error or if 
 * the page has been rewritten.
 */
		if (PageUptodate(page) || PageLocked(page))
			page_cache = generic_file_readahead(reada_ok, filp, inode, pos & PAGE_MASK, page, page_cache);
		else if (reada_ok && filp->f_ramax > MIN_READAHEAD)
				filp->f_ramax = MIN_READAHEAD;

		wait_on_page(page);

		if (!PageUptodate(page))
			goto page_read_error;

success:
		/*
		 * Ok, we have the page, it's up-to-date and ok,
		 * so now we can finally copy it to user space...
		 */
	{
		unsigned long offset, nr;

		offset = pos & ~PAGE_MASK;
		nr = PAGE_SIZE - offset;
		if (nr > count)
			nr = count;
		if (nr > inode->i_size - pos)
			nr = inode->i_size - pos;
		nr -= copy_to_user(buf, (void *) (page_address(page) + offset), nr);
		release_page(page);
		error = -EFAULT;
		if (!nr)
			break;
		buf += nr;
		pos += nr;
		read += nr;
		count -= nr;
		if (count)
			continue;
		break;
	}

no_cached_page:
		/*
		 * Ok, it wasn't cached, so we need to create a new
		 * page..
		 */
		if (!page_cache) {
			page_cache = __get_free_page(GFP_KERNEL);
			/*
			 * That could have slept, so go around to the
			 * very beginning..
			 */
			if (page_cache)
				continue;
			error = -ENOMEM;
			break;
		}

		/*
		 * Ok, add the new page to the hash-queues...
		 */
		page = mem_map + MAP_NR(page_cache);
		page_cache = 0;
		add_to_page_cache(page, inode, pos & PAGE_MASK, hash);

		/*
		 * Error handling is tricky. If we get a read error,
		 * the cached page stays in the cache (but uptodate=0),
		 * and the next process that accesses it will try to
		 * re-read it. This is needed for NFS etc, where the
		 * identity of the reader can decide if we can read the
		 * page or not..
		 */
/*
 * We have to read the page.
 * If we were reading ahead, we had previously tried to read this page,
 * That means that the page has probably been removed from the cache before 
 * the application process needs it, or has been rewritten.
 * Decrease max readahead size to the minimum value in that situation.
 */
		if (reada_ok && filp->f_ramax > MIN_READAHEAD)
			filp->f_ramax = MIN_READAHEAD;

		error = inode->i_op->readpage(inode, page);
		if (!error)
			goto found_page;
		release_page(page);
		break;

page_read_error:
		/*
		 * We found the page, but it wasn't up-to-date.
		 * Try to re-read it _once_. We do this synchronously,
		 * because this happens only if there were errors.
		 */
		error = inode->i_op->readpage(inode, page);
		if (!error) {
			wait_on_page(page);
			if (PageUptodate(page) && !PageError(page))
				goto success;
			error = -EIO; /* Some unspecified error occurred.. */
		}
		release_page(page);
		break;
	}

	*ppos = pos;
	filp->f_reada = 1;
	if (page_cache)
		free_page(page_cache);
	UPDATE_ATIME(inode)
	if (!read)
		read = error;
	return read;
}

/*
 * Semantics for shared and private memory areas are different past the end
 * of the file. A shared mapping past the last page of the file is an error
 * and results in a SIGBUS, while a private mapping just maps in a zero page.
 *
 * The goto's are kind of ugly, but this streamlines the normal case of having
 * it in the page cache, and handles the special cases reasonably without
 * having a lot of duplicated code.
 *
 * WSH 06/04/97: fixed a memory leak and moved the allocation of new_page
 * ahead of the wait if we're sure to need it.
 */
static unsigned long filemap_nopage(struct vm_area_struct * area, unsigned long address, int no_share)
{
	unsigned long offset;
	struct page * page, **hash;
	struct inode * inode = area->vm_dentry->d_inode;
	unsigned long old_page, new_page;

	new_page = 0;
	offset = (address & PAGE_MASK) - area->vm_start + area->vm_offset;
	if (offset >= inode->i_size && (area->vm_flags & VM_SHARED) && area->vm_mm == current->mm)
		goto no_page;

	/*
	 * Do we have something in the page cache already?
	 */
	hash = page_hash(inode, offset);
	page = __find_page(inode, offset, *hash);
	if (!page)
		goto no_cached_page;

found_page:
	/*
	 * Ok, found a page in the page cache, now we need to check
	 * that it's up-to-date.  First check whether we'll need an
	 * extra page -- better to overlap the allocation with the I/O.
	 */
	if (no_share && !new_page) {
		new_page = __get_free_page(GFP_KERNEL);
		if (!new_page)
			goto failure;
	}

	if (PageLocked(page))
		goto page_locked_wait;
	if (!PageUptodate(page))
		goto page_read_error;

success:
	/*
	 * Found the page, need to check sharing and possibly
	 * copy it over to another page..
	 */
	old_page = page_address(page);
	if (!no_share) {
		/*
		 * Ok, we can share the cached page directly.. Get rid
		 * of any potential extra pages.
		 */
		if (new_page)
			free_page(new_page);

		flush_page_to_ram(old_page);
		return old_page;
	}

	/*
	 * No sharing ... copy to the new page.
	 */
	copy_page(new_page, old_page);
	flush_page_to_ram(new_page);
	release_page(page);
	return new_page;

no_cached_page:
	new_page = __get_free_page(GFP_KERNEL);
	if (!new_page)
		goto no_page;

	/*
	 * During getting the above page we might have slept,
	 * so we need to re-check the situation with the page
	 * cache.. The page we just got may be useful if we
	 * can't share, so don't get rid of it here.
	 */
	page = find_page(inode, offset);
	if (page)
		goto found_page;

	/*
	 * Now, create a new page-cache page from the page we got
	 */
	page = mem_map + MAP_NR(new_page);
	new_page = 0;
	add_to_page_cache(page, inode, offset, hash);

	if (inode->i_op->readpage(inode, page) != 0)
		goto failure;

	/*
	 * Do a very limited read-ahead if appropriate
	 */
	if (PageLocked(page))
		new_page = try_to_read_ahead(inode, offset + PAGE_SIZE, 0);
	goto found_page;

page_locked_wait:
	__wait_on_page(page);
	if (PageUptodate(page))
		goto success;
	
page_read_error:
	/*
	 * Umm, take care of errors if the page isn't up-to-date.
	 * Try to re-read it _once_. We do this synchronously,
	 * because there really aren't any performance issues here
	 * and we need to check for errors.
	 */
	if (inode->i_op->readpage(inode, page) != 0)
		goto failure;
	wait_on_page(page);
	if (PageError(page))
		goto failure;
	if (PageUptodate(page))
		goto success;

	/*
	 * Uhhuh.. Things didn't work out. Return zero to tell the
	 * mm layer so, possibly freeing the page cache page first.
	 */
failure:
	release_page(page);
	if (new_page)
		free_page(new_page);
no_page:
	return 0;
}

/*
 * Tries to write a shared mapped page to its backing store. May return -EIO
 * if the disk is full.
 */
static inline int do_write_page(struct inode * inode, struct file * file,
	const char * page, unsigned long offset)
{
	int retval;
	unsigned long size;
	unsigned long old_fs;

	size = offset + PAGE_SIZE;
	/* refuse to extend file size.. */
	if (S_ISREG(inode->i_mode)) {
		if (size > inode->i_size)
			size = inode->i_size;
		/* Ho humm.. We should have tested for this earlier */
		if (size < offset)
			return -EIO;
	}
	size -= offset;
	old_fs = get_fs();
	set_fs(KERNEL_DS);
	retval = -EIO;
	if (size == file->f_op->write(file, (const char *) page,
				      size, &file->f_pos))
		retval = 0;
	set_fs(old_fs);
	return retval;
}

static int filemap_write_page(struct vm_area_struct * vma,
	unsigned long offset,
	unsigned long page)
{
	int result;
	struct file file;
	struct dentry * dentry;
	struct inode * inode;
	struct buffer_head * bh;

	bh = mem_map[MAP_NR(page)].buffers;
	if (bh) {
		/* whee.. just mark the buffer heads dirty */
		struct buffer_head * tmp = bh;
		do {
			/*
			 * WSH: There's a race here: mark_buffer_dirty()
			 * could block, and the buffers aren't pinned down.
			 */
			mark_buffer_dirty(tmp, 0);
			tmp = tmp->b_this_page;
		} while (tmp != bh);
		return 0;
	}

	dentry = vma->vm_dentry;
	inode = dentry->d_inode;
	file.f_op = inode->i_op->default_file_ops;
	if (!file.f_op->write)
		return -EIO;
	file.f_mode = 3;
	file.f_flags = 0;
	file.f_count = 1;
	file.f_dentry = dentry;
	file.f_pos = offset;
	file.f_reada = 0;

	/*
	 * If a task terminates while we're swapping the page, the vma and
	 * and dentry could be released ... increment the count to be safe.
	 */
	dget(dentry);
	down(&inode->i_sem);
	result = do_write_page(inode, &file, (const char *) page, offset);
	up(&inode->i_sem);
	dput(dentry);
	return result;
}


/*
 * Swapping to a shared file: while we're busy writing out the page
 * (and the page still exists in memory), we save the page information
 * in the page table, so that "filemap_swapin()" can re-use the page
 * immediately if it is called while we're busy swapping it out..
 *
 * Once we've written it all out, we mark the page entry "empty", which
 * will result in a normal page-in (instead of a swap-in) from the now
 * up-to-date disk file.
 */
int filemap_swapout(struct vm_area_struct * vma,
	unsigned long offset,
	pte_t *page_table)
{
	int error;
	unsigned long page = pte_page(*page_table);
	unsigned long entry = SWP_ENTRY(SHM_SWP_TYPE, MAP_NR(page));

	flush_cache_page(vma, (offset + vma->vm_start - vma->vm_offset));
	set_pte(page_table, __pte(entry));
	flush_tlb_page(vma, (offset + vma->vm_start - vma->vm_offset));
	error = filemap_write_page(vma, offset, page);
	if (pte_val(*page_table) == entry)
		pte_clear(page_table);
	return error;
}

/*
 * filemap_swapin() is called only if we have something in the page
 * tables that is non-zero (but not present), which we know to be the
 * page index of a page that is busy being swapped out (see above).
 * So we just use it directly..
 */
static pte_t filemap_swapin(struct vm_area_struct * vma,
	unsigned long offset,
	unsigned long entry)
{
	unsigned long page = SWP_OFFSET(entry);

	atomic_inc(&mem_map[page].count);
	page = (page << PAGE_SHIFT) + PAGE_OFFSET;
	return mk_pte(page,vma->vm_page_prot);
}


static inline int filemap_sync_pte(pte_t * ptep, struct vm_area_struct *vma,
	unsigned long address, unsigned int flags)
{
	pte_t pte = *ptep;
	unsigned long page;
	int error;

	if (!(flags & MS_INVALIDATE)) {
		if (!pte_present(pte))
			return 0;
		if (!pte_dirty(pte))
			return 0;
		flush_page_to_ram(pte_page(pte));
		flush_cache_page(vma, address);
		set_pte(ptep, pte_mkclean(pte));
		flush_tlb_page(vma, address);
		page = pte_page(pte);
		atomic_inc(&mem_map[MAP_NR(page)].count);
	} else {
		if (pte_none(pte))
			return 0;
		flush_cache_page(vma, address);
		pte_clear(ptep);
		flush_tlb_page(vma, address);
		if (!pte_present(pte)) {
			swap_free(pte_val(pte));
			return 0;
		}
		page = pte_page(pte);
		if (!pte_dirty(pte) || flags == MS_INVALIDATE) {
			free_page(page);
			return 0;
		}
	}
	error = filemap_write_page(vma, address - vma->vm_start + vma->vm_offset, page);
	free_page(page);
	return error;
}

static inline int filemap_sync_pte_range(pmd_t * pmd,
	unsigned long address, unsigned long size, 
	struct vm_area_struct *vma, unsigned long offset, unsigned int flags)
{
	pte_t * pte;
	unsigned long end;
	int error;

	if (pmd_none(*pmd))
		return 0;
	if (pmd_bad(*pmd)) {
		printk("filemap_sync_pte_range: bad pmd (%08lx)\n", pmd_val(*pmd));
		pmd_clear(pmd);
		return 0;
	}
	pte = pte_offset(pmd, address);
	offset += address & PMD_MASK;
	address &= ~PMD_MASK;
	end = address + size;
	if (end > PMD_SIZE)
		end = PMD_SIZE;
	error = 0;
	do {
		error |= filemap_sync_pte(pte, vma, address + offset, flags);
		address += PAGE_SIZE;
		pte++;
	} while (address < end);
	return error;
}

static inline int filemap_sync_pmd_range(pgd_t * pgd,
	unsigned long address, unsigned long size, 
	struct vm_area_struct *vma, unsigned int flags)
{
	pmd_t * pmd;
	unsigned long offset, end;
	int error;

	if (pgd_none(*pgd))
		return 0;
	if (pgd_bad(*pgd)) {
		printk("filemap_sync_pmd_range: bad pgd (%08lx)\n", pgd_val(*pgd));
		pgd_clear(pgd);
		return 0;
	}
	pmd = pmd_offset(pgd, address);
	offset = address & PGDIR_MASK;
	address &= ~PGDIR_MASK;
	end = address + size;
	if (end > PGDIR_SIZE)
		end = PGDIR_SIZE;
	error = 0;
	do {
		error |= filemap_sync_pte_range(pmd, address, end - address, vma, offset, flags);
		address = (address + PMD_SIZE) & PMD_MASK;
		pmd++;
	} while (address < end);
	return error;
}

static int filemap_sync(struct vm_area_struct * vma, unsigned long address,
	size_t size, unsigned int flags)
{
	pgd_t * dir;
	unsigned long end = address + size;
	int error = 0;

	dir = pgd_offset(vma->vm_mm, address);
	flush_cache_range(vma->vm_mm, end - size, end);
	while (address < end) {
		error |= filemap_sync_pmd_range(dir, address, end - address, vma, flags);
		address = (address + PGDIR_SIZE) & PGDIR_MASK;
		dir++;
	}
	flush_tlb_range(vma->vm_mm, end - size, end);
	return error;
}

/*
 * This handles (potentially partial) area unmaps..
 */
static void filemap_unmap(struct vm_area_struct *vma, unsigned long start, size_t len)
{
	filemap_sync(vma, start, len, MS_ASYNC);
}

/*
 * Shared mappings need to be able to do the right thing at
 * close/unmap/sync. They will also use the private file as
 * backing-store for swapping..
 */
static struct vm_operations_struct file_shared_mmap = {
	NULL,			/* no special open */
	NULL,			/* no special close */
	filemap_unmap,		/* unmap - we need to sync the pages */
	NULL,			/* no special protect */
	filemap_sync,		/* sync */
	NULL,			/* advise */
	filemap_nopage,		/* nopage */
	NULL,			/* wppage */
	filemap_swapout,	/* swapout */
	filemap_swapin,		/* swapin */
};

/*
 * Private mappings just need to be able to load in the map.
 *
 * (This is actually used for shared mappings as well, if we
 * know they can't ever get write permissions..)
 */
static struct vm_operations_struct file_private_mmap = {
	NULL,			/* open */
	NULL,			/* close */
	NULL,			/* unmap */
	NULL,			/* protect */
	NULL,			/* sync */
	NULL,			/* advise */
	filemap_nopage,		/* nopage */
	NULL,			/* wppage */
	NULL,			/* swapout */
	NULL,			/* swapin */
};

/* This is used for a general mmap of a disk file */

int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
{
	struct vm_operations_struct * ops;
	struct inode *inode = file->f_dentry->d_inode;

	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) {
		ops = &file_shared_mmap;
		/* share_page() can only guarantee proper page sharing if
		 * the offsets are all page aligned. */
		if (vma->vm_offset & (PAGE_SIZE - 1))
			return -EINVAL;
	} else {
		ops = &file_private_mmap;
		if (vma->vm_offset & (inode->i_sb->s_blocksize - 1))
			return -EINVAL;
	}
	if (!inode->i_sb || !S_ISREG(inode->i_mode))
		return -EACCES;
	if (!inode->i_op || !inode->i_op->readpage)
		return -ENOEXEC;
	UPDATE_ATIME(inode);
	vma->vm_dentry = dget(file->f_dentry);
	vma->vm_ops = ops;
	return 0;
}


/*
 * The msync() system call.
 */

static int msync_interval(struct vm_area_struct * vma,
	unsigned long start, unsigned long end, int flags)
{
	if (!vma->vm_dentry)
		return 0;
	if (vma->vm_ops->sync) {
		int error;
		error = vma->vm_ops->sync(vma, start, end-start, flags);
		if (!error && (flags & MS_SYNC)) {
			struct dentry * dentry = vma->vm_dentry;
			if (dentry) {
				struct inode * inode = dentry->d_inode;
				down(&inode->i_sem);
				error = file_fsync(NULL,dentry);
				up(&inode->i_sem);
			}
		}
		return error;
	}
	return 0;
}

asmlinkage int sys_msync(unsigned long start, size_t len, int flags)
{
	unsigned long end;
	struct vm_area_struct * vma;
	int unmapped_error, error = -EINVAL;

	lock_kernel();
	if (start & ~PAGE_MASK)
		goto out;
	len = (len + ~PAGE_MASK) & PAGE_MASK;
	end = start + len;
	if (end < start)
		goto out;
	if (flags & ~(MS_ASYNC | MS_INVALIDATE | MS_SYNC))
		goto out;
	error = 0;
	if (end == start)
		goto out;
	/*
	 * If the interval [start,end) covers some unmapped address ranges,
	 * just ignore them, but return -EFAULT at the end.
	 */
	vma = find_vma(current->mm, start);
	unmapped_error = 0;
	for (;;) {
		/* Still start < end. */
		error = -EFAULT;
		if (!vma)
			goto out;
		/* Here start < vma->vm_end. */
		if (start < vma->vm_start) {
			unmapped_error = -EFAULT;
			start = vma->vm_start;
		}
		/* Here vma->vm_start <= start < vma->vm_end. */
		if (end <= vma->vm_end) {
			if (start < end) {
				error = msync_interval(vma, start, end, flags);
				if (error)
					goto out;
			}
			error = unmapped_error;
			goto out;
		}
		/* Here vma->vm_start <= start < vma->vm_end < end. */
		error = msync_interval(vma, start, vma->vm_end, flags);
		if (error)
			goto out;
		start = vma->vm_end;
		vma = vma->vm_next;
	}
out:
	unlock_kernel();
	return error;
}

/*
 * Write to a file through the page cache. This is mainly for the
 * benefit of NFS and possibly other network-based file systems.
 *
 * We currently put everything into the page cache prior to writing it.
 * This is not a problem when writing full pages. With partial pages,
 * however, we first have to read the data into the cache, then
 * dirty the page, and finally schedule it for writing. Alternatively, we
 * could write-through just the portion of data that would go into that
 * page, but that would kill performance for applications that write data
 * line by line, and it's prone to race conditions.
 *
 * Note that this routine doesn't try to keep track of dirty pages. Each
 * file system has to do this all by itself, unfortunately.
 *							okir@monad.swb.de
 */
ssize_t
generic_file_write(struct file *file, const char *buf,
		   size_t count, loff_t *ppos)
{
	struct inode	*inode = file->f_dentry->d_inode; 
	struct page	*page, **hash;
	unsigned long	page_cache = 0;
	unsigned long	pgpos, offset;
	unsigned long	bytes, written;
	unsigned long	pos;
	long		status, sync, didread;

	if (!inode->i_op || !inode->i_op->updatepage)
		return -EIO;

	sync    = file->f_flags & O_SYNC;
	pos     = *ppos;
	written = 0;
	status  = 0;

	if (file->f_flags & O_APPEND)
		pos = inode->i_size;

	while (count) {
		/*
		 * Try to find the page in the cache. If it isn't there,
		 * allocate a free page.
		 */
		offset = (pos & ~PAGE_MASK);
		pgpos = pos & PAGE_MASK;

		if ((bytes = PAGE_SIZE - offset) > count)
			bytes = count;

		hash = page_hash(inode, pgpos);
		if (!(page = __find_page(inode, pgpos, *hash))) {
			if (!page_cache) {
				page_cache = __get_free_page(GFP_KERNEL);
				if (!page_cache) {
					status = -ENOMEM;
					break;
				}
				continue;
			}
			page = mem_map + MAP_NR(page_cache);
			add_to_page_cache(page, inode, pgpos, hash);
			page_cache = 0;
		}

		/*
		 * WSH 06/05/97: restructured slightly to make sure we release
		 * the page on an error exit.  Removed explicit setting of
		 * PG_locked, as that's handled below the i_op->xxx interface.
		 */
		didread = 0;
page_wait:
		wait_on_page(page);

		/*
		 * If the page is not uptodate, and we're writing less
		 * than a full page of data, we may have to read it first.
		 * However, don't bother with reading the page when it's
		 * after the current end of file.
		 */
		if (!PageUptodate(page)) {
			if (bytes < PAGE_SIZE && pgpos < inode->i_size) {
				if (didread < 2)
				    status = inode->i_op->readpage(inode, page);
				else 
				    status = -EIO; /* two tries ... error out */
				if (status < 0)
					goto done_with_page;
				didread++;
				goto page_wait;
			}
			set_bit(PG_uptodate, &page->flags);
		}

		/* Alright, the page is there.  Now update it. */
		status = inode->i_op->updatepage(inode, page, buf,
							offset, bytes, sync);
done_with_page:
		__free_page(page);
		if (status < 0)
			break;

		written += status;
		count -= status;
		pos += status;
		buf += status;
	}
	*ppos = pos;
	if (pos > inode->i_size)
		inode->i_size = pos;

	if (page_cache)
		free_page(page_cache);
	if (written)
		return written;
	return status;
}

/*
 * Support routines for directory cacheing using the page cache.
 */

/*
 * Finds the page at the specified offset, installing a new page
 * if requested.  The count is incremented and the page is locked.
 *
 * Note: we don't have to worry about races here, as the caller
 * is holding the inode semaphore.
 */
unsigned long get_cached_page(struct inode * inode, unsigned long offset,
				int new)
{
	struct page * page;
	struct page ** hash;
	unsigned long page_cache;

	hash = page_hash(inode, offset);
	page = __find_page(inode, offset, *hash);
	if (!page) {
		if (!new)
			goto out;
		page_cache = get_free_page(GFP_KERNEL);
		if (!page_cache)
			goto out;
		page = mem_map + MAP_NR(page_cache);
		add_to_page_cache(page, inode, offset, hash);
	}
	if (atomic_read(&page->count) != 2)
		printk("get_cached_page: page count=%d\n",
			atomic_read(&page->count));
	if (test_bit(PG_locked, &page->flags))
		printk("get_cached_page: page already locked!\n");
	set_bit(PG_locked, &page->flags);

out:
	return page_address(page);
}

/*
 * Unlock and free a page.
 */
void put_cached_page(unsigned long addr)
{
	struct page * page = mem_map + MAP_NR(addr);

	if (!test_bit(PG_locked, &page->flags))
		printk("put_cached_page: page not locked!\n");
	if (atomic_read(&page->count) != 2)
		printk("put_cached_page: page count=%d\n", 
			atomic_read(&page->count));
	clear_bit(PG_locked, &page->flags);
	wake_up(&page->wait);
	__free_page(page);
}