Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
/*
 *	linux/mm/filemap.c
 *
 * Copyright (C) 1994, 1995  Linus Torvalds
 */

/*
 * This file handles the generic file mmap semantics used by
 * most "normal" filesystems (but you don't /have/ to use this:
 * the NFS filesystem used to do this differently, for example)
 */
#include <linux/malloc.h>
#include <linux/shm.h>
#include <linux/mman.h>
#include <linux/locks.h>
#include <linux/pagemap.h>
#include <linux/swap.h>
#include <linux/smp_lock.h>
#include <linux/blkdev.h>
#include <linux/file.h>
#include <linux/swapctl.h>
#include <linux/slab.h>
#include <linux/init.h>

#include <asm/pgtable.h>
#include <asm/uaccess.h>

/*
 * Shared mappings implemented 30.11.1994. It's not fully working yet,
 * though.
 *
 * Shared mappings now work. 15.8.1995  Bruno.
 */

unsigned long page_cache_size = 0;
unsigned int page_hash_bits, page_hash_mask;
struct page **page_hash_table;

/* 
 * Define a request structure for outstanding page write requests
 * to the background page io daemon
 */

struct pio_request 
{
	struct pio_request *	next;
	struct file *		file;
	unsigned long		offset;
	unsigned long		page;
};
static struct pio_request *pio_first = NULL, **pio_last = &pio_first;
static kmem_cache_t *pio_request_cache;
static struct wait_queue *pio_wait = NULL;

static inline void 
make_pio_request(struct file *, unsigned long, unsigned long);


/*
 * Invalidate the pages of an inode, removing all pages that aren't
 * locked down (those are sure to be up-to-date anyway, so we shouldn't
 * invalidate them).
 */
void invalidate_inode_pages(struct inode * inode)
{
	struct page ** p;
	struct page * page;

	p = &inode->i_pages;
	while ((page = *p) != NULL) {
		if (PageLocked(page)) {
			p = &page->next;
			continue;
		}
		inode->i_nrpages--;
		if ((*p = page->next) != NULL)
			(*p)->prev = page->prev;
		page->next = NULL;
		page->prev = NULL;
		remove_page_from_hash_queue(page);
		page->inode = NULL;
		page_cache_release(page);
		continue;
	}
}

/*
 * Truncate the page cache at a set offset, removing the pages
 * that are beyond that offset (and zeroing out partial pages).
 */
void truncate_inode_pages(struct inode * inode, unsigned long start)
{
	struct page ** p;
	struct page * page;

repeat:
	p = &inode->i_pages;
	while ((page = *p) != NULL) {
		unsigned long offset = page->offset;

		/* page wholly truncated - free it */
		if (offset >= start) {
			if (PageLocked(page)) {
				wait_on_page(page);
				goto repeat;
			}
			inode->i_nrpages--;
			if ((*p = page->next) != NULL)
				(*p)->prev = page->prev;
			page->next = NULL;
			page->prev = NULL;
			remove_page_from_hash_queue(page);
			page->inode = NULL;
			page_cache_release(page);
			continue;
		}
		p = &page->next;
		offset = start - offset;
		/* partial truncate, clear end of page */
		if (offset < PAGE_CACHE_SIZE) {
			unsigned long address = page_address(page);
			memset((void *) (offset + address), 0, PAGE_CACHE_SIZE - offset);
			flush_page_to_ram(address);
		}
	}
}

/*
 * Remove a page from the page cache and free it.
 */
void remove_inode_page(struct page *page)
{
	remove_page_from_hash_queue(page);
	remove_page_from_inode_queue(page);
	page_cache_release(page);
}

int shrink_mmap(int priority, int gfp_mask)
{
	static unsigned long clock = 0;
	unsigned long limit = num_physpages;
	struct page * page;
	int count;

	count = limit >> priority;

	page = mem_map + clock;
	do {
		int referenced;

		/* This works even in the presence of PageSkip because
		 * the first two entries at the beginning of a hole will
		 * be marked, not just the first.
		 */
		page++;
		clock++;
		if (clock >= max_mapnr) {
			clock = 0;
			page = mem_map;
		}
		if (PageSkip(page)) {
			/* next_hash is overloaded for PageSkip */
			page = page->next_hash;
			clock = page - mem_map;
		}
		
		referenced = test_and_clear_bit(PG_referenced, &page->flags);

		if (PageLocked(page))
			continue;

		if ((gfp_mask & __GFP_DMA) && !PageDMA(page))
			continue;

		/* We can't free pages unless there's just one user */
		if (atomic_read(&page->count) != 1)
			continue;

		count--;

		/*
		 * Is it a page swap page? If so, we want to
		 * drop it if it is no longer used, even if it
		 * were to be marked referenced..
		 */
		if (PageSwapCache(page)) {
			if (referenced && swap_count(page->offset) != 1)
				continue;
			delete_from_swap_cache(page);
			return 1;
		}	

		if (referenced)
			continue;

		/* Is it a buffer page? */
		if (page->buffers) {
			if (buffer_under_min())
				continue;
			if (!try_to_free_buffers(page))
				continue;
			return 1;
		}

		/* is it a page-cache page? */
		if (page->inode) {
			if (pgcache_under_min())
				continue;
			remove_inode_page(page);
			return 1;
		}

	} while (count > 0);
	return 0;
}

/*
 * Update a page cache copy, when we're doing a "write()" system call
 * See also "update_vm_cache()".
 *
 * This function is conditional in that it checks whether the original
 * source of the data is the same as the ultimate destination, and
 * aborts the update if so.  
 *
 * The "source_address" is the virtual address of the original location
 * of the data we are injecting.  For writes from user mode, it is the
 * user VA.  However, for filemap_sync writes, "source_address", it is
 * the page cache address.  In both cases, "buf" points to the copy we
 * have already made in kernel space and we use that pointer for the
 * transfer.  source_address just allows us to detect an update_vm_cache
 * which is being sourced from the copy of the data already in the page
 * cache.  
 * 
 * This prevents munmap() and msync() from stomping all over shared
 * memory maps.  --sct
 */

void update_vm_cache_conditional(struct inode * inode, unsigned long pos, const char * buf, int count, unsigned long source_address)
{
	unsigned long offset, len;

	offset = (pos & ~PAGE_CACHE_MASK);
	pos = pos & PAGE_CACHE_MASK;
	len = PAGE_CACHE_SIZE - offset;
	do {
		struct page * page;

		if (len > count)
			len = count;
		page = find_page(inode, pos);
		if (page) {
			char *dest = (char*) (offset + page_address(page));

			if ((unsigned long)dest != source_address) {
				wait_on_page(page);
				memcpy(dest, buf, len);
			}
			page_cache_release(page);
		}
		count -= len;
		buf += len;
		len = PAGE_CACHE_SIZE;
		offset = 0;
		pos += PAGE_CACHE_SIZE;
	} while (count);
}

void update_vm_cache(struct inode * inode, unsigned long pos, const char * buf, int count)
{
	update_vm_cache_conditional(inode, pos, buf, count, 0);
}


static inline void add_to_page_cache(struct page * page,
	struct inode * inode, unsigned long offset,
	struct page **hash)
{
	atomic_inc(&page->count);
	page->flags = (page->flags & ~((1 << PG_uptodate) | (1 << PG_error))) | (1 << PG_referenced);
	page->offset = offset;
	add_page_to_inode_queue(inode, page);
	__add_page_to_hash_queue(page, hash);
}

/*
 * Try to read ahead in the file. "page_cache" is a potentially free page
 * that we could use for the cache (if it is 0 we can try to create one,
 * this is all overlapped with the IO on the previous page finishing anyway)
 */
static unsigned long try_to_read_ahead(struct file * file,
				unsigned long offset, unsigned long page_cache)
{
	struct inode *inode = file->f_dentry->d_inode;
	struct page * page;
	struct page ** hash;

	offset &= PAGE_CACHE_MASK;
	switch (page_cache) {
	case 0:
		page_cache = page_cache_alloc();
		if (!page_cache)
			break;
	default:
		if (offset >= inode->i_size)
			break;
		hash = page_hash(inode, offset);
		page = __find_page(inode, offset, *hash);
		if (!page) {
			/*
			 * Ok, add the new page to the hash-queues...
			 */
			page = page_cache_entry(page_cache);
			add_to_page_cache(page, inode, offset, hash);
			inode->i_op->readpage(file, page);
			page_cache = 0;
		}
		page_cache_release(page);
	}
	return page_cache;
}

/* 
 * Wait for IO to complete on a locked page.
 *
 * This must be called with the caller "holding" the page,
 * ie with increased "page->count" so that the page won't
 * go away during the wait..
 */
void __wait_on_page(struct page *page)
{
	struct task_struct *tsk = current;
	struct wait_queue wait;

	wait.task = tsk;
	add_wait_queue(&page->wait, &wait);
repeat:
	tsk->state = TASK_UNINTERRUPTIBLE;
	run_task_queue(&tq_disk);
	if (PageLocked(page)) {
		schedule();
		goto repeat;
	}
	tsk->state = TASK_RUNNING;
	remove_wait_queue(&page->wait, &wait);
}

#if 0
#define PROFILE_READAHEAD
#define DEBUG_READAHEAD
#endif

/*
 * Read-ahead profiling information
 * --------------------------------
 * Every PROFILE_MAXREADCOUNT, the following information is written 
 * to the syslog:
 *   Percentage of asynchronous read-ahead.
 *   Average of read-ahead fields context value.
 * If DEBUG_READAHEAD is defined, a snapshot of these fields is written 
 * to the syslog.
 */

#ifdef PROFILE_READAHEAD

#define PROFILE_MAXREADCOUNT 1000

static unsigned long total_reada;
static unsigned long total_async;
static unsigned long total_ramax;
static unsigned long total_ralen;
static unsigned long total_rawin;

static void profile_readahead(int async, struct file *filp)
{
	unsigned long flags;

	++total_reada;
	if (async)
		++total_async;

	total_ramax	+= filp->f_ramax;
	total_ralen	+= filp->f_ralen;
	total_rawin	+= filp->f_rawin;

	if (total_reada > PROFILE_MAXREADCOUNT) {
		save_flags(flags);
		cli();
		if (!(total_reada > PROFILE_MAXREADCOUNT)) {
			restore_flags(flags);
			return;
		}

		printk("Readahead average:  max=%ld, len=%ld, win=%ld, async=%ld%%\n",
			total_ramax/total_reada,
			total_ralen/total_reada,
			total_rawin/total_reada,
			(total_async*100)/total_reada);
#ifdef DEBUG_READAHEAD
		printk("Readahead snapshot: max=%ld, len=%ld, win=%ld, raend=%ld\n",
			filp->f_ramax, filp->f_ralen, filp->f_rawin, filp->f_raend);
#endif

		total_reada	= 0;
		total_async	= 0;
		total_ramax	= 0;
		total_ralen	= 0;
		total_rawin	= 0;

		restore_flags(flags);
	}
}
#endif  /* defined PROFILE_READAHEAD */

/*
 * Read-ahead context:
 * -------------------
 * The read ahead context fields of the "struct file" are the following:
 * - f_raend : position of the first byte after the last page we tried to
 *             read ahead.
 * - f_ramax : current read-ahead maximum size.
 * - f_ralen : length of the current IO read block we tried to read-ahead.
 * - f_rawin : length of the current read-ahead window.
 *             if last read-ahead was synchronous then
 *                  f_rawin = f_ralen
 *             otherwise (was asynchronous)
 *                  f_rawin = previous value of f_ralen + f_ralen
 *
 * Read-ahead limits:
 * ------------------
 * MIN_READAHEAD   : minimum read-ahead size when read-ahead.
 * MAX_READAHEAD   : maximum read-ahead size when read-ahead.
 *
 * Synchronous read-ahead benefits:
 * --------------------------------
 * Using reasonable IO xfer length from peripheral devices increase system 
 * performances.
 * Reasonable means, in this context, not too large but not too small.
 * The actual maximum value is:
 *	MAX_READAHEAD + PAGE_CACHE_SIZE = 76k is CONFIG_READA_SMALL is undefined
 *      and 32K if defined (4K page size assumed).
 *
 * Asynchronous read-ahead benefits:
 * ---------------------------------
 * Overlapping next read request and user process execution increase system 
 * performance.
 *
 * Read-ahead risks:
 * -----------------
 * We have to guess which further data are needed by the user process.
 * If these data are often not really needed, it's bad for system 
 * performances.
 * However, we know that files are often accessed sequentially by 
 * application programs and it seems that it is possible to have some good 
 * strategy in that guessing.
 * We only try to read-ahead files that seems to be read sequentially.
 *
 * Asynchronous read-ahead risks:
 * ------------------------------
 * In order to maximize overlapping, we must start some asynchronous read 
 * request from the device, as soon as possible.
 * We must be very careful about:
 * - The number of effective pending IO read requests.
 *   ONE seems to be the only reasonable value.
 * - The total memory pool usage for the file access stream.
 *   This maximum memory usage is implicitly 2 IO read chunks:
 *   2*(MAX_READAHEAD + PAGE_CACHE_SIZE) = 156K if CONFIG_READA_SMALL is undefined,
 *   64k if defined (4K page size assumed).
 */

static inline int get_max_readahead(struct inode * inode)
{
	if (!inode->i_dev || !max_readahead[MAJOR(inode->i_dev)])
		return MAX_READAHEAD;
	return max_readahead[MAJOR(inode->i_dev)][MINOR(inode->i_dev)];
}

static inline unsigned long generic_file_readahead(int reada_ok,
	struct file * filp, struct inode * inode,
	unsigned long ppos, struct page * page, unsigned long page_cache)
{
	unsigned long max_ahead, ahead;
	unsigned long raend;
	int max_readahead = get_max_readahead(inode);

	raend = filp->f_raend & PAGE_CACHE_MASK;
	max_ahead = 0;

/*
 * The current page is locked.
 * If the current position is inside the previous read IO request, do not
 * try to reread previously read ahead pages.
 * Otherwise decide or not to read ahead some pages synchronously.
 * If we are not going to read ahead, set the read ahead context for this 
 * page only.
 */
	if (PageLocked(page)) {
		if (!filp->f_ralen || ppos >= raend || ppos + filp->f_ralen < raend) {
			raend = ppos;
			if (raend < inode->i_size)
				max_ahead = filp->f_ramax;
			filp->f_rawin = 0;
			filp->f_ralen = PAGE_CACHE_SIZE;
			if (!max_ahead) {
				filp->f_raend  = ppos + filp->f_ralen;
				filp->f_rawin += filp->f_ralen;
			}
		}
	}
/*
 * The current page is not locked.
 * If we were reading ahead and,
 * if the current max read ahead size is not zero and,
 * if the current position is inside the last read-ahead IO request,
 *   it is the moment to try to read ahead asynchronously.
 * We will later force unplug device in order to force asynchronous read IO.
 */
	else if (reada_ok && filp->f_ramax && raend >= PAGE_CACHE_SIZE &&
	         ppos <= raend && ppos + filp->f_ralen >= raend) {
/*
 * Add ONE page to max_ahead in order to try to have about the same IO max size
 * as synchronous read-ahead (MAX_READAHEAD + 1)*PAGE_CACHE_SIZE.
 * Compute the position of the last page we have tried to read in order to 
 * begin to read ahead just at the next page.
 */
		raend -= PAGE_CACHE_SIZE;
		if (raend < inode->i_size)
			max_ahead = filp->f_ramax + PAGE_CACHE_SIZE;

		if (max_ahead) {
			filp->f_rawin = filp->f_ralen;
			filp->f_ralen = 0;
			reada_ok      = 2;
		}
	}
/*
 * Try to read ahead pages.
 * We hope that ll_rw_blk() plug/unplug, coalescence, requests sort and the
 * scheduler, will work enough for us to avoid too bad actuals IO requests.
 */
	ahead = 0;
	while (ahead < max_ahead) {
		ahead += PAGE_CACHE_SIZE;
		page_cache = try_to_read_ahead(filp, raend + ahead,
						page_cache);
	}
/*
 * If we tried to read ahead some pages,
 * If we tried to read ahead asynchronously,
 *   Try to force unplug of the device in order to start an asynchronous
 *   read IO request.
 * Update the read-ahead context.
 * Store the length of the current read-ahead window.
 * Double the current max read ahead size.
 *   That heuristic avoid to do some large IO for files that are not really
 *   accessed sequentially.
 */
	if (ahead) {
		if (reada_ok == 2) {
			run_task_queue(&tq_disk);
		}

		filp->f_ralen += ahead;
		filp->f_rawin += filp->f_ralen;
		filp->f_raend = raend + ahead + PAGE_CACHE_SIZE;

		filp->f_ramax += filp->f_ramax;

		if (filp->f_ramax > max_readahead)
			filp->f_ramax = max_readahead;

#ifdef PROFILE_READAHEAD
		profile_readahead((reada_ok == 2), filp);
#endif
	}

	return page_cache;
}

/*
 * "descriptor" for what we're up to with a read.
 * This allows us to use the same read code yet
 * have multiple different users of the data that
 * we read from a file.
 *
 * The simplest case just copies the data to user
 * mode.
 */
typedef struct {
	size_t written;
	size_t count;
	char * buf;
	int error;
} read_descriptor_t;

typedef int (*read_actor_t)(read_descriptor_t *, const char *, unsigned long);

/*
 * This is a generic file read routine, and uses the
 * inode->i_op->readpage() function for the actual low-level
 * stuff.
 *
 * This is really ugly. But the goto's actually try to clarify some
 * of the logic when it comes to error handling etc.
 */
static void do_generic_file_read(struct file * filp, loff_t *ppos, read_descriptor_t * desc, read_actor_t actor)
{
	struct dentry *dentry = filp->f_dentry;
	struct inode *inode = dentry->d_inode;
	size_t pos, pgpos, page_cache;
	int reada_ok;
	int max_readahead = get_max_readahead(inode);

	page_cache = 0;

	pos = *ppos;
	pgpos = pos & PAGE_CACHE_MASK;
/*
 * If the current position is outside the previous read-ahead window, 
 * we reset the current read-ahead context and set read ahead max to zero
 * (will be set to just needed value later),
 * otherwise, we assume that the file accesses are sequential enough to
 * continue read-ahead.
 */
	if (pgpos > filp->f_raend || pgpos + filp->f_rawin < filp->f_raend) {
		reada_ok = 0;
		filp->f_raend = 0;
		filp->f_ralen = 0;
		filp->f_ramax = 0;
		filp->f_rawin = 0;
	} else {
		reada_ok = 1;
	}
/*
 * Adjust the current value of read-ahead max.
 * If the read operation stay in the first half page, force no readahead.
 * Otherwise try to increase read ahead max just enough to do the read request.
 * Then, at least MIN_READAHEAD if read ahead is ok,
 * and at most MAX_READAHEAD in all cases.
 */
	if (pos + desc->count <= (PAGE_CACHE_SIZE >> 1)) {
		filp->f_ramax = 0;
	} else {
		unsigned long needed;

		needed = ((pos + desc->count) & PAGE_CACHE_MASK) - pgpos;

		if (filp->f_ramax < needed)
			filp->f_ramax = needed;

		if (reada_ok && filp->f_ramax < MIN_READAHEAD)
				filp->f_ramax = MIN_READAHEAD;
		if (filp->f_ramax > max_readahead)
			filp->f_ramax = max_readahead;
	}

	for (;;) {
		struct page *page, **hash;

		if (pos >= inode->i_size)
			break;

		/*
		 * Try to find the data in the page cache..
		 */
		hash = page_hash(inode, pos & PAGE_CACHE_MASK);
		page = __find_page(inode, pos & PAGE_CACHE_MASK, *hash);
		if (!page)
			goto no_cached_page;

found_page:
/*
 * Try to read ahead only if the current page is filled or being filled.
 * Otherwise, if we were reading ahead, decrease max read ahead size to
 * the minimum value.
 * In this context, that seems to may happen only on some read error or if 
 * the page has been rewritten.
 */
		if (PageUptodate(page) || PageLocked(page))
			page_cache = generic_file_readahead(reada_ok, filp, inode, pos & PAGE_CACHE_MASK, page, page_cache);
		else if (reada_ok && filp->f_ramax > MIN_READAHEAD)
				filp->f_ramax = MIN_READAHEAD;

		wait_on_page(page);

		if (!PageUptodate(page))
			goto page_read_error;

success:
		/*
		 * Ok, we have the page, it's up-to-date and ok,
		 * so now we can finally copy it to user space...
		 */
	{
		unsigned long offset, nr;

		offset = pos & ~PAGE_CACHE_MASK;
		nr = PAGE_CACHE_SIZE - offset;
		if (nr > inode->i_size - pos)
			nr = inode->i_size - pos;

		/*
		 * The actor routine returns how many bytes were actually used..
		 * NOTE! This may not be the same as how much of a user buffer
		 * we filled up (we may be padding etc), so we can only update
		 * "pos" here (the actor routine has to update the user buffer
		 * pointers and the remaining count).
		 */
		nr = actor(desc, (const char *) (page_address(page) + offset), nr);
		pos += nr;
		page_cache_release(page);
		if (nr && desc->count)
			continue;
		break;
	}

no_cached_page:
		/*
		 * Ok, it wasn't cached, so we need to create a new
		 * page..
		 */
		if (!page_cache) {
			page_cache = page_cache_alloc();
			/*
			 * That could have slept, so go around to the
			 * very beginning..
			 */
			if (page_cache)
				continue;
			desc->error = -ENOMEM;
			break;
		}

		/*
		 * Ok, add the new page to the hash-queues...
		 */
		page = page_cache_entry(page_cache);
		page_cache = 0;
		add_to_page_cache(page, inode, pos & PAGE_CACHE_MASK, hash);

		/*
		 * Error handling is tricky. If we get a read error,
		 * the cached page stays in the cache (but uptodate=0),
		 * and the next process that accesses it will try to
		 * re-read it. This is needed for NFS etc, where the
		 * identity of the reader can decide if we can read the
		 * page or not..
		 */
/*
 * We have to read the page.
 * If we were reading ahead, we had previously tried to read this page,
 * That means that the page has probably been removed from the cache before 
 * the application process needs it, or has been rewritten.
 * Decrease max readahead size to the minimum value in that situation.
 */
		if (reada_ok && filp->f_ramax > MIN_READAHEAD)
			filp->f_ramax = MIN_READAHEAD;

		{
			int error = inode->i_op->readpage(filp, page);
			if (!error)
				goto found_page;
			desc->error = error;
			page_cache_release(page);
			break;
		}

page_read_error:
		/*
		 * We found the page, but it wasn't up-to-date.
		 * Try to re-read it _once_. We do this synchronously,
		 * because this happens only if there were errors.
		 */
		{
			int error = inode->i_op->readpage(filp, page);
			if (!error) {
				wait_on_page(page);
				if (PageUptodate(page) && !PageError(page))
					goto success;
				error = -EIO; /* Some unspecified error occurred.. */
			}
			desc->error = error;
			page_cache_release(page);
			break;
		}
	}

	*ppos = pos;
	filp->f_reada = 1;
	if (page_cache)
		page_cache_free(page_cache);
	UPDATE_ATIME(inode);
}

static int file_read_actor(read_descriptor_t * desc, const char *area, unsigned long size)
{
	unsigned long left;
	unsigned long count = desc->count;

	if (size > count)
		size = count;
	left = __copy_to_user(desc->buf, area, size);
	if (left) {
		size -= left;
		desc->error = -EFAULT;
	}
	desc->count = count - size;
	desc->written += size;
	desc->buf += size;
	return size;
}

/*
 * This is the "read()" routine for all filesystems
 * that can use the page cache directly.
 */
ssize_t generic_file_read(struct file * filp, char * buf, size_t count, loff_t *ppos)
{
	ssize_t retval;

	retval = -EFAULT;
	if (access_ok(VERIFY_WRITE, buf, count)) {
		retval = 0;
		if (count) {
			read_descriptor_t desc;

			desc.written = 0;
			desc.count = count;
			desc.buf = buf;
			desc.error = 0;
			do_generic_file_read(filp, ppos, &desc, file_read_actor);

			retval = desc.written;
			if (!retval)
				retval = desc.error;
		}
	}
	return retval;
}

static int file_send_actor(read_descriptor_t * desc, const char *area, unsigned long size)
{
	ssize_t written;
	unsigned long count = desc->count;
	struct file *file = (struct file *) desc->buf;
	struct inode *inode = file->f_dentry->d_inode;
	mm_segment_t old_fs;

	if (size > count)
		size = count;
	down(&inode->i_sem);
	old_fs = get_fs();
	set_fs(KERNEL_DS);
	written = file->f_op->write(file, area, size, &file->f_pos);
	set_fs(old_fs);
	up(&inode->i_sem);
	if (written < 0) {
		desc->error = written;
		written = 0;
	}
	desc->count = count - written;
	desc->written += written;
	return written;
}

asmlinkage ssize_t sys_sendfile(int out_fd, int in_fd, off_t *offset, size_t count)
{
	ssize_t retval;
	struct file * in_file, * out_file;
	struct inode * in_inode, * out_inode;

	lock_kernel();

	/*
	 * Get input file, and verify that it is ok..
	 */
	retval = -EBADF;
	in_file = fget(in_fd);
	if (!in_file)
		goto out;
	if (!(in_file->f_mode & FMODE_READ))
		goto fput_in;
	retval = -EINVAL;
	in_inode = in_file->f_dentry->d_inode;
	if (!in_inode)
		goto fput_in;
	if (!in_inode->i_op || !in_inode->i_op->readpage)
		goto fput_in;
	retval = locks_verify_area(FLOCK_VERIFY_READ, in_inode, in_file, in_file->f_pos, count);
	if (retval)
		goto fput_in;

	/*
	 * Get output file, and verify that it is ok..
	 */
	retval = -EBADF;
	out_file = fget(out_fd);
	if (!out_file)
		goto fput_in;
	if (!(out_file->f_mode & FMODE_WRITE))
		goto fput_out;
	retval = -EINVAL;
	if (!out_file->f_op || !out_file->f_op->write)
		goto fput_out;
	out_inode = out_file->f_dentry->d_inode;
	if (!out_inode)
		goto fput_out;
	retval = locks_verify_area(FLOCK_VERIFY_WRITE, out_inode, out_file, out_file->f_pos, count);
	if (retval)
		goto fput_out;

	retval = 0;
	if (count) {
		read_descriptor_t desc;
		loff_t pos = 0, *ppos;

		retval = -EFAULT;
		ppos = &in_file->f_pos;
		if (offset) {
			if (get_user(pos, offset))
				goto fput_out;
			ppos = &pos;
		}

		desc.written = 0;
		desc.count = count;
		desc.buf = (char *) out_file;
		desc.error = 0;
		do_generic_file_read(in_file, ppos, &desc, file_send_actor);

		retval = desc.written;
		if (!retval)
			retval = desc.error;
		if (offset)
			put_user(pos, offset);
	}


fput_out:
	fput(out_file);
fput_in:
	fput(in_file);
out:
	unlock_kernel();
	return retval;
}

/*
 * Semantics for shared and private memory areas are different past the end
 * of the file. A shared mapping past the last page of the file is an error
 * and results in a SIGBUS, while a private mapping just maps in a zero page.
 *
 * The goto's are kind of ugly, but this streamlines the normal case of having
 * it in the page cache, and handles the special cases reasonably without
 * having a lot of duplicated code.
 *
 * WSH 06/04/97: fixed a memory leak and moved the allocation of new_page
 * ahead of the wait if we're sure to need it.
 */
static unsigned long filemap_nopage(struct vm_area_struct * area, unsigned long address, int no_share)
{
	struct file * file = area->vm_file;
	struct dentry * dentry = file->f_dentry;
	struct inode * inode = dentry->d_inode;
	unsigned long offset, reada, i;
	struct page * page, **hash;
	unsigned long old_page, new_page;

	new_page = 0;
	offset = (address & PAGE_MASK) - area->vm_start + area->vm_offset;
	if (offset >= inode->i_size && (area->vm_flags & VM_SHARED) && area->vm_mm == current->mm)
		goto no_page;

	/*
	 * Do we have something in the page cache already?
	 */
	hash = page_hash(inode, offset);
	page = __find_page(inode, offset, *hash);
	if (!page)
		goto no_cached_page;

found_page:
	/*
	 * Ok, found a page in the page cache, now we need to check
	 * that it's up-to-date.  First check whether we'll need an
	 * extra page -- better to overlap the allocation with the I/O.
	 */
	if (no_share && !new_page) {
		new_page = page_cache_alloc();
		if (!new_page)
			goto release_and_oom;
	}

	if (PageLocked(page))
		goto page_locked_wait;
	if (!PageUptodate(page))
		goto page_read_error;

success:
	/*
	 * Found the page, need to check sharing and possibly
	 * copy it over to another page..
	 */
	old_page = page_address(page);
	if (!no_share) {
		/*
		 * Ok, we can share the cached page directly.. Get rid
		 * of any potential extra pages.
		 */
		if (new_page)
			page_cache_free(new_page);

		flush_page_to_ram(old_page);
		return old_page;
	}

	/*
	 * No sharing ... copy to the new page.
	 */
	copy_page(new_page, old_page);
	flush_page_to_ram(new_page);
	page_cache_release(page);
	return new_page;

no_cached_page:
	/*
	 * Try to read in an entire cluster at once.
	 */
	reada   = offset;
	reada >>= PAGE_CACHE_SHIFT + page_cluster;
	reada <<= PAGE_CACHE_SHIFT + page_cluster;

	for (i = 1 << page_cluster; i > 0; --i, reada += PAGE_CACHE_SIZE)
		new_page = try_to_read_ahead(file, reada, new_page);

	if (!new_page)
		new_page = page_cache_alloc();
	if (!new_page)
		goto oom;

	/*
	 * During getting the above page we might have slept,
	 * so we need to re-check the situation with the page
	 * cache.. The page we just got may be useful if we
	 * can't share, so don't get rid of it here.
	 */
	page = find_page(inode, offset);
	if (page)
		goto found_page;

	/*
	 * Now, create a new page-cache page from the page we got
	 */
	page = page_cache_entry(new_page);
	new_page = 0;
	add_to_page_cache(page, inode, offset, hash);

	if (inode->i_op->readpage(file, page) != 0)
		goto failure;

	goto found_page;

page_locked_wait:
	__wait_on_page(page);
	if (PageUptodate(page))
		goto success;
	
page_read_error:
	/*
	 * Umm, take care of errors if the page isn't up-to-date.
	 * Try to re-read it _once_. We do this synchronously,
	 * because there really aren't any performance issues here
	 * and we need to check for errors.
	 */
	if (inode->i_op->readpage(file, page) != 0)
		goto failure;
	wait_on_page(page);
	if (PageError(page))
		goto failure;
	if (PageUptodate(page))
		goto success;

	/*
	 * Things didn't work out. Return zero to tell the
	 * mm layer so, possibly freeing the page cache page first.
	 */
failure:
	page_cache_release(page);
	if (new_page)
		page_cache_free(new_page);
no_page:
	return 0;

release_and_oom:
	page_cache_release(page);
oom:
	return -1;
}

/*
 * Tries to write a shared mapped page to its backing store. May return -EIO
 * if the disk is full.
 */
static inline int do_write_page(struct inode * inode, struct file * file,
	const char * page, unsigned long offset)
{
	int retval;
	unsigned long size;
	loff_t loff = offset;
	mm_segment_t old_fs;

	size = offset + PAGE_SIZE;
	/* refuse to extend file size.. */
	if (S_ISREG(inode->i_mode)) {
		if (size > inode->i_size)
			size = inode->i_size;
		/* Ho humm.. We should have tested for this earlier */
		if (size < offset)
			return -EIO;
	}
	size -= offset;
	old_fs = get_fs();
	set_fs(KERNEL_DS);
	retval = -EIO;
	if (size == file->f_op->write(file, (const char *) page, size, &loff))
		retval = 0;
	set_fs(old_fs);
	return retval;
}

static int filemap_write_page(struct vm_area_struct * vma,
			      unsigned long offset,
			      unsigned long page,
			      int wait)
{
	int result;
	struct file * file;
	struct dentry * dentry;
	struct inode * inode;

	file = vma->vm_file;
	dentry = file->f_dentry;
	inode = dentry->d_inode;
	if (!file->f_op->write)
		return -EIO;

	/*
	 * If a task terminates while we're swapping the page, the vma and
	 * and file could be released ... increment the count to be safe.
	 */
	file->f_count++;

	/* 
	 * If this is a swapping operation rather than msync(), then
	 * leave the actual IO, and the restoration of the file count,
	 * to the kpiod thread.  Just queue the request for now.
	 */
	if (!wait) {
		make_pio_request(file, offset, page);
		return 0;
	}
	
	down(&inode->i_sem);
	result = do_write_page(inode, file, (const char *) page, offset);
	up(&inode->i_sem);
	fput(file);
	return result;
}


/*
 * The page cache takes care of races between somebody
 * trying to swap something out and swap something in
 * at the same time..
 */
int filemap_swapout(struct vm_area_struct * vma, struct page * page)
{
	return filemap_write_page(vma, page->offset, page_address(page), 0);
}

static inline int filemap_sync_pte(pte_t * ptep, struct vm_area_struct *vma,
	unsigned long address, unsigned int flags)
{
	pte_t pte = *ptep;
	unsigned long page;
	int error;

	if (!(flags & MS_INVALIDATE)) {
		if (!pte_present(pte))
			return 0;
		if (!pte_dirty(pte))
			return 0;
		flush_page_to_ram(pte_page(pte));
		flush_cache_page(vma, address);
		set_pte(ptep, pte_mkclean(pte));
		flush_tlb_page(vma, address);
		page = pte_page(pte);
		atomic_inc(&page_cache_entry(page)->count);
	} else {
		if (pte_none(pte))
			return 0;
		flush_cache_page(vma, address);
		pte_clear(ptep);
		flush_tlb_page(vma, address);
		if (!pte_present(pte)) {
			swap_free(pte_val(pte));
			return 0;
		}
		page = pte_page(pte);
		if (!pte_dirty(pte) || flags == MS_INVALIDATE) {
			page_cache_free(page);
			return 0;
		}
	}
	error = filemap_write_page(vma, address - vma->vm_start + vma->vm_offset, page, 1);
	page_cache_free(page);
	return error;
}

static inline int filemap_sync_pte_range(pmd_t * pmd,
	unsigned long address, unsigned long size, 
	struct vm_area_struct *vma, unsigned long offset, unsigned int flags)
{
	pte_t * pte;
	unsigned long end;
	int error;

	if (pmd_none(*pmd))
		return 0;
	if (pmd_bad(*pmd)) {
		printk("filemap_sync_pte_range: bad pmd (%08lx)\n", pmd_val(*pmd));
		pmd_clear(pmd);
		return 0;
	}
	pte = pte_offset(pmd, address);
	offset += address & PMD_MASK;
	address &= ~PMD_MASK;
	end = address + size;
	if (end > PMD_SIZE)
		end = PMD_SIZE;
	error = 0;
	do {
		error |= filemap_sync_pte(pte, vma, address + offset, flags);
		address += PAGE_SIZE;
		pte++;
	} while (address < end);
	return error;
}

static inline int filemap_sync_pmd_range(pgd_t * pgd,
	unsigned long address, unsigned long size, 
	struct vm_area_struct *vma, unsigned int flags)
{
	pmd_t * pmd;
	unsigned long offset, end;
	int error;

	if (pgd_none(*pgd))
		return 0;
	if (pgd_bad(*pgd)) {
		printk("filemap_sync_pmd_range: bad pgd (%08lx)\n", pgd_val(*pgd));
		pgd_clear(pgd);
		return 0;
	}
	pmd = pmd_offset(pgd, address);
	offset = address & PGDIR_MASK;
	address &= ~PGDIR_MASK;
	end = address + size;
	if (end > PGDIR_SIZE)
		end = PGDIR_SIZE;
	error = 0;
	do {
		error |= filemap_sync_pte_range(pmd, address, end - address, vma, offset, flags);
		address = (address + PMD_SIZE) & PMD_MASK;
		pmd++;
	} while (address < end);
	return error;
}

static int filemap_sync(struct vm_area_struct * vma, unsigned long address,
	size_t size, unsigned int flags)
{
	pgd_t * dir;
	unsigned long end = address + size;
	int error = 0;

	dir = pgd_offset(vma->vm_mm, address);
	flush_cache_range(vma->vm_mm, end - size, end);
	while (address < end) {
		error |= filemap_sync_pmd_range(dir, address, end - address, vma, flags);
		address = (address + PGDIR_SIZE) & PGDIR_MASK;
		dir++;
	}
	flush_tlb_range(vma->vm_mm, end - size, end);
	return error;
}

/*
 * This handles (potentially partial) area unmaps..
 */
static void filemap_unmap(struct vm_area_struct *vma, unsigned long start, size_t len)
{
	filemap_sync(vma, start, len, MS_ASYNC);
}

/*
 * Shared mappings need to be able to do the right thing at
 * close/unmap/sync. They will also use the private file as
 * backing-store for swapping..
 */
static struct vm_operations_struct file_shared_mmap = {
	NULL,			/* no special open */
	NULL,			/* no special close */
	filemap_unmap,		/* unmap - we need to sync the pages */
	NULL,			/* no special protect */
	filemap_sync,		/* sync */
	NULL,			/* advise */
	filemap_nopage,		/* nopage */
	NULL,			/* wppage */
	filemap_swapout,	/* swapout */
	NULL,			/* swapin */
};

/*
 * Private mappings just need to be able to load in the map.
 *
 * (This is actually used for shared mappings as well, if we
 * know they can't ever get write permissions..)
 */
static struct vm_operations_struct file_private_mmap = {
	NULL,			/* open */
	NULL,			/* close */
	NULL,			/* unmap */
	NULL,			/* protect */
	NULL,			/* sync */
	NULL,			/* advise */
	filemap_nopage,		/* nopage */
	NULL,			/* wppage */
	NULL,			/* swapout */
	NULL,			/* swapin */
};

/* This is used for a general mmap of a disk file */

int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
{
	struct vm_operations_struct * ops;
	struct inode *inode = file->f_dentry->d_inode;

	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) {
		ops = &file_shared_mmap;
		/* share_page() can only guarantee proper page sharing if
		 * the offsets are all page aligned. */
		if (vma->vm_offset & (PAGE_SIZE - 1))
			return -EINVAL;
	} else {
		ops = &file_private_mmap;
		if (inode->i_op && inode->i_op->bmap &&
		    (vma->vm_offset & (inode->i_sb->s_blocksize - 1)))
			return -EINVAL;
	}
	if (!inode->i_sb || !S_ISREG(inode->i_mode))
		return -EACCES;
	if (!inode->i_op || !inode->i_op->readpage)
		return -ENOEXEC;
	UPDATE_ATIME(inode);
	vma->vm_ops = ops;
	return 0;
}


/*
 * The msync() system call.
 */

static int msync_interval(struct vm_area_struct * vma,
	unsigned long start, unsigned long end, int flags)
{
	if (vma->vm_file && vma->vm_ops && vma->vm_ops->sync) {
		int error;
		error = vma->vm_ops->sync(vma, start, end-start, flags);
		if (!error && (flags & MS_SYNC)) {
			struct file * file = vma->vm_file;
			if (file) {
				struct dentry * dentry = file->f_dentry;
				struct inode * inode = dentry->d_inode;
				down(&inode->i_sem);
				error = file_fsync(file, dentry);
				up(&inode->i_sem);
			}
		}
		return error;
	}
	return 0;
}

asmlinkage int sys_msync(unsigned long start, size_t len, int flags)
{
	unsigned long end;
	struct vm_area_struct * vma;
	int unmapped_error, error = -EINVAL;

	down(&current->mm->mmap_sem);
	lock_kernel();
	if (start & ~PAGE_MASK)
		goto out;
	len = (len + ~PAGE_MASK) & PAGE_MASK;
	end = start + len;
	if (end < start)
		goto out;
	if (flags & ~(MS_ASYNC | MS_INVALIDATE | MS_SYNC))
		goto out;
	error = 0;
	if (end == start)
		goto out;
	/*
	 * If the interval [start,end) covers some unmapped address ranges,
	 * just ignore them, but return -EFAULT at the end.
	 */
	vma = find_vma(current->mm, start);
	unmapped_error = 0;
	for (;;) {
		/* Still start < end. */
		error = -EFAULT;
		if (!vma)
			goto out;
		/* Here start < vma->vm_end. */
		if (start < vma->vm_start) {
			unmapped_error = -EFAULT;
			start = vma->vm_start;
		}
		/* Here vma->vm_start <= start < vma->vm_end. */
		if (end <= vma->vm_end) {
			if (start < end) {
				error = msync_interval(vma, start, end, flags);
				if (error)
					goto out;
			}
			error = unmapped_error;
			goto out;
		}
		/* Here vma->vm_start <= start < vma->vm_end < end. */
		error = msync_interval(vma, start, vma->vm_end, flags);
		if (error)
			goto out;
		start = vma->vm_end;
		vma = vma->vm_next;
	}
out:
	unlock_kernel();
	up(&current->mm->mmap_sem);
	return error;
}

/*
 * Write to a file through the page cache. This is mainly for the
 * benefit of NFS and possibly other network-based file systems.
 *
 * We currently put everything into the page cache prior to writing it.
 * This is not a problem when writing full pages. With partial pages,
 * however, we first have to read the data into the cache, then
 * dirty the page, and finally schedule it for writing. Alternatively, we
 * could write-through just the portion of data that would go into that
 * page, but that would kill performance for applications that write data
 * line by line, and it's prone to race conditions.
 *
 * Note that this routine doesn't try to keep track of dirty pages. Each
 * file system has to do this all by itself, unfortunately.
 *							okir@monad.swb.de
 */
ssize_t
generic_file_write(struct file *file, const char *buf,
		   size_t count, loff_t *ppos)
{
	struct dentry	*dentry = file->f_dentry; 
	struct inode	*inode = dentry->d_inode; 
	unsigned long	pos = *ppos;
	unsigned long	limit = current->rlim[RLIMIT_FSIZE].rlim_cur;
	struct page	*page, **hash;
	unsigned long	page_cache = 0;
	unsigned long	written;
	long		status, sync;

	if (!inode->i_op || !inode->i_op->updatepage)
		return -EIO;

	if (file->f_error) {
		int error = file->f_error;
		file->f_error = 0;
		return error;
	}

	sync    = file->f_flags & O_SYNC;
	written = 0;

	if (file->f_flags & O_APPEND)
		pos = inode->i_size;

	/*
	 * Check whether we've reached the file size limit.
	 */
	status = -EFBIG;
	if (pos >= limit) {
		send_sig(SIGXFSZ, current, 0);
		goto out;
	}

	status  = 0;
	/*
	 * Check whether to truncate the write,
	 * and send the signal if we do.
	 */
	if (count > limit - pos) {
		send_sig(SIGXFSZ, current, 0);
		count = limit - pos;
	}

	while (count) {
		unsigned long bytes, pgpos, offset;
		char * dest;

		/*
		 * Try to find the page in the cache. If it isn't there,
		 * allocate a free page.
		 */
		offset = (pos & ~PAGE_CACHE_MASK);
		pgpos = pos & PAGE_CACHE_MASK;
		bytes = PAGE_CACHE_SIZE - offset;
		if (bytes > count)
			bytes = count;

		hash = page_hash(inode, pgpos);
		page = __find_page(inode, pgpos, *hash);
		if (!page) {
			if (!page_cache) {
				page_cache = page_cache_alloc();
				if (page_cache)
					continue;
				status = -ENOMEM;
				break;
			}
			page = page_cache_entry(page_cache);
			add_to_page_cache(page, inode, pgpos, hash);
			page_cache = 0;
		}

		/* Get exclusive IO access to the page.. */
		wait_on_page(page);
		set_bit(PG_locked, &page->flags);

		/*
		 * Do the real work.. If the writer ends up delaying the write,
		 * the writer needs to increment the page use counts until he
		 * is done with the page.
		 */
		dest = (char *) page_address(page) + offset;
		if (dest != buf) /* See comment in update_vm_cache_cond. */
			bytes -= copy_from_user(dest, buf, bytes);
		status = -EFAULT;
		if (bytes)
			status = inode->i_op->updatepage(file, page, offset, bytes, sync);

		/* Mark it unlocked again and drop the page.. */
		clear_bit(PG_locked, &page->flags);
		wake_up(&page->wait);
		page_cache_release(page);

		if (status < 0)
			break;

		written += status;
		count -= status;
		pos += status;
		buf += status;
	}
	*ppos = pos;
	if (pos > inode->i_size)
		inode->i_size = pos;

	if (page_cache)
		page_cache_free(page_cache);
out:
	return written ? written : status;
}

/*
 * Support routines for directory cacheing using the page cache.
 */

/*
 * Finds the page at the specified offset, installing a new page
 * if requested.  The count is incremented and the page is locked.
 *
 * Note: we don't have to worry about races here, as the caller
 * is holding the inode semaphore.
 */
unsigned long get_cached_page(struct inode * inode, unsigned long offset,
				int new)
{
	struct page * page;
	struct page ** hash;
	unsigned long page_cache = 0;

	hash = page_hash(inode, offset);
	page = __find_page(inode, offset, *hash);
	if (!page) {
		if (!new)
			goto out;
		page_cache = page_cache_alloc();
		if (!page_cache)
			goto out;
		clear_page(page_cache);
		page = page_cache_entry(page_cache);
		add_to_page_cache(page, inode, offset, hash);
	}
	if (atomic_read(&page->count) != 2)
		printk(KERN_ERR "get_cached_page: page count=%d\n",
			atomic_read(&page->count));
	if (test_bit(PG_locked, &page->flags))
		printk(KERN_ERR "get_cached_page: page already locked!\n");
	set_bit(PG_locked, &page->flags);
	page_cache = page_address(page);

out:
	return page_cache;
}

/*
 * Unlock and free a page.
 */
void put_cached_page(unsigned long addr)
{
	struct page * page = page_cache_entry(addr);

	if (!test_bit(PG_locked, &page->flags))
		printk("put_cached_page: page not locked!\n");
	if (atomic_read(&page->count) != 2)
		printk("put_cached_page: page count=%d\n", 
			atomic_read(&page->count));
	clear_bit(PG_locked, &page->flags);
	wake_up(&page->wait);
	page_cache_release(page);
}


/* Add request for page IO to the queue */

static inline void put_pio_request(struct pio_request *p)
{
	*pio_last = p;
	p->next = NULL;
	pio_last = &p->next;
}

/* Take the first page IO request off the queue */

static inline struct pio_request * get_pio_request(void)
{
	struct pio_request * p = pio_first;
	pio_first = p->next;
	if (!pio_first)
		pio_last = &pio_first;
	return p;
}

/* Make a new page IO request and queue it to the kpiod thread */

static inline void make_pio_request(struct file *file,
				    unsigned long offset,
				    unsigned long page)
{
	struct pio_request *p;

	atomic_inc(&page_cache_entry(page)->count);

	/* 
	 * We need to allocate without causing any recursive IO in the
	 * current thread's context.  We might currently be swapping out
	 * as a result of an allocation made while holding a critical
	 * filesystem lock.  To avoid deadlock, we *MUST* not reenter
	 * the filesystem in this thread.
	 *
	 * We can wait for kswapd to free memory, or we can try to free
	 * pages without actually performing further IO, without fear of
	 * deadlock.  --sct
	 */

	while ((p = kmem_cache_alloc(pio_request_cache, GFP_BUFFER)) == NULL) {
		if (try_to_free_pages(__GFP_WAIT))
			continue;
		current->state = TASK_INTERRUPTIBLE;
		schedule_timeout(HZ/10);
	}
	
	p->file   = file;
	p->offset = offset;
	p->page   = page;

	put_pio_request(p);
	wake_up(&pio_wait);
}


/*
 * This is the only thread which is allowed to write out filemap pages
 * while swapping.
 * 
 * To avoid deadlock, it is important that we never reenter this thread.
 * Although recursive memory allocations within this thread may result
 * in more page swapping, that swapping will always be done by queuing
 * another IO request to the same thread: we will never actually start
 * that IO request until we have finished with the current one, and so
 * we will not deadlock.  
 */

int kpiod(void * unused)
{
	struct task_struct *tsk = current;
	struct wait_queue wait = { tsk, };
	struct inode * inode;
	struct dentry * dentry;
	struct pio_request * p;
	
	tsk->session = 1;
	tsk->pgrp = 1;
	strcpy(tsk->comm, "kpiod");
	sigfillset(&tsk->blocked);
	init_waitqueue(&pio_wait);
	/*
	 * Mark this task as a memory allocator - we don't want to get caught
	 * up in the regular mm freeing frenzy if we have to allocate memory
	 * in order to write stuff out.
	 */
	tsk->flags |= PF_MEMALLOC;

	lock_kernel();
	
	pio_request_cache = kmem_cache_create("pio_request", 
					      sizeof(struct pio_request),
					      0, SLAB_HWCACHE_ALIGN, 
					      NULL, NULL);
	if (!pio_request_cache)
		panic ("Could not create pio_request slab cache");

	while (1) {
		tsk->state = TASK_INTERRUPTIBLE;
		add_wait_queue(&pio_wait, &wait);
		if (!pio_first)
			schedule();
		remove_wait_queue(&pio_wait, &wait);
		tsk->state = TASK_RUNNING;

		while (pio_first) {
			p = get_pio_request();
			dentry = p->file->f_dentry;
			inode = dentry->d_inode;
			
			down(&inode->i_sem);
			do_write_page(inode, p->file,
				      (const char *) p->page, p->offset);
			up(&inode->i_sem);
			fput(p->file);
			page_cache_free(p->page);
			kmem_cache_free(pio_request_cache, p);
		}
	}
}

void __init page_cache_init(unsigned long memory_size)
{
	unsigned long htable_size;
	long order;

	htable_size  = memory_size >> PAGE_SHIFT;
	htable_size *= sizeof(struct page *);
	for(order = 0; (PAGE_SIZE << order) < htable_size; order++)
		;

	do {
		unsigned long tmp = (PAGE_SIZE << order) / sizeof(struct page *);

		page_hash_mask = (tmp - 1UL);

		page_hash_bits = 0;
		while((tmp >>= 1UL) != 0UL)
			page_hash_bits++;

		page_hash_table = (struct page **)
			__get_free_pages(GFP_ATOMIC, order);
	} while(page_hash_table == NULL && --order >= 0L);

	printk("Page cache hash table entries: %d (order %ld, %ldk)\n",
	       (1 << page_hash_bits), order, (1UL << order) * PAGE_SIZE / 1024);
	if (!page_hash_table)
		panic("Failed to allocate page hash table\n");
	memset(page_hash_table, 0,
	       (PAGE_HASH_MASK + 1UL) * sizeof(struct page *));
}