Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 | /* * linux/fs/buffer.c * * Copyright (C) 1991, 1992 Linus Torvalds */ /* * 'buffer.c' implements the buffer-cache functions. Race-conditions have * been avoided by NEVER letting an interrupt change a buffer (except for the * data, of course), but instead letting the caller do it. */ /* Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 */ /* Removed a lot of unnecessary code and simplified things now that * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 */ /* Speed up hash, lru, and free list operations. Use gfp() for allocating * hash table, use SLAB cache for buffer heads. -DaveM */ /* Added 32k buffer block sizes - these are required older ARM systems. * - RMK */ /* Thread it... -DaveM */ /* async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de> */ #include <linux/config.h> #include <linux/sched.h> #include <linux/fs.h> #include <linux/malloc.h> #include <linux/locks.h> #include <linux/errno.h> #include <linux/swap.h> #include <linux/swapctl.h> #include <linux/smp_lock.h> #include <linux/vmalloc.h> #include <linux/blkdev.h> #include <linux/sysrq.h> #include <linux/file.h> #include <linux/init.h> #include <linux/quotaops.h> #include <linux/iobuf.h> #include <linux/highmem.h> #include <asm/uaccess.h> #include <asm/io.h> #include <asm/bitops.h> #include <asm/mmu_context.h> #define NR_SIZES 7 static char buffersize_index[65] = {-1, 0, 1, -1, 2, -1, -1, -1, 3, -1, -1, -1, -1, -1, -1, -1, 4, -1, -1, -1, -1, -1, -1, -1, -1,-1, -1, -1, -1, -1, -1, -1, 5, -1, -1, -1, -1, -1, -1, -1, -1,-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,-1, -1, -1, -1, -1, -1, -1, 6}; #define BUFSIZE_INDEX(X) ((int) buffersize_index[(X)>>9]) #define MAX_BUF_PER_PAGE (PAGE_CACHE_SIZE / 512) #define NR_RESERVED (2*MAX_BUF_PER_PAGE) #define MAX_UNUSED_BUFFERS NR_RESERVED+20 /* don't ever have more than this number of unused buffer heads */ /* Anti-deadlock ordering: * lru_list_lock > hash_table_lock > free_list_lock > unused_list_lock */ #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_inode_buffers) /* * Hash table gook.. */ static unsigned int bh_hash_mask; static unsigned int bh_hash_shift; static struct buffer_head **hash_table; static rwlock_t hash_table_lock = RW_LOCK_UNLOCKED; static struct buffer_head *lru_list[NR_LIST]; static spinlock_t lru_list_lock = SPIN_LOCK_UNLOCKED; static int nr_buffers_type[NR_LIST]; static unsigned long size_buffers_type[NR_LIST]; static struct buffer_head * unused_list; static int nr_unused_buffer_heads; static spinlock_t unused_list_lock = SPIN_LOCK_UNLOCKED; static DECLARE_WAIT_QUEUE_HEAD(buffer_wait); struct bh_free_head { struct buffer_head *list; spinlock_t lock; }; static struct bh_free_head free_list[NR_SIZES]; static int grow_buffers(int size); static void __refile_buffer(struct buffer_head *); /* This is used by some architectures to estimate available memory. */ atomic_t buffermem_pages = ATOMIC_INIT(0); /* Here is the parameter block for the bdflush process. If you add or * remove any of the parameters, make sure to update kernel/sysctl.c. */ #define N_PARAM 9 /* The dummy values in this structure are left in there for compatibility * with old programs that play with the /proc entries. */ union bdflush_param { struct { int nfract; /* Percentage of buffer cache dirty to activate bdflush */ int ndirty; /* Maximum number of dirty blocks to write out per wake-cycle */ int nrefill; /* Number of clean buffers to try to obtain each time we call refill */ int dummy1; /* unused */ int interval; /* jiffies delay between kupdate flushes */ int age_buffer; /* Time for normal buffer to age before we flush it */ int nfract_sync; /* Percentage of buffer cache dirty to activate bdflush synchronously */ int dummy2; /* unused */ int dummy3; /* unused */ } b_un; unsigned int data[N_PARAM]; } bdf_prm = {{30, 64, 64, 256, 5*HZ, 30*HZ, 60, 0, 0}}; /* These are the min and max parameter values that we will allow to be assigned */ int bdflush_min[N_PARAM] = { 0, 10, 5, 25, 0, 1*HZ, 0, 0, 0}; int bdflush_max[N_PARAM] = {100,50000, 20000, 20000,600*HZ, 6000*HZ, 100, 0, 0}; /* * Rewrote the wait-routines to use the "new" wait-queue functionality, * and getting rid of the cli-sti pairs. The wait-queue routines still * need cli-sti, but now it's just a couple of 386 instructions or so. * * Note that the real wait_on_buffer() is an inline function that checks * if 'b_wait' is set before calling this, so that the queues aren't set * up unnecessarily. */ void __wait_on_buffer(struct buffer_head * bh) { struct task_struct *tsk = current; DECLARE_WAITQUEUE(wait, tsk); atomic_inc(&bh->b_count); add_wait_queue(&bh->b_wait, &wait); do { run_task_queue(&tq_disk); set_task_state(tsk, TASK_UNINTERRUPTIBLE); if (!buffer_locked(bh)) break; schedule(); } while (buffer_locked(bh)); tsk->state = TASK_RUNNING; remove_wait_queue(&bh->b_wait, &wait); atomic_dec(&bh->b_count); } /* Call sync_buffers with wait!=0 to ensure that the call does not * return until all buffer writes have completed. Sync() may return * before the writes have finished; fsync() may not. */ /* Godamity-damn. Some buffers (bitmaps for filesystems) * spontaneously dirty themselves without ever brelse being called. * We will ultimately want to put these in a separate list, but for * now we search all of the lists for dirty buffers. */ static int sync_buffers(kdev_t dev, int wait) { int i, retry, pass = 0, err = 0; struct buffer_head * bh, *next; /* One pass for no-wait, three for wait: * 0) write out all dirty, unlocked buffers; * 1) write out all dirty buffers, waiting if locked; * 2) wait for completion by waiting for all buffers to unlock. */ do { retry = 0; /* We search all lists as a failsafe mechanism, not because we expect * there to be dirty buffers on any of the other lists. */ repeat: spin_lock(&lru_list_lock); bh = lru_list[BUF_DIRTY]; if (!bh) goto repeat2; for (i = nr_buffers_type[BUF_DIRTY]*2 ; i-- > 0 ; bh = next) { next = bh->b_next_free; if (!lru_list[BUF_DIRTY]) break; if (dev && bh->b_dev != dev) continue; if (buffer_locked(bh)) { /* Buffer is locked; skip it unless wait is * requested AND pass > 0. */ if (!wait || !pass) { retry = 1; continue; } atomic_inc(&bh->b_count); spin_unlock(&lru_list_lock); wait_on_buffer (bh); atomic_dec(&bh->b_count); goto repeat; } /* If an unlocked buffer is not uptodate, there has * been an IO error. Skip it. */ if (wait && buffer_req(bh) && !buffer_locked(bh) && !buffer_dirty(bh) && !buffer_uptodate(bh)) { err = -EIO; continue; } /* Don't write clean buffers. Don't write ANY buffers * on the third pass. */ if (!buffer_dirty(bh) || pass >= 2) continue; atomic_inc(&bh->b_count); spin_unlock(&lru_list_lock); ll_rw_block(WRITE, 1, &bh); atomic_dec(&bh->b_count); retry = 1; goto repeat; } repeat2: bh = lru_list[BUF_LOCKED]; if (!bh) { spin_unlock(&lru_list_lock); break; } for (i = nr_buffers_type[BUF_LOCKED]*2 ; i-- > 0 ; bh = next) { next = bh->b_next_free; if (!lru_list[BUF_LOCKED]) break; if (dev && bh->b_dev != dev) continue; if (buffer_locked(bh)) { /* Buffer is locked; skip it unless wait is * requested AND pass > 0. */ if (!wait || !pass) { retry = 1; continue; } atomic_inc(&bh->b_count); spin_unlock(&lru_list_lock); wait_on_buffer (bh); spin_lock(&lru_list_lock); atomic_dec(&bh->b_count); goto repeat2; } } spin_unlock(&lru_list_lock); /* If we are waiting for the sync to succeed, and if any dirty * blocks were written, then repeat; on the second pass, only * wait for buffers being written (do not pass to write any * more buffers on the second pass). */ } while (wait && retry && ++pass<=2); return err; } void sync_dev(kdev_t dev) { sync_supers(dev); sync_inodes(dev); DQUOT_SYNC(dev); /* sync all the dirty buffers out to disk only _after_ all the high level layers finished generated buffer dirty data (or we'll return with some buffer still dirty on the blockdevice so breaking the semantics of this call) */ sync_buffers(dev, 0); /* * FIXME(eric) we need to sync the physical devices here. * This is because some (scsi) controllers have huge amounts of * cache onboard (hundreds of Mb), and we need to instruct * them to commit all of the dirty memory to disk, and we should * not return until this has happened. * * This would need to get implemented by going through the assorted * layers so that each block major number can be synced, and this * would call down into the upper and mid-layer scsi. */ } int fsync_dev(kdev_t dev) { sync_buffers(dev, 0); lock_kernel(); sync_supers(dev); sync_inodes(dev); DQUOT_SYNC(dev); unlock_kernel(); return sync_buffers(dev, 1); } asmlinkage long sys_sync(void) { fsync_dev(0); return 0; } /* * filp may be NULL if called via the msync of a vma. */ int file_fsync(struct file *filp, struct dentry *dentry, int datasync) { struct inode * inode = dentry->d_inode; struct super_block * sb; kdev_t dev; int ret; lock_kernel(); /* sync the inode to buffers */ write_inode_now(inode, 0); /* sync the superblock to buffers */ sb = inode->i_sb; lock_super(sb); if (sb->s_op && sb->s_op->write_super) sb->s_op->write_super(sb); unlock_super(sb); /* .. finally sync the buffers to disk */ dev = inode->i_dev; ret = sync_buffers(dev, 1); unlock_kernel(); return ret; } asmlinkage long sys_fsync(unsigned int fd) { struct file * file; struct dentry * dentry; struct inode * inode; int err; err = -EBADF; file = fget(fd); if (!file) goto out; dentry = file->f_dentry; inode = dentry->d_inode; err = -EINVAL; if (!file->f_op || !file->f_op->fsync) goto out_putf; /* We need to protect against concurrent writers.. */ down(&inode->i_sem); filemap_fdatasync(inode->i_mapping); err = file->f_op->fsync(file, dentry, 0); filemap_fdatawait(inode->i_mapping); up(&inode->i_sem); out_putf: fput(file); out: return err; } asmlinkage long sys_fdatasync(unsigned int fd) { struct file * file; struct dentry * dentry; struct inode * inode; int err; err = -EBADF; file = fget(fd); if (!file) goto out; dentry = file->f_dentry; inode = dentry->d_inode; err = -EINVAL; if (!file->f_op || !file->f_op->fsync) goto out_putf; down(&inode->i_sem); filemap_fdatasync(inode->i_mapping); err = file->f_op->fsync(file, dentry, 1); filemap_fdatawait(inode->i_mapping); up(&inode->i_sem); out_putf: fput(file); out: return err; } /* After several hours of tedious analysis, the following hash * function won. Do not mess with it... -DaveM */ #define _hashfn(dev,block) \ ((((dev)<<(bh_hash_shift - 6)) ^ ((dev)<<(bh_hash_shift - 9))) ^ \ (((block)<<(bh_hash_shift - 6)) ^ ((block) >> 13) ^ \ ((block) << (bh_hash_shift - 12)))) #define hash(dev,block) hash_table[(_hashfn(HASHDEV(dev),block) & bh_hash_mask)] static __inline__ void __hash_link(struct buffer_head *bh, struct buffer_head **head) { if ((bh->b_next = *head) != NULL) bh->b_next->b_pprev = &bh->b_next; *head = bh; bh->b_pprev = head; } static __inline__ void __hash_unlink(struct buffer_head *bh) { if (bh->b_pprev) { if (bh->b_next) bh->b_next->b_pprev = bh->b_pprev; *(bh->b_pprev) = bh->b_next; bh->b_pprev = NULL; } } static void __insert_into_lru_list(struct buffer_head * bh, int blist) { struct buffer_head **bhp = &lru_list[blist]; if(!*bhp) { *bhp = bh; bh->b_prev_free = bh; } bh->b_next_free = *bhp; bh->b_prev_free = (*bhp)->b_prev_free; (*bhp)->b_prev_free->b_next_free = bh; (*bhp)->b_prev_free = bh; nr_buffers_type[blist]++; size_buffers_type[blist] += bh->b_size; } static void __remove_from_lru_list(struct buffer_head * bh, int blist) { if (bh->b_prev_free || bh->b_next_free) { bh->b_prev_free->b_next_free = bh->b_next_free; bh->b_next_free->b_prev_free = bh->b_prev_free; if (lru_list[blist] == bh) lru_list[blist] = bh->b_next_free; if (lru_list[blist] == bh) lru_list[blist] = NULL; bh->b_next_free = bh->b_prev_free = NULL; nr_buffers_type[blist]--; size_buffers_type[blist] -= bh->b_size; } } static void __remove_from_free_list(struct buffer_head * bh, int index) { if(bh->b_next_free == bh) free_list[index].list = NULL; else { bh->b_prev_free->b_next_free = bh->b_next_free; bh->b_next_free->b_prev_free = bh->b_prev_free; if (free_list[index].list == bh) free_list[index].list = bh->b_next_free; } bh->b_next_free = bh->b_prev_free = NULL; } /* must be called with both the hash_table_lock and the lru_list_lock held */ static void __remove_from_queues(struct buffer_head *bh) { __hash_unlink(bh); __remove_from_lru_list(bh, bh->b_list); } static void __insert_into_queues(struct buffer_head *bh) { struct buffer_head **head = &hash(bh->b_dev, bh->b_blocknr); __hash_link(bh, head); __insert_into_lru_list(bh, bh->b_list); } /* This function must only run if there are no other * references _anywhere_ to this buffer head. */ static void put_last_free(struct buffer_head * bh) { struct bh_free_head *head = &free_list[BUFSIZE_INDEX(bh->b_size)]; struct buffer_head **bhp = &head->list; bh->b_state = 0; spin_lock(&head->lock); bh->b_dev = B_FREE; if(!*bhp) { *bhp = bh; bh->b_prev_free = bh; } bh->b_next_free = *bhp; bh->b_prev_free = (*bhp)->b_prev_free; (*bhp)->b_prev_free->b_next_free = bh; (*bhp)->b_prev_free = bh; spin_unlock(&head->lock); } /* * Why like this, I hear you say... The reason is race-conditions. * As we don't lock buffers (unless we are reading them, that is), * something might happen to it while we sleep (ie a read-error * will force it bad). This shouldn't really happen currently, but * the code is ready. */ static inline struct buffer_head * __get_hash_table(kdev_t dev, int block, int size) { struct buffer_head *bh = hash(dev, block); for (; bh; bh = bh->b_next) if (bh->b_blocknr == block && bh->b_size == size && bh->b_dev == dev) break; if (bh) atomic_inc(&bh->b_count); return bh; } struct buffer_head * get_hash_table(kdev_t dev, int block, int size) { struct buffer_head *bh; read_lock(&hash_table_lock); bh = __get_hash_table(dev, block, size); read_unlock(&hash_table_lock); return bh; } unsigned int get_hardblocksize(kdev_t dev) { /* * Get the hard sector size for the given device. If we don't know * what it is, return 0. */ if (hardsect_size[MAJOR(dev)] != NULL) { int blksize = hardsect_size[MAJOR(dev)][MINOR(dev)]; if (blksize != 0) return blksize; } /* * We don't know what the hardware sector size for this device is. * Return 0 indicating that we don't know. */ return 0; } void buffer_insert_inode_queue(struct buffer_head *bh, struct inode *inode) { spin_lock(&lru_list_lock); if (bh->b_inode) list_del(&bh->b_inode_buffers); bh->b_inode = inode; list_add(&bh->b_inode_buffers, &inode->i_dirty_buffers); spin_unlock(&lru_list_lock); } /* The caller must have the lru_list lock before calling the remove_inode_queue functions. */ static void __remove_inode_queue(struct buffer_head *bh) { bh->b_inode = NULL; list_del(&bh->b_inode_buffers); } static inline void remove_inode_queue(struct buffer_head *bh) { if (bh->b_inode) __remove_inode_queue(bh); } int inode_has_buffers(struct inode *inode) { int ret; spin_lock(&lru_list_lock); ret = !list_empty(&inode->i_dirty_buffers); spin_unlock(&lru_list_lock); return ret; } /* If invalidate_buffers() will trash dirty buffers, it means some kind of fs corruption is going on. Trashing dirty data always imply losing information that was supposed to be just stored on the physical layer by the user. Thus invalidate_buffers in general usage is not allwowed to trash dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to be preserved. NOTE: In the case where the user removed a removable-media-disk even if there's still dirty data not synced on disk (due a bug in the device driver or due an error of the user), by not destroying the dirty buffers we could generate corruption also on the next media inserted, thus a parameter is necessary to handle this case in the most safe way possible (trying to not corrupt also the new disk inserted with the data belonging to the old now corrupted disk). Also for the ramdisk the natural thing to do in order to release the ramdisk memory is to destroy dirty buffers. These are two special cases. Normal usage imply the device driver to issue a sync on the device (without waiting I/O completation) and then an invalidate_buffers call that doesn't trash dirty buffers. */ void __invalidate_buffers(kdev_t dev, int destroy_dirty_buffers) { int i, nlist, slept; struct buffer_head * bh, * bh_next; retry: slept = 0; spin_lock(&lru_list_lock); for(nlist = 0; nlist < NR_LIST; nlist++) { bh = lru_list[nlist]; if (!bh) continue; for (i = nr_buffers_type[nlist]; i > 0 ; bh = bh_next, i--) { bh_next = bh->b_next_free; /* Another device? */ if (bh->b_dev != dev) continue; /* Part of a mapping? */ if (bh->b_page->mapping) continue; if (buffer_locked(bh)) { atomic_inc(&bh->b_count); spin_unlock(&lru_list_lock); wait_on_buffer(bh); slept = 1; spin_lock(&lru_list_lock); atomic_dec(&bh->b_count); } write_lock(&hash_table_lock); if (!atomic_read(&bh->b_count) && (destroy_dirty_buffers || !buffer_dirty(bh))) { remove_inode_queue(bh); __remove_from_queues(bh); put_last_free(bh); } /* else complain loudly? */ write_unlock(&hash_table_lock); if (slept) goto out; } } out: spin_unlock(&lru_list_lock); if (slept) goto retry; } void set_blocksize(kdev_t dev, int size) { extern int *blksize_size[]; int i, nlist, slept; struct buffer_head * bh, * bh_next; if (!blksize_size[MAJOR(dev)]) return; /* Size must be a power of two, and between 512 and PAGE_SIZE */ if (size > PAGE_SIZE || size < 512 || (size & (size-1))) panic("Invalid blocksize passed to set_blocksize"); if (blksize_size[MAJOR(dev)][MINOR(dev)] == 0 && size == BLOCK_SIZE) { blksize_size[MAJOR(dev)][MINOR(dev)] = size; return; } if (blksize_size[MAJOR(dev)][MINOR(dev)] == size) return; sync_buffers(dev, 2); blksize_size[MAJOR(dev)][MINOR(dev)] = size; retry: slept = 0; spin_lock(&lru_list_lock); for(nlist = 0; nlist < NR_LIST; nlist++) { bh = lru_list[nlist]; if (!bh) continue; for (i = nr_buffers_type[nlist]; i > 0 ; bh = bh_next, i--) { bh_next = bh->b_next_free; if (bh->b_dev != dev || bh->b_size == size) continue; if (buffer_locked(bh)) { atomic_inc(&bh->b_count); spin_unlock(&lru_list_lock); wait_on_buffer(bh); slept = 1; spin_lock(&lru_list_lock); atomic_dec(&bh->b_count); } write_lock(&hash_table_lock); if (!atomic_read(&bh->b_count)) { if (buffer_dirty(bh)) printk(KERN_WARNING "set_blocksize: dev %s buffer_dirty %lu size %hu\n", kdevname(dev), bh->b_blocknr, bh->b_size); remove_inode_queue(bh); __remove_from_queues(bh); put_last_free(bh); } else { if (atomic_set_buffer_clean(bh)) __refile_buffer(bh); clear_bit(BH_Uptodate, &bh->b_state); printk(KERN_WARNING "set_blocksize: " "b_count %d, dev %s, block %lu, from %p\n", atomic_read(&bh->b_count), bdevname(bh->b_dev), bh->b_blocknr, __builtin_return_address(0)); } write_unlock(&hash_table_lock); if (slept) goto out; } } out: spin_unlock(&lru_list_lock); if (slept) goto retry; } /* * We used to try various strange things. Let's not. * We'll just try to balance dirty buffers, and possibly * launder some pages. */ static void refill_freelist(int size) { balance_dirty(NODEV); if (free_shortage()) page_launder(GFP_BUFFER, 0); grow_buffers(size); } void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private) { bh->b_list = BUF_CLEAN; bh->b_end_io = handler; bh->b_private = private; } static void end_buffer_io_async(struct buffer_head * bh, int uptodate) { static spinlock_t page_uptodate_lock = SPIN_LOCK_UNLOCKED; unsigned long flags; struct buffer_head *tmp; struct page *page; mark_buffer_uptodate(bh, uptodate); /* This is a temporary buffer used for page I/O. */ page = bh->b_page; if (!uptodate) SetPageError(page); /* * Be _very_ careful from here on. Bad things can happen if * two buffer heads end IO at almost the same time and both * decide that the page is now completely done. * * Async buffer_heads are here only as labels for IO, and get * thrown away once the IO for this page is complete. IO is * deemed complete once all buffers have been visited * (b_count==0) and are now unlocked. We must make sure that * only the _last_ buffer that decrements its count is the one * that unlock the page.. */ spin_lock_irqsave(&page_uptodate_lock, flags); unlock_buffer(bh); atomic_dec(&bh->b_count); tmp = bh->b_this_page; while (tmp != bh) { if (tmp->b_end_io == end_buffer_io_async && buffer_locked(tmp)) goto still_busy; tmp = tmp->b_this_page; } /* OK, the async IO on this page is complete. */ spin_unlock_irqrestore(&page_uptodate_lock, flags); /* * if none of the buffers had errors then we can set the * page uptodate: */ if (!PageError(page)) SetPageUptodate(page); /* * Run the hooks that have to be done when a page I/O has completed. */ if (PageTestandClearDecrAfter(page)) atomic_dec(&nr_async_pages); UnlockPage(page); return; still_busy: spin_unlock_irqrestore(&page_uptodate_lock, flags); return; } /* * Synchronise all the inode's dirty buffers to the disk. * * We have conflicting pressures: we want to make sure that all * initially dirty buffers get waited on, but that any subsequently * dirtied buffers don't. After all, we don't want fsync to last * forever if somebody is actively writing to the file. * * Do this in two main stages: first we copy dirty buffers to a * temporary inode list, queueing the writes as we go. Then we clean * up, waiting for those writes to complete. * * During this second stage, any subsequent updates to the file may end * up refiling the buffer on the original inode's dirty list again, so * there is a chance we will end up with a buffer queued for write but * not yet completed on that list. So, as a final cleanup we go through * the osync code to catch these locked, dirty buffers without requeuing * any newly dirty buffers for write. */ int fsync_inode_buffers(struct inode *inode) { struct buffer_head *bh; struct inode tmp; int err = 0, err2; INIT_LIST_HEAD(&tmp.i_dirty_buffers); spin_lock(&lru_list_lock); while (!list_empty(&inode->i_dirty_buffers)) { bh = BH_ENTRY(inode->i_dirty_buffers.next); list_del(&bh->b_inode_buffers); if (!buffer_dirty(bh) && !buffer_locked(bh)) bh->b_inode = NULL; else { bh->b_inode = &tmp; list_add(&bh->b_inode_buffers, &tmp.i_dirty_buffers); if (buffer_dirty(bh)) { atomic_inc(&bh->b_count); spin_unlock(&lru_list_lock); ll_rw_block(WRITE, 1, &bh); brelse(bh); spin_lock(&lru_list_lock); } } } while (!list_empty(&tmp.i_dirty_buffers)) { bh = BH_ENTRY(tmp.i_dirty_buffers.prev); remove_inode_queue(bh); atomic_inc(&bh->b_count); spin_unlock(&lru_list_lock); wait_on_buffer(bh); if (!buffer_uptodate(bh)) err = -EIO; brelse(bh); spin_lock(&lru_list_lock); } spin_unlock(&lru_list_lock); err2 = osync_inode_buffers(inode); if (err) return err; else return err2; } /* * osync is designed to support O_SYNC io. It waits synchronously for * all already-submitted IO to complete, but does not queue any new * writes to the disk. * * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as * you dirty the buffers, and then use osync_inode_buffers to wait for * completion. Any other dirty buffers which are not yet queued for * write will not be flushed to disk by the osync. */ int osync_inode_buffers(struct inode *inode) { struct buffer_head *bh; struct list_head *list; int err = 0; spin_lock(&lru_list_lock); repeat: for (list = inode->i_dirty_buffers.prev; bh = BH_ENTRY(list), list != &inode->i_dirty_buffers; list = bh->b_inode_buffers.prev) { if (buffer_locked(bh)) { atomic_inc(&bh->b_count); spin_unlock(&lru_list_lock); wait_on_buffer(bh); if (!buffer_uptodate(bh)) err = -EIO; brelse(bh); spin_lock(&lru_list_lock); goto repeat; } } spin_unlock(&lru_list_lock); return err; } /* * Invalidate any and all dirty buffers on a given inode. We are * probably unmounting the fs, but that doesn't mean we have already * done a sync(). Just drop the buffers from the inode list. */ void invalidate_inode_buffers(struct inode *inode) { struct list_head *list, *next; spin_lock(&lru_list_lock); list = inode->i_dirty_buffers.next; while (list != &inode->i_dirty_buffers) { next = list->next; remove_inode_queue(BH_ENTRY(list)); list = next; } spin_unlock(&lru_list_lock); } /* * Ok, this is getblk, and it isn't very clear, again to hinder * race-conditions. Most of the code is seldom used, (ie repeating), * so it should be much more efficient than it looks. * * The algorithm is changed: hopefully better, and an elusive bug removed. * * 14.02.92: changed it to sync dirty buffers a bit: better performance * when the filesystem starts to get full of dirty blocks (I hope). */ struct buffer_head * getblk(kdev_t dev, int block, int size) { struct buffer_head * bh; int isize; repeat: spin_lock(&lru_list_lock); write_lock(&hash_table_lock); bh = __get_hash_table(dev, block, size); if (bh) goto out; isize = BUFSIZE_INDEX(size); spin_lock(&free_list[isize].lock); bh = free_list[isize].list; if (bh) { __remove_from_free_list(bh, isize); atomic_set(&bh->b_count, 1); } spin_unlock(&free_list[isize].lock); /* * OK, FINALLY we know that this buffer is the only one of * its kind, we hold a reference (b_count>0), it is unlocked, * and it is clean. */ if (bh) { init_buffer(bh, NULL, NULL); bh->b_dev = dev; bh->b_blocknr = block; bh->b_state = 1 << BH_Mapped; /* Insert the buffer into the regular lists */ __insert_into_queues(bh); out: write_unlock(&hash_table_lock); spin_unlock(&lru_list_lock); touch_buffer(bh); return bh; } /* * If we block while refilling the free list, somebody may * create the buffer first ... search the hashes again. */ write_unlock(&hash_table_lock); spin_unlock(&lru_list_lock); refill_freelist(size); goto repeat; } /* -1 -> no need to flush 0 -> async flush 1 -> sync flush (wait for I/O completation) */ int balance_dirty_state(kdev_t dev) { unsigned long dirty, tot, hard_dirty_limit, soft_dirty_limit; int shortage; dirty = size_buffers_type[BUF_DIRTY] >> PAGE_SHIFT; tot = nr_free_buffer_pages(); dirty *= 100; soft_dirty_limit = tot * bdf_prm.b_un.nfract; hard_dirty_limit = tot * bdf_prm.b_un.nfract_sync; /* First, check for the "real" dirty limit. */ if (dirty > soft_dirty_limit) { if (dirty > hard_dirty_limit) return 1; return 0; } /* * If we are about to get low on free pages and * cleaning the inactive_dirty pages would help * fix this, wake up bdflush. */ shortage = free_shortage(); if (shortage && nr_inactive_dirty_pages > shortage && nr_inactive_dirty_pages > freepages.high) return 0; return -1; } /* * if a new dirty buffer is created we need to balance bdflush. * * in the future we might want to make bdflush aware of different * pressures on different devices - thus the (currently unused) * 'dev' parameter. */ void balance_dirty(kdev_t dev) { int state = balance_dirty_state(dev); if (state < 0) return; wakeup_bdflush(state); } static __inline__ void __mark_dirty(struct buffer_head *bh) { bh->b_flushtime = jiffies + bdf_prm.b_un.age_buffer; refile_buffer(bh); } /* atomic version, the user must call balance_dirty() by hand as soon as it become possible to block */ void __mark_buffer_dirty(struct buffer_head *bh) { if (!atomic_set_buffer_dirty(bh)) __mark_dirty(bh); } void mark_buffer_dirty(struct buffer_head *bh) { if (!atomic_set_buffer_dirty(bh)) { __mark_dirty(bh); balance_dirty(bh->b_dev); } } /* * A buffer may need to be moved from one buffer list to another * (e.g. in case it is not shared any more). Handle this. */ static void __refile_buffer(struct buffer_head *bh) { int dispose = BUF_CLEAN; if (buffer_locked(bh)) dispose = BUF_LOCKED; if (buffer_dirty(bh)) dispose = BUF_DIRTY; if (buffer_protected(bh)) dispose = BUF_PROTECTED; if (dispose != bh->b_list) { __remove_from_lru_list(bh, bh->b_list); bh->b_list = dispose; if (dispose == BUF_CLEAN) remove_inode_queue(bh); __insert_into_lru_list(bh, dispose); } } void refile_buffer(struct buffer_head *bh) { spin_lock(&lru_list_lock); __refile_buffer(bh); spin_unlock(&lru_list_lock); } /* * Release a buffer head */ void __brelse(struct buffer_head * buf) { if (atomic_read(&buf->b_count)) { atomic_dec(&buf->b_count); return; } printk("VFS: brelse: Trying to free free buffer\n"); } /* * bforget() is like brelse(), except it puts the buffer on the * free list if it can.. We can NOT free the buffer if: * - there are other users of it * - it is locked and thus can have active IO */ void __bforget(struct buffer_head * buf) { /* grab the lru lock here to block bdflush. */ spin_lock(&lru_list_lock); write_lock(&hash_table_lock); if (!atomic_dec_and_test(&buf->b_count) || buffer_locked(buf) || buffer_protected(buf)) goto in_use; __hash_unlink(buf); remove_inode_queue(buf); write_unlock(&hash_table_lock); __remove_from_lru_list(buf, buf->b_list); spin_unlock(&lru_list_lock); put_last_free(buf); return; in_use: write_unlock(&hash_table_lock); spin_unlock(&lru_list_lock); } /* * bread() reads a specified block and returns the buffer that contains * it. It returns NULL if the block was unreadable. */ struct buffer_head * bread(kdev_t dev, int block, int size) { struct buffer_head * bh; bh = getblk(dev, block, size); if (buffer_uptodate(bh)) return bh; ll_rw_block(READ, 1, &bh); wait_on_buffer(bh); if (buffer_uptodate(bh)) return bh; brelse(bh); return NULL; } /* * Note: the caller should wake up the buffer_wait list if needed. */ static __inline__ void __put_unused_buffer_head(struct buffer_head * bh) { if (bh->b_inode) BUG(); if (nr_unused_buffer_heads >= MAX_UNUSED_BUFFERS) { kmem_cache_free(bh_cachep, bh); } else { bh->b_blocknr = -1; init_waitqueue_head(&bh->b_wait); nr_unused_buffer_heads++; bh->b_next_free = unused_list; bh->b_this_page = NULL; unused_list = bh; } } /* * Reserve NR_RESERVED buffer heads for async IO requests to avoid * no-buffer-head deadlock. Return NULL on failure; waiting for * buffer heads is now handled in create_buffers(). */ static struct buffer_head * get_unused_buffer_head(int async) { struct buffer_head * bh; spin_lock(&unused_list_lock); if (nr_unused_buffer_heads > NR_RESERVED) { bh = unused_list; unused_list = bh->b_next_free; nr_unused_buffer_heads--; spin_unlock(&unused_list_lock); return bh; } spin_unlock(&unused_list_lock); /* This is critical. We can't swap out pages to get * more buffer heads, because the swap-out may need * more buffer-heads itself. Thus SLAB_BUFFER. */ if((bh = kmem_cache_alloc(bh_cachep, SLAB_BUFFER)) != NULL) { memset(bh, 0, sizeof(*bh)); init_waitqueue_head(&bh->b_wait); return bh; } /* * If we need an async buffer, use the reserved buffer heads. */ if (async) { spin_lock(&unused_list_lock); if (unused_list) { bh = unused_list; unused_list = bh->b_next_free; nr_unused_buffer_heads--; spin_unlock(&unused_list_lock); return bh; } spin_unlock(&unused_list_lock); } #if 0 /* * (Pending further analysis ...) * Ordinary (non-async) requests can use a different memory priority * to free up pages. Any swapping thus generated will use async * buffer heads. */ if(!async && (bh = kmem_cache_alloc(bh_cachep, SLAB_KERNEL)) != NULL) { memset(bh, 0, sizeof(*bh)); init_waitqueue_head(&bh->b_wait); return bh; } #endif return NULL; } void set_bh_page (struct buffer_head *bh, struct page *page, unsigned long offset) { bh->b_page = page; if (offset >= PAGE_SIZE) BUG(); if (PageHighMem(page)) /* * This catches illegal uses and preserves the offset: */ bh->b_data = (char *)(0 + offset); else bh->b_data = page_address(page) + offset; } /* * Create the appropriate buffers when given a page for data area and * the size of each buffer.. Use the bh->b_this_page linked list to * follow the buffers created. Return NULL if unable to create more * buffers. * The async flag is used to differentiate async IO (paging, swapping) * from ordinary buffer allocations, and only async requests are allowed * to sleep waiting for buffer heads. */ static struct buffer_head * create_buffers(struct page * page, unsigned long size, int async) { struct buffer_head *bh, *head; long offset; try_again: head = NULL; offset = PAGE_SIZE; while ((offset -= size) >= 0) { bh = get_unused_buffer_head(async); if (!bh) goto no_grow; bh->b_dev = B_FREE; /* Flag as unused */ bh->b_this_page = head; head = bh; bh->b_state = 0; bh->b_next_free = NULL; bh->b_pprev = NULL; atomic_set(&bh->b_count, 0); bh->b_size = size; set_bh_page(bh, page, offset); bh->b_list = BUF_CLEAN; bh->b_end_io = NULL; } return head; /* * In case anything failed, we just free everything we got. */ no_grow: if (head) { spin_lock(&unused_list_lock); do { bh = head; head = head->b_this_page; __put_unused_buffer_head(bh); } while (head); spin_unlock(&unused_list_lock); /* Wake up any waiters ... */ wake_up(&buffer_wait); } /* * Return failure for non-async IO requests. Async IO requests * are not allowed to fail, so we have to wait until buffer heads * become available. But we don't want tasks sleeping with * partially complete buffers, so all were released above. */ if (!async) return NULL; /* We're _really_ low on memory. Now we just * wait for old buffer heads to become free due to * finishing IO. Since this is an async request and * the reserve list is empty, we're sure there are * async buffer heads in use. */ run_task_queue(&tq_disk); /* * Set our state for sleeping, then check again for buffer heads. * This ensures we won't miss a wake_up from an interrupt. */ wait_event(buffer_wait, nr_unused_buffer_heads >= MAX_BUF_PER_PAGE); goto try_again; } static void unmap_buffer(struct buffer_head * bh) { if (buffer_mapped(bh)) { mark_buffer_clean(bh); wait_on_buffer(bh); clear_bit(BH_Uptodate, &bh->b_state); clear_bit(BH_Mapped, &bh->b_state); clear_bit(BH_Req, &bh->b_state); clear_bit(BH_New, &bh->b_state); } } /* * We don't have to release all buffers here, but * we have to be sure that no dirty buffer is left * and no IO is going on (no buffer is locked), because * we have truncated the file and are going to free the * blocks on-disk.. */ int block_flushpage(struct page *page, unsigned long offset) { struct buffer_head *head, *bh, *next; unsigned int curr_off = 0; if (!PageLocked(page)) BUG(); if (!page->buffers) return 1; head = page->buffers; bh = head; do { unsigned int next_off = curr_off + bh->b_size; next = bh->b_this_page; /* * is this block fully flushed? */ if (offset <= curr_off) unmap_buffer(bh); curr_off = next_off; bh = next; } while (bh != head); /* * subtle. We release buffer-heads only if this is * the 'final' flushpage. We have invalidated the get_block * cached value unconditionally, so real IO is not * possible anymore. * * If the free doesn't work out, the buffers can be * left around - they just turn into anonymous buffers * instead. */ if (!offset) { if (!try_to_free_buffers(page, 0)) { atomic_inc(&buffermem_pages); return 0; } } return 1; } static void create_empty_buffers(struct page *page, kdev_t dev, unsigned long blocksize) { struct buffer_head *bh, *head, *tail; head = create_buffers(page, blocksize, 1); if (page->buffers) BUG(); bh = head; do { bh->b_dev = dev; bh->b_blocknr = 0; bh->b_end_io = NULL; tail = bh; bh = bh->b_this_page; } while (bh); tail->b_this_page = head; page->buffers = head; page_cache_get(page); } /* * We are taking a block for data and we don't want any output from any * buffer-cache aliases starting from return from that function and * until the moment when something will explicitly mark the buffer * dirty (hopefully that will not happen until we will free that block ;-) * We don't even need to mark it not-uptodate - nobody can expect * anything from a newly allocated buffer anyway. We used to used * unmap_buffer() for such invalidation, but that was wrong. We definitely * don't want to mark the alias unmapped, for example - it would confuse * anyone who might pick it with bread() afterwards... */ static void unmap_underlying_metadata(struct buffer_head * bh) { struct buffer_head *old_bh; old_bh = get_hash_table(bh->b_dev, bh->b_blocknr, bh->b_size); if (old_bh) { mark_buffer_clean(old_bh); wait_on_buffer(old_bh); clear_bit(BH_Req, &old_bh->b_state); /* Here we could run brelse or bforget. We use bforget because it will try to put the buffer in the freelist. */ __bforget(old_bh); } } /* * NOTE! All mapped/uptodate combinations are valid: * * Mapped Uptodate Meaning * * No No "unknown" - must do get_block() * No Yes "hole" - zero-filled * Yes No "allocated" - allocated on disk, not read in * Yes Yes "valid" - allocated and up-to-date in memory. * * "Dirty" is valid only with the last case (mapped+uptodate). */ /* * block_write_full_page() is SMP-safe - currently it's still * being called with the kernel lock held, but the code is ready. */ static int __block_write_full_page(struct inode *inode, struct page *page, get_block_t *get_block) { int err, i; unsigned long block; struct buffer_head *bh, *head; if (!PageLocked(page)) BUG(); if (!page->buffers) create_empty_buffers(page, inode->i_dev, inode->i_sb->s_blocksize); head = page->buffers; block = page->index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); bh = head; i = 0; /* Stage 1: make sure we have all the buffers mapped! */ do { /* * If the buffer isn't up-to-date, we can't be sure * that the buffer has been initialized with the proper * block number information etc.. * * Leave it to the low-level FS to make all those * decisions (block #0 may actually be a valid block) */ if (!buffer_mapped(bh)) { err = get_block(inode, block, bh, 1); if (err) goto out; if (buffer_new(bh)) unmap_underlying_metadata(bh); } bh = bh->b_this_page; block++; } while (bh != head); /* Stage 2: lock the buffers, mark them clean */ do { lock_buffer(bh); bh->b_end_io = end_buffer_io_async; atomic_inc(&bh->b_count); set_bit(BH_Uptodate, &bh->b_state); clear_bit(BH_Dirty, &bh->b_state); bh = bh->b_this_page; } while (bh != head); /* Stage 3: submit the IO */ do { submit_bh(WRITE, bh); bh = bh->b_this_page; } while (bh != head); /* Done - end_buffer_io_async will unlock */ SetPageUptodate(page); return 0; out: ClearPageUptodate(page); UnlockPage(page); return err; } static int __block_prepare_write(struct inode *inode, struct page *page, unsigned from, unsigned to, get_block_t *get_block) { unsigned block_start, block_end; unsigned long block; int err = 0; unsigned blocksize, bbits; struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; char *kaddr = kmap(page); blocksize = inode->i_sb->s_blocksize; if (!page->buffers) create_empty_buffers(page, inode->i_dev, blocksize); head = page->buffers; bbits = inode->i_sb->s_blocksize_bits; block = page->index << (PAGE_CACHE_SHIFT - bbits); for(bh = head, block_start = 0; bh != head || !block_start; block++, block_start=block_end, bh = bh->b_this_page) { if (!bh) BUG(); block_end = block_start+blocksize; if (block_end <= from) continue; if (block_start >= to) break; if (!buffer_mapped(bh)) { err = get_block(inode, block, bh, 1); if (err) goto out; if (buffer_new(bh)) { unmap_underlying_metadata(bh); if (Page_Uptodate(page)) { set_bit(BH_Uptodate, &bh->b_state); continue; } if (block_end > to) memset(kaddr+to, 0, block_end-to); if (block_start < from) memset(kaddr+block_start, 0, from-block_start); if (block_end > to || block_start < from) flush_dcache_page(page); continue; } } if (Page_Uptodate(page)) { set_bit(BH_Uptodate, &bh->b_state); continue; } if (!buffer_uptodate(bh) && (block_start < from || block_end > to)) { ll_rw_block(READ, 1, &bh); *wait_bh++=bh; } } /* * If we issued read requests - let them complete. */ while(wait_bh > wait) { wait_on_buffer(*--wait_bh); err = -EIO; if (!buffer_uptodate(*wait_bh)) goto out; } return 0; out: return err; } static int __block_commit_write(struct inode *inode, struct page *page, unsigned from, unsigned to) { unsigned block_start, block_end; int partial = 0, need_balance_dirty = 0; unsigned blocksize; struct buffer_head *bh, *head; blocksize = inode->i_sb->s_blocksize; for(bh = head = page->buffers, block_start = 0; bh != head || !block_start; block_start=block_end, bh = bh->b_this_page) { block_end = block_start + blocksize; if (block_end <= from || block_start >= to) { if (!buffer_uptodate(bh)) partial = 1; } else { set_bit(BH_Uptodate, &bh->b_state); if (!atomic_set_buffer_dirty(bh)) { __mark_dirty(bh); buffer_insert_inode_queue(bh, inode); need_balance_dirty = 1; } } } if (need_balance_dirty) balance_dirty(bh->b_dev); /* * is this a partial write that happened to make all buffers * uptodate then we can optimize away a bogus readpage() for * the next read(). Here we 'discover' wether the page went * uptodate as a result of this (potentially partial) write. */ if (!partial) SetPageUptodate(page); return 0; } /* * Generic "read page" function for block devices that have the normal * get_block functionality. This is most of the block device filesystems. * Reads the page asynchronously --- the unlock_buffer() and * mark_buffer_uptodate() functions propagate buffer state into the * page struct once IO has completed. */ int block_read_full_page(struct page *page, get_block_t *get_block) { struct inode *inode = page->mapping->host; unsigned long iblock, lblock; struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; unsigned int blocksize, blocks; int nr, i; if (!PageLocked(page)) PAGE_BUG(page); blocksize = inode->i_sb->s_blocksize; if (!page->buffers) create_empty_buffers(page, inode->i_dev, blocksize); head = page->buffers; blocks = PAGE_CACHE_SIZE >> inode->i_sb->s_blocksize_bits; iblock = page->index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); lblock = (inode->i_size+blocksize-1) >> inode->i_sb->s_blocksize_bits; bh = head; nr = 0; i = 0; do { if (buffer_uptodate(bh)) continue; if (!buffer_mapped(bh)) { if (iblock < lblock) { if (get_block(inode, iblock, bh, 0)) continue; } if (!buffer_mapped(bh)) { memset(kmap(page) + i*blocksize, 0, blocksize); flush_dcache_page(page); kunmap(page); set_bit(BH_Uptodate, &bh->b_state); continue; } /* get_block() might have updated the buffer synchronously */ if (buffer_uptodate(bh)) continue; } arr[nr] = bh; nr++; } while (i++, iblock++, (bh = bh->b_this_page) != head); if (!nr) { /* * all buffers are uptodate - we can set the page * uptodate as well. */ SetPageUptodate(page); UnlockPage(page); return 0; } /* Stage two: lock the buffers */ for (i = 0; i < nr; i++) { struct buffer_head * bh = arr[i]; lock_buffer(bh); bh->b_end_io = end_buffer_io_async; atomic_inc(&bh->b_count); } /* Stage 3: start the IO */ for (i = 0; i < nr; i++) submit_bh(READ, arr[i]); return 0; } /* * For moronic filesystems that do not allow holes in file. * We may have to extend the file. */ int cont_prepare_write(struct page *page, unsigned offset, unsigned to, get_block_t *get_block, unsigned long *bytes) { struct address_space *mapping = page->mapping; struct inode *inode = mapping->host; struct page *new_page; unsigned long pgpos; long status; unsigned zerofrom; unsigned blocksize = inode->i_sb->s_blocksize; char *kaddr; while(page->index > (pgpos = *bytes>>PAGE_CACHE_SHIFT)) { status = -ENOMEM; new_page = grab_cache_page(mapping, pgpos); if (!new_page) goto out; /* we might sleep */ if (*bytes>>PAGE_CACHE_SHIFT != pgpos) { UnlockPage(new_page); page_cache_release(new_page); continue; } zerofrom = *bytes & ~PAGE_CACHE_MASK; if (zerofrom & (blocksize-1)) { *bytes |= (blocksize-1); (*bytes)++; } status = __block_prepare_write(inode, new_page, zerofrom, PAGE_CACHE_SIZE, get_block); if (status) goto out_unmap; kaddr = page_address(new_page); memset(kaddr+zerofrom, 0, PAGE_CACHE_SIZE-zerofrom); flush_dcache_page(new_page); __block_commit_write(inode, new_page, zerofrom, PAGE_CACHE_SIZE); kunmap(new_page); UnlockPage(new_page); page_cache_release(new_page); } if (page->index < pgpos) { /* completely inside the area */ zerofrom = offset; } else { /* page covers the boundary, find the boundary offset */ zerofrom = *bytes & ~PAGE_CACHE_MASK; /* if we will expand the thing last block will be filled */ if (to > zerofrom && (zerofrom & (blocksize-1))) { *bytes |= (blocksize-1); (*bytes)++; } /* starting below the boundary? Nothing to zero out */ if (offset <= zerofrom) zerofrom = offset; } status = __block_prepare_write(inode, page, zerofrom, to, get_block); if (status) goto out1; kaddr = page_address(page); if (zerofrom < offset) { memset(kaddr+zerofrom, 0, offset-zerofrom); flush_dcache_page(page); __block_commit_write(inode, page, zerofrom, offset); } return 0; out1: ClearPageUptodate(page); kunmap(page); return status; out_unmap: ClearPageUptodate(new_page); kunmap(new_page); UnlockPage(new_page); page_cache_release(new_page); out: return status; } int block_prepare_write(struct page *page, unsigned from, unsigned to, get_block_t *get_block) { struct inode *inode = page->mapping->host; int err = __block_prepare_write(inode, page, from, to, get_block); if (err) { ClearPageUptodate(page); kunmap(page); } return err; } int generic_commit_write(struct file *file, struct page *page, unsigned from, unsigned to) { struct inode *inode = page->mapping->host; loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to; __block_commit_write(inode,page,from,to); kunmap(page); if (pos > inode->i_size) { inode->i_size = pos; mark_inode_dirty(inode); } return 0; } int block_truncate_page(struct address_space *mapping, loff_t from, get_block_t *get_block) { unsigned long index = from >> PAGE_CACHE_SHIFT; unsigned offset = from & (PAGE_CACHE_SIZE-1); unsigned blocksize, iblock, length, pos; struct inode *inode = mapping->host; struct page *page; struct buffer_head *bh; int err; blocksize = inode->i_sb->s_blocksize; length = offset & (blocksize - 1); /* Block boundary? Nothing to do */ if (!length) return 0; length = blocksize - length; iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); page = grab_cache_page(mapping, index); err = PTR_ERR(page); if (IS_ERR(page)) goto out; if (!page->buffers) create_empty_buffers(page, inode->i_dev, blocksize); /* Find the buffer that contains "offset" */ bh = page->buffers; pos = blocksize; while (offset >= pos) { bh = bh->b_this_page; iblock++; pos += blocksize; } err = 0; if (!buffer_mapped(bh)) { /* Hole? Nothing to do */ if (buffer_uptodate(bh)) goto unlock; get_block(inode, iblock, bh, 0); /* Still unmapped? Nothing to do */ if (!buffer_mapped(bh)) goto unlock; } /* Ok, it's mapped. Make sure it's up-to-date */ if (Page_Uptodate(page)) set_bit(BH_Uptodate, &bh->b_state); if (!buffer_uptodate(bh)) { err = -EIO; ll_rw_block(READ, 1, &bh); wait_on_buffer(bh); /* Uhhuh. Read error. Complain and punt. */ if (!buffer_uptodate(bh)) goto unlock; } memset(kmap(page) + offset, 0, length); flush_dcache_page(page); kunmap(page); __mark_buffer_dirty(bh); err = 0; unlock: UnlockPage(page); page_cache_release(page); out: return err; } int block_write_full_page(struct page *page, get_block_t *get_block) { struct inode *inode = page->mapping->host; unsigned long end_index = inode->i_size >> PAGE_CACHE_SHIFT; unsigned offset; int err; /* easy case */ if (page->index < end_index) return __block_write_full_page(inode, page, get_block); /* things got complicated... */ offset = inode->i_size & (PAGE_CACHE_SIZE-1); /* OK, are we completely out? */ if (page->index >= end_index+1 || !offset) { UnlockPage(page); return -EIO; } /* Sigh... will have to work, then... */ err = __block_prepare_write(inode, page, 0, offset, get_block); if (!err) { memset(page_address(page) + offset, 0, PAGE_CACHE_SIZE - offset); flush_dcache_page(page); __block_commit_write(inode,page,0,offset); done: kunmap(page); UnlockPage(page); return err; } ClearPageUptodate(page); goto done; } int generic_block_bmap(struct address_space *mapping, long block, get_block_t *get_block) { struct buffer_head tmp; struct inode *inode = mapping->host; tmp.b_state = 0; tmp.b_blocknr = 0; get_block(inode, block, &tmp, 0); return tmp.b_blocknr; } /* * IO completion routine for a buffer_head being used for kiobuf IO: we * can't dispatch the kiobuf callback until io_count reaches 0. */ static void end_buffer_io_kiobuf(struct buffer_head *bh, int uptodate) { struct kiobuf *kiobuf; mark_buffer_uptodate(bh, uptodate); kiobuf = bh->b_private; unlock_buffer(bh); end_kio_request(kiobuf, uptodate); } /* * For brw_kiovec: submit a set of buffer_head temporary IOs and wait * for them to complete. Clean up the buffer_heads afterwards. */ static int wait_kio(int rw, int nr, struct buffer_head *bh[], int size) { int iosize; int i; struct buffer_head *tmp; iosize = 0; spin_lock(&unused_list_lock); for (i = nr; --i >= 0; ) { iosize += size; tmp = bh[i]; if (buffer_locked(tmp)) { spin_unlock(&unused_list_lock); wait_on_buffer(tmp); spin_lock(&unused_list_lock); } if (!buffer_uptodate(tmp)) { /* We are traversing bh'es in reverse order so clearing iosize on error calculates the amount of IO before the first error. */ iosize = 0; } __put_unused_buffer_head(tmp); } spin_unlock(&unused_list_lock); return iosize; } /* * Start I/O on a physical range of kernel memory, defined by a vector * of kiobuf structs (much like a user-space iovec list). * * The kiobuf must already be locked for IO. IO is submitted * asynchronously: you need to check page->locked, page->uptodate, and * maybe wait on page->wait. * * It is up to the caller to make sure that there are enough blocks * passed in to completely map the iobufs to disk. */ int brw_kiovec(int rw, int nr, struct kiobuf *iovec[], kdev_t dev, unsigned long b[], int size) { int err; int length; int transferred; int i; int bufind; int pageind; int bhind; int offset; unsigned long blocknr; struct kiobuf * iobuf = NULL; struct page * map; struct buffer_head *tmp, *bh[KIO_MAX_SECTORS]; if (!nr) return 0; /* * First, do some alignment and validity checks */ for (i = 0; i < nr; i++) { iobuf = iovec[i]; if ((iobuf->offset & (size-1)) || (iobuf->length & (size-1))) return -EINVAL; if (!iobuf->nr_pages) panic("brw_kiovec: iobuf not initialised"); } /* * OK to walk down the iovec doing page IO on each page we find. */ bufind = bhind = transferred = err = 0; for (i = 0; i < nr; i++) { iobuf = iovec[i]; offset = iobuf->offset; length = iobuf->length; iobuf->errno = 0; for (pageind = 0; pageind < iobuf->nr_pages; pageind++) { map = iobuf->maplist[pageind]; if (!map) { err = -EFAULT; goto error; } while (length > 0) { blocknr = b[bufind++]; tmp = get_unused_buffer_head(0); if (!tmp) { err = -ENOMEM; goto error; } tmp->b_dev = B_FREE; tmp->b_size = size; set_bh_page(tmp, map, offset); tmp->b_this_page = tmp; init_buffer(tmp, end_buffer_io_kiobuf, iobuf); tmp->b_dev = dev; tmp->b_blocknr = blocknr; tmp->b_state = (1 << BH_Mapped) | (1 << BH_Lock) | (1 << BH_Req); if (rw == WRITE) { set_bit(BH_Uptodate, &tmp->b_state); clear_bit(BH_Dirty, &tmp->b_state); } bh[bhind++] = tmp; length -= size; offset += size; atomic_inc(&iobuf->io_count); submit_bh(rw, tmp); /* * Wait for IO if we have got too much */ if (bhind >= KIO_MAX_SECTORS) { err = wait_kio(rw, bhind, bh, size); if (err >= 0) transferred += err; else goto finished; bhind = 0; } if (offset >= PAGE_SIZE) { offset = 0; break; } } /* End of block loop */ } /* End of page loop */ } /* End of iovec loop */ /* Is there any IO still left to submit? */ if (bhind) { err = wait_kio(rw, bhind, bh, size); if (err >= 0) transferred += err; else goto finished; } finished: if (transferred) return transferred; return err; error: /* We got an error allocating the bh'es. Just free the current buffer_heads and exit. */ spin_lock(&unused_list_lock); for (i = bhind; --i >= 0; ) { __put_unused_buffer_head(bh[i]); } spin_unlock(&unused_list_lock); goto finished; } /* * Start I/O on a page. * This function expects the page to be locked and may return * before I/O is complete. You then have to check page->locked, * page->uptodate, and maybe wait on page->wait. * * brw_page() is SMP-safe, although it's being called with the * kernel lock held - but the code is ready. * * FIXME: we need a swapper_inode->get_block function to remove * some of the bmap kludges and interface ugliness here. */ int brw_page(int rw, struct page *page, kdev_t dev, int b[], int size) { struct buffer_head *head, *bh; if (!PageLocked(page)) panic("brw_page: page not locked for I/O"); if (!page->buffers) create_empty_buffers(page, dev, size); head = bh = page->buffers; /* Stage 1: lock all the buffers */ do { lock_buffer(bh); bh->b_blocknr = *(b++); set_bit(BH_Mapped, &bh->b_state); bh->b_end_io = end_buffer_io_async; atomic_inc(&bh->b_count); bh = bh->b_this_page; } while (bh != head); /* Stage 2: start the IO */ do { submit_bh(rw, bh); bh = bh->b_this_page; } while (bh != head); return 0; } int block_symlink(struct inode *inode, const char *symname, int len) { struct address_space *mapping = inode->i_mapping; struct page *page = grab_cache_page(mapping, 0); int err = -ENOMEM; char *kaddr; if (!page) goto fail; err = mapping->a_ops->prepare_write(NULL, page, 0, len-1); if (err) goto fail_map; kaddr = page_address(page); memcpy(kaddr, symname, len-1); mapping->a_ops->commit_write(NULL, page, 0, len-1); /* * Notice that we are _not_ going to block here - end of page is * unmapped, so this will only try to map the rest of page, see * that it is unmapped (typically even will not look into inode - * ->i_size will be enough for everything) and zero it out. * OTOH it's obviously correct and should make the page up-to-date. */ err = mapping->a_ops->readpage(NULL, page); wait_on_page(page); page_cache_release(page); if (err < 0) goto fail; mark_inode_dirty(inode); return 0; fail_map: UnlockPage(page); page_cache_release(page); fail: return err; } /* * Try to increase the number of buffers available: the size argument * is used to determine what kind of buffers we want. */ static int grow_buffers(int size) { struct page * page; struct buffer_head *bh, *tmp; struct buffer_head * insert_point; int isize; if ((size & 511) || (size > PAGE_SIZE)) { printk("VFS: grow_buffers: size = %d\n",size); return 0; } page = alloc_page(GFP_BUFFER); if (!page) goto out; LockPage(page); bh = create_buffers(page, size, 0); if (!bh) goto no_buffer_head; isize = BUFSIZE_INDEX(size); spin_lock(&free_list[isize].lock); insert_point = free_list[isize].list; tmp = bh; while (1) { if (insert_point) { tmp->b_next_free = insert_point->b_next_free; tmp->b_prev_free = insert_point; insert_point->b_next_free->b_prev_free = tmp; insert_point->b_next_free = tmp; } else { tmp->b_prev_free = tmp; tmp->b_next_free = tmp; } insert_point = tmp; if (tmp->b_this_page) tmp = tmp->b_this_page; else break; } tmp->b_this_page = bh; free_list[isize].list = bh; spin_unlock(&free_list[isize].lock); page->buffers = bh; page->flags &= ~(1 << PG_referenced); lru_cache_add(page); UnlockPage(page); atomic_inc(&buffermem_pages); return 1; no_buffer_head: UnlockPage(page); page_cache_release(page); out: return 0; } /* * Sync all the buffers on one page.. * * If we have old buffers that are locked, we'll * wait on them, but we won't wait on the new ones * we're writing out now. * * This all is required so that we can free up memory * later. * * Wait: * 0 - no wait (this does not get called - see try_to_free_buffers below) * 1 - start IO for dirty buffers * 2 - wait for completion of locked buffers */ static void sync_page_buffers(struct buffer_head *bh, int wait) { struct buffer_head * tmp = bh; do { struct buffer_head *p = tmp; tmp = tmp->b_this_page; if (buffer_locked(p)) { if (wait > 1) __wait_on_buffer(p); } else if (buffer_dirty(p)) ll_rw_block(WRITE, 1, &p); } while (tmp != bh); } /* * Can the buffer be thrown out? */ #define BUFFER_BUSY_BITS ((1<<BH_Dirty) | (1<<BH_Lock) | (1<<BH_Protected)) #define buffer_busy(bh) (atomic_read(&(bh)->b_count) | ((bh)->b_state & BUFFER_BUSY_BITS)) /* * try_to_free_buffers() checks if all the buffers on this particular page * are unused, and free's the page if so. * * Wake up bdflush() if this fails - if we're running low on memory due * to dirty buffers, we need to flush them out as quickly as possible. * * NOTE: There are quite a number of ways that threads of control can * obtain a reference to a buffer head within a page. So we must * lock out all of these paths to cleanly toss the page. */ int try_to_free_buffers(struct page * page, int wait) { struct buffer_head * tmp, * bh = page->buffers; int index = BUFSIZE_INDEX(bh->b_size); int loop = 0; cleaned_buffers_try_again: spin_lock(&lru_list_lock); write_lock(&hash_table_lock); spin_lock(&free_list[index].lock); tmp = bh; do { struct buffer_head *p = tmp; tmp = tmp->b_this_page; if (buffer_busy(p)) goto busy_buffer_page; } while (tmp != bh); spin_lock(&unused_list_lock); tmp = bh; do { struct buffer_head * p = tmp; tmp = tmp->b_this_page; /* The buffer can be either on the regular * queues or on the free list.. */ if (p->b_dev != B_FREE) { remove_inode_queue(p); __remove_from_queues(p); } else __remove_from_free_list(p, index); __put_unused_buffer_head(p); } while (tmp != bh); spin_unlock(&unused_list_lock); /* Wake up anyone waiting for buffer heads */ wake_up(&buffer_wait); /* And free the page */ page->buffers = NULL; page_cache_release(page); spin_unlock(&free_list[index].lock); write_unlock(&hash_table_lock); spin_unlock(&lru_list_lock); return 1; busy_buffer_page: /* Uhhuh, start writeback so that we don't end up with all dirty pages */ spin_unlock(&free_list[index].lock); write_unlock(&hash_table_lock); spin_unlock(&lru_list_lock); if (wait) { sync_page_buffers(bh, wait); /* We waited synchronously, so we can free the buffers. */ if (wait > 1 && !loop) { loop = 1; goto cleaned_buffers_try_again; } } return 0; } /* ================== Debugging =================== */ void show_buffers(void) { #ifdef CONFIG_SMP struct buffer_head * bh; int found = 0, locked = 0, dirty = 0, used = 0, lastused = 0; int protected = 0; int nlist; static char *buf_types[NR_LIST] = { "CLEAN", "LOCKED", "DIRTY", "PROTECTED", }; #endif printk("Buffer memory: %6dkB\n", atomic_read(&buffermem_pages) << (PAGE_SHIFT-10)); #ifdef CONFIG_SMP /* trylock does nothing on UP and so we could deadlock */ if (!spin_trylock(&lru_list_lock)) return; for(nlist = 0; nlist < NR_LIST; nlist++) { found = locked = dirty = used = lastused = protected = 0; bh = lru_list[nlist]; if(!bh) continue; do { found++; if (buffer_locked(bh)) locked++; if (buffer_protected(bh)) protected++; if (buffer_dirty(bh)) dirty++; if (atomic_read(&bh->b_count)) used++, lastused = found; bh = bh->b_next_free; } while (bh != lru_list[nlist]); { int tmp = nr_buffers_type[nlist]; if (found != tmp) printk("%9s: BUG -> found %d, reported %d\n", buf_types[nlist], found, tmp); } printk("%9s: %d buffers, %lu kbyte, %d used (last=%d), " "%d locked, %d protected, %d dirty\n", buf_types[nlist], found, size_buffers_type[nlist]>>10, used, lastused, locked, protected, dirty); } spin_unlock(&lru_list_lock); #endif } /* ===================== Init ======================= */ /* * allocate the hash table and init the free list * Use gfp() for the hash table to decrease TLB misses, use * SLAB cache for buffer heads. */ void __init buffer_init(unsigned long mempages) { int order, i; unsigned int nr_hash; /* The buffer cache hash table is less important these days, * trim it a bit. */ mempages >>= 14; mempages *= sizeof(struct buffer_head *); for (order = 0; (1 << order) < mempages; order++) ; /* try to allocate something until we get it or we're asking for something that is really too small */ do { unsigned long tmp; nr_hash = (PAGE_SIZE << order) / sizeof(struct buffer_head *); bh_hash_mask = (nr_hash - 1); tmp = nr_hash; bh_hash_shift = 0; while((tmp >>= 1UL) != 0UL) bh_hash_shift++; hash_table = (struct buffer_head **) __get_free_pages(GFP_ATOMIC, order); } while (hash_table == NULL && --order > 0); printk("Buffer-cache hash table entries: %d (order: %d, %ld bytes)\n", nr_hash, order, (PAGE_SIZE << order)); if (!hash_table) panic("Failed to allocate buffer hash table\n"); /* Setup hash chains. */ for(i = 0; i < nr_hash; i++) hash_table[i] = NULL; /* Setup free lists. */ for(i = 0; i < NR_SIZES; i++) { free_list[i].list = NULL; free_list[i].lock = SPIN_LOCK_UNLOCKED; } /* Setup lru lists. */ for(i = 0; i < NR_LIST; i++) lru_list[i] = NULL; } /* ====================== bdflush support =================== */ /* This is a simple kernel daemon, whose job it is to provide a dynamic * response to dirty buffers. Once this process is activated, we write back * a limited number of buffers to the disks and then go back to sleep again. */ /* This is the _only_ function that deals with flushing async writes to disk. NOTENOTENOTENOTE: we _only_ need to browse the DIRTY lru list as all dirty buffers lives _only_ in the DIRTY lru list. As we never browse the LOCKED and CLEAN lru lists they are infact completly useless. */ static int flush_dirty_buffers(int check_flushtime) { struct buffer_head * bh, *next; int flushed = 0, i; restart: spin_lock(&lru_list_lock); bh = lru_list[BUF_DIRTY]; if (!bh) goto out_unlock; for (i = nr_buffers_type[BUF_DIRTY]; i-- > 0; bh = next) { next = bh->b_next_free; if (!buffer_dirty(bh)) { __refile_buffer(bh); continue; } if (buffer_locked(bh)) continue; if (check_flushtime) { /* The dirty lru list is chronologically ordered so if the current bh is not yet timed out, then also all the following bhs will be too young. */ if (time_before(jiffies, bh->b_flushtime)) goto out_unlock; } else { if (++flushed > bdf_prm.b_un.ndirty) goto out_unlock; } /* OK, now we are committed to write it out. */ atomic_inc(&bh->b_count); spin_unlock(&lru_list_lock); ll_rw_block(WRITE, 1, &bh); atomic_dec(&bh->b_count); if (current->need_resched) schedule(); goto restart; } out_unlock: spin_unlock(&lru_list_lock); return flushed; } struct task_struct *bdflush_tsk = 0; void wakeup_bdflush(int block) { if (current != bdflush_tsk) { wake_up_process(bdflush_tsk); if (block) flush_dirty_buffers(0); } } /* * Here we attempt to write back old buffers. We also try to flush inodes * and supers as well, since this function is essentially "update", and * otherwise there would be no way of ensuring that these quantities ever * get written back. Ideally, we would have a timestamp on the inodes * and superblocks so that we could write back only the old ones as well */ static int sync_old_buffers(void) { lock_kernel(); sync_supers(0); sync_inodes(0); unlock_kernel(); flush_dirty_buffers(1); /* must really sync all the active I/O request to disk here */ run_task_queue(&tq_disk); return 0; } int block_sync_page(struct page *page) { run_task_queue(&tq_disk); return 0; } /* This is the interface to bdflush. As we get more sophisticated, we can * pass tuning parameters to this "process", to adjust how it behaves. * We would want to verify each parameter, however, to make sure that it * is reasonable. */ asmlinkage long sys_bdflush(int func, long data) { if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (func == 1) { /* do_exit directly and let kupdate to do its work alone. */ do_exit(0); #if 0 /* left here as it's the only example of lazy-mm-stuff used from a syscall that doesn't care about the current mm context. */ int error; struct mm_struct *user_mm; /* * bdflush will spend all of it's time in kernel-space, * without touching user-space, so we can switch it into * 'lazy TLB mode' to reduce the cost of context-switches * to and from bdflush. */ user_mm = start_lazy_tlb(); error = sync_old_buffers(); end_lazy_tlb(user_mm); return error; #endif } /* Basically func 1 means read param 1, 2 means write param 1, etc */ if (func >= 2) { int i = (func-2) >> 1; if (i >= 0 && i < N_PARAM) { if ((func & 1) == 0) return put_user(bdf_prm.data[i], (int*)data); if (data >= bdflush_min[i] && data <= bdflush_max[i]) { bdf_prm.data[i] = data; return 0; } } return -EINVAL; } /* Having func 0 used to launch the actual bdflush and then never * return (unless explicitly killed). We return zero here to * remain semi-compatible with present update(8) programs. */ return 0; } /* * This is the actual bdflush daemon itself. It used to be started from * the syscall above, but now we launch it ourselves internally with * kernel_thread(...) directly after the first thread in init/main.c */ int bdflush(void *sem) { struct task_struct *tsk = current; int flushed; /* * We have a bare-bones task_struct, and really should fill * in a few more things so "top" and /proc/2/{exe,root,cwd} * display semi-sane things. Not real crucial though... */ tsk->session = 1; tsk->pgrp = 1; strcpy(tsk->comm, "bdflush"); bdflush_tsk = tsk; /* avoid getting signals */ spin_lock_irq(&tsk->sigmask_lock); flush_signals(tsk); sigfillset(&tsk->blocked); recalc_sigpending(tsk); spin_unlock_irq(&tsk->sigmask_lock); up((struct semaphore *)sem); for (;;) { CHECK_EMERGENCY_SYNC flushed = flush_dirty_buffers(0); if (free_shortage()) flushed += page_launder(GFP_KERNEL, 0); /* * If there are still a lot of dirty buffers around, * skip the sleep and flush some more. Otherwise, we * go to sleep waiting a wakeup. */ set_current_state(TASK_INTERRUPTIBLE); if (!flushed || balance_dirty_state(NODEV) < 0) { run_task_queue(&tq_disk); schedule(); } /* Remember to mark us as running otherwise the next schedule will block. */ __set_current_state(TASK_RUNNING); } } /* * This is the kernel update daemon. It was used to live in userspace * but since it's need to run safely we want it unkillable by mistake. * You don't need to change your userspace configuration since * the userspace `update` will do_exit(0) at the first sys_bdflush(). */ int kupdate(void *sem) { struct task_struct * tsk = current; int interval; tsk->session = 1; tsk->pgrp = 1; strcpy(tsk->comm, "kupdate"); /* sigstop and sigcont will stop and wakeup kupdate */ spin_lock_irq(&tsk->sigmask_lock); sigfillset(&tsk->blocked); siginitsetinv(¤t->blocked, sigmask(SIGCONT) | sigmask(SIGSTOP)); recalc_sigpending(tsk); spin_unlock_irq(&tsk->sigmask_lock); up((struct semaphore *)sem); for (;;) { /* update interval */ interval = bdf_prm.b_un.interval; if (interval) { tsk->state = TASK_INTERRUPTIBLE; schedule_timeout(interval); } else { stop_kupdate: tsk->state = TASK_STOPPED; schedule(); /* wait for SIGCONT */ } /* check for sigstop */ if (signal_pending(tsk)) { int stopped = 0; spin_lock_irq(&tsk->sigmask_lock); if (sigismember(&tsk->pending.signal, SIGSTOP)) { sigdelset(&tsk->pending.signal, SIGSTOP); stopped = 1; } recalc_sigpending(tsk); spin_unlock_irq(&tsk->sigmask_lock); if (stopped) goto stop_kupdate; } #ifdef DEBUG printk("kupdate() activated...\n"); #endif sync_old_buffers(); } } static int __init bdflush_init(void) { DECLARE_MUTEX_LOCKED(sem); kernel_thread(bdflush, &sem, CLONE_FS | CLONE_FILES | CLONE_SIGNAL); down(&sem); kernel_thread(kupdate, &sem, CLONE_FS | CLONE_FILES | CLONE_SIGNAL); down(&sem); return 0; } module_init(bdflush_init) |