Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
/*
 *  linux/fs/buffer.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 */

/*
 *  'buffer.c' implements the buffer-cache functions. Race-conditions have
 * been avoided by NEVER letting an interrupt change a buffer (except for the
 * data, of course), but instead letting the caller do it.
 */

/*
 * NOTE! There is one discordant note here: checking floppies for
 * disk change. This is where it fits best, I think, as it should
 * invalidate changed floppy-disk-caches.
 */
 
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/string.h>
#include <linux/locks.h>
#include <linux/errno.h>
#include <linux/malloc.h>

#include <asm/system.h>
#include <asm/segment.h>
#include <asm/io.h>

#define NR_SIZES 4
static char buffersize_index[9] = {-1,  0,  1, -1,  2, -1, -1, -1, 3};
static short int bufferindex_size[NR_SIZES] = {512, 1024, 2048, 4096};

#define BUFSIZE_INDEX(X) ((int) buffersize_index[(X)>>9])
#define MAX_BUF_PER_PAGE (PAGE_SIZE / 512)

static int grow_buffers(int pri, int size);
static int shrink_specific_buffers(unsigned int priority, int size);
static int maybe_shrink_lav_buffers(int);

static int nr_hash = 0;  /* Size of hash table */
static struct buffer_head ** hash_table;
struct buffer_head ** buffer_pages;
static struct buffer_head * lru_list[NR_LIST] = {NULL, };
static struct buffer_head * free_list[NR_SIZES] = {NULL, };
static struct buffer_head * unused_list = NULL;
static struct wait_queue * buffer_wait = NULL;

int nr_buffers = 0;
int nr_buffers_type[NR_LIST] = {0,};
int nr_buffers_size[NR_SIZES] = {0,};
int nr_buffers_st[NR_SIZES][NR_LIST] = {{0,},};
int buffer_usage[NR_SIZES] = {0,};  /* Usage counts used to determine load average */
int buffers_lav[NR_SIZES] = {0,};  /* Load average of buffer usage */
int nr_free[NR_SIZES] = {0,};
int buffermem = 0;
int nr_buffer_heads = 0;
extern int *blksize_size[];

/* Here is the parameter block for the bdflush process. */
static void wakeup_bdflush(int);

#define N_PARAM 9
#define LAV

static union bdflush_param{
	struct {
		int nfract;  /* Percentage of buffer cache dirty to 
				activate bdflush */
		int ndirty;  /* Maximum number of dirty blocks to write out per
				wake-cycle */
		int nrefill; /* Number of clean buffers to try and obtain
				each time we call refill */
		int nref_dirt; /* Dirty buffer threshold for activating bdflush
				  when trying to refill buffers. */
		int clu_nfract;  /* Percentage of buffer cache to scan to 
				    search for free clusters */
		int age_buffer;  /* Time for normal buffer to age before 
				    we flush it */
		int age_super;  /* Time for superblock to age before we 
				   flush it */
		int lav_const;  /* Constant used for load average (time
				   constant */
		int lav_ratio;  /* Used to determine how low a lav for a
				   particular size can go before we start to
				   trim back the buffers */
	} b_un;
	unsigned int data[N_PARAM];
} bdf_prm = {{25, 500, 64, 256, 15, 30*HZ, 5*HZ, 1884, 2}};

/* The lav constant is set for 1 minute, as long as the update process runs
   every 5 seconds.  If you change the frequency of update, the time
   constant will also change. */


/* These are the min and max parameter values that we will allow to be assigned */
static int bdflush_min[N_PARAM] = {  0,  10,    5,   25,  0,   100,   100, 1, 1};
static int bdflush_max[N_PARAM] = {100,5000, 2000, 2000,100, 60000, 60000, 2047, 5};

/*
 * Rewrote the wait-routines to use the "new" wait-queue functionality,
 * and getting rid of the cli-sti pairs. The wait-queue routines still
 * need cli-sti, but now it's just a couple of 386 instructions or so.
 *
 * Note that the real wait_on_buffer() is an inline function that checks
 * if 'b_wait' is set before calling this, so that the queues aren't set
 * up unnecessarily.
 */
void __wait_on_buffer(struct buffer_head * bh)
{
	struct wait_queue wait = { current, NULL };

	bh->b_count++;
	add_wait_queue(&bh->b_wait, &wait);
repeat:
	current->state = TASK_UNINTERRUPTIBLE;
	if (bh->b_lock) {
		schedule();
		goto repeat;
	}
	remove_wait_queue(&bh->b_wait, &wait);
	bh->b_count--;
	current->state = TASK_RUNNING;
}

/* Call sync_buffers with wait!=0 to ensure that the call does not
   return until all buffer writes have completed.  Sync() may return
   before the writes have finished; fsync() may not. */


/* Godamity-damn.  Some buffers (bitmaps for filesystems)
   spontaneously dirty themselves without ever brelse being called.
   We will ultimately want to put these in a separate list, but for
   now we search all of the lists for dirty buffers */

static int sync_buffers(dev_t dev, int wait)
{
	int i, retry, pass = 0, err = 0;
	int nlist, ncount;
	struct buffer_head * bh, *next;

	/* One pass for no-wait, three for wait:
	   0) write out all dirty, unlocked buffers;
	   1) write out all dirty buffers, waiting if locked;
	   2) wait for completion by waiting for all buffers to unlock. */
 repeat:
	retry = 0;
 repeat2:
	ncount = 0;
	/* We search all lists as a failsafe mechanism, not because we expect
	   there to be dirty buffers on any of the other lists. */
	for(nlist = 0; nlist < NR_LIST; nlist++)
	 {
	 repeat1:
		 bh = lru_list[nlist];
		 if(!bh) continue;
		 for (i = nr_buffers_type[nlist]*2 ; i-- > 0 ; bh = next) {
			 if(bh->b_list != nlist) goto repeat1;
			 next = bh->b_next_free;
			 if(!lru_list[nlist]) break;
			 if (dev && bh->b_dev != dev)
				  continue;
			 if (bh->b_lock)
			  {
				  /* Buffer is locked; skip it unless wait is
				     requested AND pass > 0. */
				  if (!wait || !pass) {
					  retry = 1;
					  continue;
				  }
				  wait_on_buffer (bh);
				  goto repeat2;
			  }
			 /* If an unlocked buffer is not uptodate, there has
			     been an IO error. Skip it. */
			 if (wait && bh->b_req && !bh->b_lock &&
			     !bh->b_dirt && !bh->b_uptodate) {
				  err = 1;
				  printk("Weird - unlocked, clean and not uptodate buffer on list %d %x %lu\n", nlist, bh->b_dev, bh->b_blocknr);
				  continue;
			  }
			 /* Don't write clean buffers.  Don't write ANY buffers
			    on the third pass. */
			 if (!bh->b_dirt || pass>=2)
				  continue;
			 /* don't bother about locked buffers */
			 if (bh->b_lock)
				 continue;
			 bh->b_count++;
			 bh->b_flushtime = 0;
			 ll_rw_block(WRITE, 1, &bh);

			 if(nlist != BUF_DIRTY) { 
				 printk("[%d %x %ld] ", nlist, bh->b_dev, bh->b_blocknr);
				 ncount++;
			 };
			 bh->b_count--;
			 retry = 1;
		 }
	 }
	if (ncount) printk("sys_sync: %d dirty buffers not on dirty list\n", ncount);
	
	/* If we are waiting for the sync to succeed, and if any dirty
	   blocks were written, then repeat; on the second pass, only
	   wait for buffers being written (do not pass to write any
	   more buffers on the second pass). */
	if (wait && retry && ++pass<=2)
		 goto repeat;
	return err;
}

void sync_dev(dev_t dev)
{
	sync_buffers(dev, 0);
	sync_supers(dev);
	sync_inodes(dev);
	sync_buffers(dev, 0);
}

int fsync_dev(dev_t dev)
{
	sync_buffers(dev, 0);
	sync_supers(dev);
	sync_inodes(dev);
	return sync_buffers(dev, 1);
}

asmlinkage int sys_sync(void)
{
	sync_dev(0);
	return 0;
}

int file_fsync (struct inode *inode, struct file *filp)
{
	return fsync_dev(inode->i_dev);
}

asmlinkage int sys_fsync(unsigned int fd)
{
	struct file * file;
	struct inode * inode;

	if (fd>=NR_OPEN || !(file=current->files->fd[fd]) || !(inode=file->f_inode))
		return -EBADF;
	if (!file->f_op || !file->f_op->fsync)
		return -EINVAL;
	if (file->f_op->fsync(inode,file))
		return -EIO;
	return 0;
}

void invalidate_buffers(dev_t dev)
{
	int i;
	int nlist;
	struct buffer_head * bh;

	for(nlist = 0; nlist < NR_LIST; nlist++) {
		bh = lru_list[nlist];
		for (i = nr_buffers_type[nlist]*2 ; --i > 0 ; bh = bh->b_next_free) {
			if (bh->b_dev != dev)
				continue;
			wait_on_buffer(bh);
			if (bh->b_dev != dev)
				continue;
			if (bh->b_count)
				continue;
			bh->b_flushtime = bh->b_uptodate = 
				bh->b_dirt = bh->b_req = 0;
		}
	}
}

#define _hashfn(dev,block) (((unsigned)(dev^block))%nr_hash)
#define hash(dev,block) hash_table[_hashfn(dev,block)]

static inline void remove_from_hash_queue(struct buffer_head * bh)
{
	if (bh->b_next)
		bh->b_next->b_prev = bh->b_prev;
	if (bh->b_prev)
		bh->b_prev->b_next = bh->b_next;
	if (hash(bh->b_dev,bh->b_blocknr) == bh)
		hash(bh->b_dev,bh->b_blocknr) = bh->b_next;
	bh->b_next = bh->b_prev = NULL;
}

static inline void remove_from_lru_list(struct buffer_head * bh)
{
	if (!(bh->b_prev_free) || !(bh->b_next_free))
		panic("VFS: LRU block list corrupted");
	if (bh->b_dev == 0xffff) panic("LRU list corrupted");
	bh->b_prev_free->b_next_free = bh->b_next_free;
	bh->b_next_free->b_prev_free = bh->b_prev_free;

	if (lru_list[bh->b_list] == bh)
		 lru_list[bh->b_list] = bh->b_next_free;
	if(lru_list[bh->b_list] == bh)
		 lru_list[bh->b_list] = NULL;
	bh->b_next_free = bh->b_prev_free = NULL;
}

static inline void remove_from_free_list(struct buffer_head * bh)
{
        int isize = BUFSIZE_INDEX(bh->b_size);
	if (!(bh->b_prev_free) || !(bh->b_next_free))
		panic("VFS: Free block list corrupted");
	if(bh->b_dev != 0xffff) panic("Free list corrupted");
	if(!free_list[isize])
		 panic("Free list empty");
	nr_free[isize]--;
	if(bh->b_next_free == bh)
		 free_list[isize] = NULL;
	else {
		bh->b_prev_free->b_next_free = bh->b_next_free;
		bh->b_next_free->b_prev_free = bh->b_prev_free;
		if (free_list[isize] == bh)
			 free_list[isize] = bh->b_next_free;
	};
	bh->b_next_free = bh->b_prev_free = NULL;
}

static inline void remove_from_queues(struct buffer_head * bh)
{
        if(bh->b_dev == 0xffff) {
		remove_from_free_list(bh); /* Free list entries should not be
					      in the hash queue */
		return;
	};
	nr_buffers_type[bh->b_list]--;
	nr_buffers_st[BUFSIZE_INDEX(bh->b_size)][bh->b_list]--;
	remove_from_hash_queue(bh);
	remove_from_lru_list(bh);
}

static inline void put_last_lru(struct buffer_head * bh)
{
	if (!bh)
		return;
	if (bh == lru_list[bh->b_list]) {
		lru_list[bh->b_list] = bh->b_next_free;
		return;
	}
	if(bh->b_dev == 0xffff) panic("Wrong block for lru list");
	remove_from_lru_list(bh);
/* add to back of free list */

	if(!lru_list[bh->b_list]) {
		lru_list[bh->b_list] = bh;
		lru_list[bh->b_list]->b_prev_free = bh;
	};

	bh->b_next_free = lru_list[bh->b_list];
	bh->b_prev_free = lru_list[bh->b_list]->b_prev_free;
	lru_list[bh->b_list]->b_prev_free->b_next_free = bh;
	lru_list[bh->b_list]->b_prev_free = bh;
}

static inline void put_last_free(struct buffer_head * bh)
{
        int isize;
	if (!bh)
		return;

	isize = BUFSIZE_INDEX(bh->b_size);	
	bh->b_dev = 0xffff;  /* So it is obvious we are on the free list */
/* add to back of free list */

	if(!free_list[isize]) {
		free_list[isize] = bh;
		bh->b_prev_free = bh;
	};

	nr_free[isize]++;
	bh->b_next_free = free_list[isize];
	bh->b_prev_free = free_list[isize]->b_prev_free;
	free_list[isize]->b_prev_free->b_next_free = bh;
	free_list[isize]->b_prev_free = bh;
}

static inline void insert_into_queues(struct buffer_head * bh)
{
/* put at end of free list */

        if(bh->b_dev == 0xffff) {
		put_last_free(bh);
		return;
	};
	if(!lru_list[bh->b_list]) {
		lru_list[bh->b_list] = bh;
		bh->b_prev_free = bh;
	};
	if (bh->b_next_free) panic("VFS: buffer LRU pointers corrupted");
	bh->b_next_free = lru_list[bh->b_list];
	bh->b_prev_free = lru_list[bh->b_list]->b_prev_free;
	lru_list[bh->b_list]->b_prev_free->b_next_free = bh;
	lru_list[bh->b_list]->b_prev_free = bh;
	nr_buffers_type[bh->b_list]++;
	nr_buffers_st[BUFSIZE_INDEX(bh->b_size)][bh->b_list]++;
/* put the buffer in new hash-queue if it has a device */
	bh->b_prev = NULL;
	bh->b_next = NULL;
	if (!bh->b_dev)
		return;
	bh->b_next = hash(bh->b_dev,bh->b_blocknr);
	hash(bh->b_dev,bh->b_blocknr) = bh;
	if (bh->b_next)
		bh->b_next->b_prev = bh;
}

static struct buffer_head * find_buffer(dev_t dev, int block, int size)
{		
	struct buffer_head * tmp;

	for (tmp = hash(dev,block) ; tmp != NULL ; tmp = tmp->b_next)
		if (tmp->b_dev==dev && tmp->b_blocknr==block)
			if (tmp->b_size == size)
				return tmp;
			else {
				printk("VFS: Wrong blocksize on device %d/%d\n",
							MAJOR(dev), MINOR(dev));
				return NULL;
			}
	return NULL;
}

/*
 * Why like this, I hear you say... The reason is race-conditions.
 * As we don't lock buffers (unless we are reading them, that is),
 * something might happen to it while we sleep (ie a read-error
 * will force it bad). This shouldn't really happen currently, but
 * the code is ready.
 */
struct buffer_head * get_hash_table(dev_t dev, int block, int size)
{
	struct buffer_head * bh;

	for (;;) {
		if (!(bh=find_buffer(dev,block,size)))
			return NULL;
		bh->b_count++;
		wait_on_buffer(bh);
		if (bh->b_dev == dev && bh->b_blocknr == block && bh->b_size == size)
			return bh;
		bh->b_count--;
	}
}

void set_blocksize(dev_t dev, int size)
{
	int i, nlist;
	struct buffer_head * bh, *bhnext;

	if (!blksize_size[MAJOR(dev)])
		return;

	switch(size) {
		default: panic("Invalid blocksize passed to set_blocksize");
		case 512: case 1024: case 2048: case 4096:;
	}

	if (blksize_size[MAJOR(dev)][MINOR(dev)] == 0 && size == BLOCK_SIZE) {
		blksize_size[MAJOR(dev)][MINOR(dev)] = size;
		return;
	}
	if (blksize_size[MAJOR(dev)][MINOR(dev)] == size)
		return;
	sync_buffers(dev, 2);
	blksize_size[MAJOR(dev)][MINOR(dev)] = size;

  /* We need to be quite careful how we do this - we are moving entries
     around on the free list, and we can get in a loop if we are not careful.*/

	for(nlist = 0; nlist < NR_LIST; nlist++) {
		bh = lru_list[nlist];
		for (i = nr_buffers_type[nlist]*2 ; --i > 0 ; bh = bhnext) {
			if(!bh) break;
			bhnext = bh->b_next_free; 
			if (bh->b_dev != dev)
				 continue;
			if (bh->b_size == size)
				 continue;
			
			wait_on_buffer(bh);
			if (bh->b_dev == dev && bh->b_size != size) {
				bh->b_uptodate = bh->b_dirt = bh->b_req =
					 bh->b_flushtime = 0;
			};
			remove_from_hash_queue(bh);
		}
	}
}

#define BADNESS(bh) (((bh)->b_dirt<<1)+(bh)->b_lock)

void refill_freelist(int size)
{
	struct buffer_head * bh, * tmp;
	struct buffer_head * candidate[NR_LIST];
	unsigned int best_time, winner;
        int isize = BUFSIZE_INDEX(size);
	int buffers[NR_LIST];
	int i;
	int needed;

	/* First see if we even need this.  Sometimes it is advantageous
	 to request some blocks in a filesystem that we know that we will
	 be needing ahead of time. */

	if (nr_free[isize] > 100)
		return;

	/* If there are too many dirty buffers, we wake up the update process
	   now so as to ensure that there are still clean buffers available
	   for user processes to use (and dirty) */
	
	/* We are going to try and locate this much memory */
	needed =bdf_prm.b_un.nrefill * size;  

	while (nr_free_pages > min_free_pages*2 && needed > 0 &&
	       grow_buffers(GFP_BUFFER, size)) {
		needed -= PAGE_SIZE;
	}

	if(needed <= 0) return;

	/* See if there are too many buffers of a different size.
	   If so, victimize them */

	while(maybe_shrink_lav_buffers(size))
	 {
		 if(!grow_buffers(GFP_BUFFER, size)) break;
		 needed -= PAGE_SIZE;
		 if(needed <= 0) return;
	 };

	/* OK, we cannot grow the buffer cache, now try and get some
	   from the lru list */

	/* First set the candidate pointers to usable buffers.  This
	   should be quick nearly all of the time. */

repeat0:
	for(i=0; i<NR_LIST; i++){
		if(i == BUF_DIRTY || i == BUF_SHARED || 
		   nr_buffers_type[i] == 0) {
			candidate[i] = NULL;
			buffers[i] = 0;
			continue;
		}
		buffers[i] = nr_buffers_type[i];
		for (bh = lru_list[i]; buffers[i] > 0; bh = tmp, buffers[i]--)
		 {
			 if(buffers[i] < 0) panic("Here is the problem");
			 tmp = bh->b_next_free;
			 if (!bh) break;
			 
			 if (mem_map[MAP_NR((unsigned long) bh->b_data)] != 1 ||
			     bh->b_dirt) {
				 refile_buffer(bh);
				 continue;
			 };
			 
			 if (bh->b_count || bh->b_size != size)
				  continue;
			 
			 /* Buffers are written in the order they are placed 
			    on the locked list. If we encounter a locked
			    buffer here, this means that the rest of them
			    are also locked */
			 if(bh->b_lock && (i == BUF_LOCKED || i == BUF_LOCKED1)) {
				 buffers[i] = 0;
				 break;
			 }
			 
			 if (BADNESS(bh)) continue;
			 break;
		 };
		if(!buffers[i]) candidate[i] = NULL; /* Nothing on this list */
		else candidate[i] = bh;
		if(candidate[i] && candidate[i]->b_count) panic("Here is the problem");
	}
	
 repeat:
	if(needed <= 0) return;
	
	/* Now see which candidate wins the election */
	
	winner = best_time = UINT_MAX;	
	for(i=0; i<NR_LIST; i++){
		if(!candidate[i]) continue;
		if(candidate[i]->b_lru_time < best_time){
			best_time = candidate[i]->b_lru_time;
			winner = i;
		}
	}
	
	/* If we have a winner, use it, and then get a new candidate from that list */
	if(winner != UINT_MAX) {
		i = winner;
		bh = candidate[i];
		candidate[i] = bh->b_next_free;
		if(candidate[i] == bh) candidate[i] = NULL;  /* Got last one */
		if (bh->b_count || bh->b_size != size)
			 panic("Busy buffer in candidate list\n");
		if (mem_map[MAP_NR((unsigned long) bh->b_data)] != 1)
			 panic("Shared buffer in candidate list\n");
		if (BADNESS(bh)) panic("Buffer in candidate list with BADNESS != 0\n");
		
		if(bh->b_dev == 0xffff) panic("Wrong list");
		remove_from_queues(bh);
		bh->b_dev = 0xffff;
		put_last_free(bh);
		needed -= bh->b_size;
		buffers[i]--;
		if(buffers[i] < 0) panic("Here is the problem");
		
		if(buffers[i] == 0) candidate[i] = NULL;
		
		/* Now all we need to do is advance the candidate pointer
		   from the winner list to the next usable buffer */
		if(candidate[i] && buffers[i] > 0){
			if(buffers[i] <= 0) panic("Here is another problem");
			for (bh = candidate[i]; buffers[i] > 0; bh = tmp, buffers[i]--) {
				if(buffers[i] < 0) panic("Here is the problem");
				tmp = bh->b_next_free;
				if (!bh) break;
				
				if (mem_map[MAP_NR((unsigned long) bh->b_data)] != 1 ||
				    bh->b_dirt) {
					refile_buffer(bh);
					continue;
				};
				
				if (bh->b_count || bh->b_size != size)
					 continue;
				
				/* Buffers are written in the order they are
				   placed on the locked list.  If we encounter
				   a locked buffer here, this means that the
				   rest of them are also locked */
				if(bh->b_lock && (i == BUF_LOCKED || i == BUF_LOCKED1)) {
					buffers[i] = 0;
					break;
				}
	      
				if (BADNESS(bh)) continue;
				break;
			};
			if(!buffers[i]) candidate[i] = NULL; /* Nothing here */
			else candidate[i] = bh;
			if(candidate[i] && candidate[i]->b_count) 
				 panic("Here is the problem");
		}
		
		goto repeat;
	}
	
	if(needed <= 0) return;
	
	/* Too bad, that was not enough. Try a little harder to grow some. */
	
	if (nr_free_pages > 5) {
		if (grow_buffers(GFP_BUFFER, size)) {
	                needed -= PAGE_SIZE;
			goto repeat0;
		};
	}
	
	/* and repeat until we find something good */
	if (!grow_buffers(GFP_ATOMIC, size))
		wakeup_bdflush(1);
	needed -= PAGE_SIZE;
	goto repeat0;
}

/*
 * Ok, this is getblk, and it isn't very clear, again to hinder
 * race-conditions. Most of the code is seldom used, (ie repeating),
 * so it should be much more efficient than it looks.
 *
 * The algorithm is changed: hopefully better, and an elusive bug removed.
 *
 * 14.02.92: changed it to sync dirty buffers a bit: better performance
 * when the filesystem starts to get full of dirty blocks (I hope).
 */
struct buffer_head * getblk(dev_t dev, int block, int size)
{
	struct buffer_head * bh;
        int isize = BUFSIZE_INDEX(size);

	/* Update this for the buffer size lav. */
	buffer_usage[isize]++;

	/* If there are too many dirty buffers, we wake up the update process
	   now so as to ensure that there are still clean buffers available
	   for user processes to use (and dirty) */
repeat:
	bh = get_hash_table(dev, block, size);
	if (bh) {
		if (bh->b_uptodate && !bh->b_dirt)
			 put_last_lru(bh);
		if(!bh->b_dirt) bh->b_flushtime = 0;
		return bh;
	}

	while(!free_list[isize]) refill_freelist(size);
	
	if (find_buffer(dev,block,size))
		 goto repeat;

	bh = free_list[isize];
	remove_from_free_list(bh);

/* OK, FINALLY we know that this buffer is the only one of its kind, */
/* and that it's unused (b_count=0), unlocked (b_lock=0), and clean */
	bh->b_count=1;
	bh->b_dirt=0;
	bh->b_lock=0;
	bh->b_uptodate=0;
	bh->b_flushtime = 0;
	bh->b_req=0;
	bh->b_dev=dev;
	bh->b_blocknr=block;
	insert_into_queues(bh);
	return bh;
}

void set_writetime(struct buffer_head * buf, int flag)
{
        int newtime;

	if (buf->b_dirt){
		/* Move buffer to dirty list if jiffies is clear */
		newtime = jiffies + (flag ? bdf_prm.b_un.age_super : 
				     bdf_prm.b_un.age_buffer);
		if(!buf->b_flushtime || buf->b_flushtime > newtime)
			 buf->b_flushtime = newtime;
	} else {
		buf->b_flushtime = 0;
	}
}


void refile_buffer(struct buffer_head * buf){
	int dispose;
	if(buf->b_dev == 0xffff) panic("Attempt to refile free buffer\n");
	if (buf->b_dirt)
		dispose = BUF_DIRTY;
	else if (mem_map[MAP_NR((unsigned long) buf->b_data)] > 1)
		dispose = BUF_SHARED;
	else if (buf->b_lock)
		dispose = BUF_LOCKED;
	else if (buf->b_list == BUF_SHARED)
		dispose = BUF_UNSHARED;
	else
		dispose = BUF_CLEAN;
	if(dispose == BUF_CLEAN) buf->b_lru_time = jiffies;
	if(dispose != buf->b_list)  {
		if(dispose == BUF_DIRTY || dispose == BUF_UNSHARED)
			 buf->b_lru_time = jiffies;
		if(dispose == BUF_LOCKED && 
		   (buf->b_flushtime - buf->b_lru_time) <= bdf_prm.b_un.age_super)
			 dispose = BUF_LOCKED1;
		remove_from_queues(buf);
		buf->b_list = dispose;
		insert_into_queues(buf);
		if(dispose == BUF_DIRTY && nr_buffers_type[BUF_DIRTY] > 
		   (nr_buffers - nr_buffers_type[BUF_SHARED]) *
		   bdf_prm.b_un.nfract/100)
			 wakeup_bdflush(0);
	}
}

void brelse(struct buffer_head * buf)
{
	if (!buf)
		return;
	wait_on_buffer(buf);

	/* If dirty, mark the time this buffer should be written back */
	set_writetime(buf, 0);
	refile_buffer(buf);

	if (buf->b_count) {
		if (--buf->b_count)
			return;
		wake_up(&buffer_wait);
		return;
	}
	printk("VFS: brelse: Trying to free free buffer\n");
}

/*
 * bread() reads a specified block and returns the buffer that contains
 * it. It returns NULL if the block was unreadable.
 */
struct buffer_head * bread(dev_t dev, int block, int size)
{
	struct buffer_head * bh;

	if (!(bh = getblk(dev, block, size))) {
		printk("VFS: bread: READ error on device %d/%d\n",
						MAJOR(dev), MINOR(dev));
		return NULL;
	}
	if (bh->b_uptodate)
		return bh;
	ll_rw_block(READ, 1, &bh);
	wait_on_buffer(bh);
	if (bh->b_uptodate)
		return bh;
	brelse(bh);
	return NULL;
}

/*
 * Ok, breada can be used as bread, but additionally to mark other
 * blocks for reading as well. End the argument list with a negative
 * number.
 */

#define NBUF 16

struct buffer_head * breada(dev_t dev, int block, int bufsize,
	unsigned int pos, unsigned int filesize)
{
	struct buffer_head * bhlist[NBUF];
	unsigned int blocks;
	struct buffer_head * bh;
	int index;
	int i, j;

	if (pos >= filesize)
		return NULL;

	if (block < 0 || !(bh = getblk(dev,block,bufsize)))
		return NULL;

	index = BUFSIZE_INDEX(bh->b_size);

	if (bh->b_uptodate)
		return bh;

	blocks = ((filesize & (bufsize - 1)) - (pos & (bufsize - 1))) >> (9+index);

	if (blocks > (read_ahead[MAJOR(dev)] >> index))
		blocks = read_ahead[MAJOR(dev)] >> index;
	if (blocks > NBUF)
		blocks = NBUF;
	
	bhlist[0] = bh;
	j = 1;
	for(i=1; i<blocks; i++) {
		bh = getblk(dev,block+i,bufsize);
		if (bh->b_uptodate) {
			brelse(bh);
			break;
		}
		bhlist[j++] = bh;
	}

	/* Request the read for these buffers, and then release them */
	ll_rw_block(READ, j, bhlist);

	for(i=1; i<j; i++)
		brelse(bhlist[i]);

	/* Wait for this buffer, and then continue on */
	bh = bhlist[0];
	wait_on_buffer(bh);
	if (bh->b_uptodate)
		return bh;
	brelse(bh);
	return NULL;
}

/*
 * See fs/inode.c for the weird use of volatile..
 */
static void put_unused_buffer_head(struct buffer_head * bh)
{
	struct wait_queue * wait;

	wait = ((volatile struct buffer_head *) bh)->b_wait;
	memset(bh,0,sizeof(*bh));
	((volatile struct buffer_head *) bh)->b_wait = wait;
	bh->b_next_free = unused_list;
	unused_list = bh;
}

static void get_more_buffer_heads(void)
{
	int i;
	struct buffer_head * bh;

	if (unused_list)
		return;

	if (!(bh = (struct buffer_head*) get_free_page(GFP_BUFFER)))
		return;

	for (nr_buffer_heads+=i=PAGE_SIZE/sizeof*bh ; i>0; i--) {
		bh->b_next_free = unused_list;	/* only make link */
		unused_list = bh++;
	}
}

static struct buffer_head * get_unused_buffer_head(void)
{
	struct buffer_head * bh;

	get_more_buffer_heads();
	if (!unused_list)
		return NULL;
	bh = unused_list;
	unused_list = bh->b_next_free;
	bh->b_next_free = NULL;
	bh->b_data = NULL;
	bh->b_size = 0;
	bh->b_req = 0;
	return bh;
}

/*
 * Create the appropriate buffers when given a page for data area and
 * the size of each buffer.. Use the bh->b_this_page linked list to
 * follow the buffers created.  Return NULL if unable to create more
 * buffers.
 */
static struct buffer_head * create_buffers(unsigned long page, unsigned long size)
{
	struct buffer_head *bh, *head;
	unsigned long offset;

	head = NULL;
	offset = PAGE_SIZE;
	while ((offset -= size) < PAGE_SIZE) {
		bh = get_unused_buffer_head();
		if (!bh)
			goto no_grow;
		bh->b_this_page = head;
		head = bh;
		bh->b_data = (char *) (page+offset);
		bh->b_size = size;
		bh->b_dev = 0xffff;  /* Flag as unused */
	}
	return head;
/*
 * In case anything failed, we just free everything we got.
 */
no_grow:
	bh = head;
	while (bh) {
		head = bh;
		bh = bh->b_this_page;
		put_unused_buffer_head(head);
	}
	return NULL;
}

static void read_buffers(struct buffer_head * bh[], int nrbuf)
{
	int i;
	int bhnum = 0;
	struct buffer_head * bhr[MAX_BUF_PER_PAGE];

	for (i = 0 ; i < nrbuf ; i++) {
		if (bh[i] && !bh[i]->b_uptodate)
			bhr[bhnum++] = bh[i];
	}
	if (bhnum)
		ll_rw_block(READ, bhnum, bhr);
	for (i = nrbuf ; --i >= 0 ; ) {
		if (bh[i]) {
			wait_on_buffer(bh[i]);
		}
	}
}

/*
 * This actually gets enough info to try to align the stuff,
 * but we don't bother yet.. We'll have to check that nobody
 * else uses the buffers etc.
 *
 * "address" points to the new page we can use to move things
 * around..
 */
static unsigned long try_to_align(struct buffer_head ** bh, int nrbuf,
	unsigned long address)
{
	while (nrbuf-- > 0)
		brelse(bh[nrbuf]);
	return 0;
}

static unsigned long check_aligned(struct buffer_head * first, unsigned long address,
	dev_t dev, int *b, int size)
{
	struct buffer_head * bh[MAX_BUF_PER_PAGE];
	unsigned long page;
	unsigned long offset;
	int block;
	int nrbuf;
	int aligned = 1;

	bh[0] = first;
	nrbuf = 1;
	page = (unsigned long) first->b_data;
	if (page & ~PAGE_MASK)
		aligned = 0;
	for (offset = size ; offset < PAGE_SIZE ; offset += size) {
		block = *++b;
		if (!block)
			goto no_go;
		first = get_hash_table(dev, block, size);
		if (!first)
			goto no_go;
		bh[nrbuf++] = first;
		if (page+offset != (unsigned long) first->b_data)
			aligned = 0;
	}
	if (!aligned)
		return try_to_align(bh, nrbuf, address);
	mem_map[MAP_NR(page)]++;
	read_buffers(bh,nrbuf);		/* make sure they are actually read correctly */
	while (nrbuf-- > 0)
		brelse(bh[nrbuf]);
	free_page(address);
	++current->mm->min_flt;
	return page;
no_go:
	while (nrbuf-- > 0)
		brelse(bh[nrbuf]);
	return 0;
}

static unsigned long try_to_load_aligned(unsigned long address,
	dev_t dev, int b[], int size)
{
	struct buffer_head * bh, * tmp, * arr[MAX_BUF_PER_PAGE];
	unsigned long offset;
        int isize = BUFSIZE_INDEX(size);
	int * p;
	int block;

	bh = create_buffers(address, size);
	if (!bh)
		return 0;
	/* do any of the buffers already exist? punt if so.. */
	p = b;
	for (offset = 0 ; offset < PAGE_SIZE ; offset += size) {
		block = *(p++);
		if (!block)
			goto not_aligned;
		if (find_buffer(dev, block, size))
			goto not_aligned;
	}
	tmp = bh;
	p = b;
	block = 0;
	while (1) {
		arr[block++] = bh;
		bh->b_count = 1;
		bh->b_dirt = 0;
		bh->b_flushtime = 0;
		bh->b_uptodate = 0;
		bh->b_req = 0;
		bh->b_dev = dev;
		bh->b_blocknr = *(p++);
		bh->b_list = BUF_CLEAN;
		nr_buffers++;
		nr_buffers_size[isize]++;
		insert_into_queues(bh);
		if (bh->b_this_page)
			bh = bh->b_this_page;
		else
			break;
	}
	buffermem += PAGE_SIZE;
	bh->b_this_page = tmp;
	mem_map[MAP_NR(address)]++;
	buffer_pages[MAP_NR(address)] = bh;
	read_buffers(arr,block);
	while (block-- > 0)
		brelse(arr[block]);
	++current->mm->maj_flt;
	return address;
not_aligned:
	while ((tmp = bh) != NULL) {
		bh = bh->b_this_page;
		put_unused_buffer_head(tmp);
	}
	return 0;
}

/*
 * Try-to-share-buffers tries to minimize memory use by trying to keep
 * both code pages and the buffer area in the same page. This is done by
 * (a) checking if the buffers are already aligned correctly in memory and
 * (b) if none of the buffer heads are in memory at all, trying to load
 * them into memory the way we want them.
 *
 * This doesn't guarantee that the memory is shared, but should under most
 * circumstances work very well indeed (ie >90% sharing of code pages on
 * demand-loadable executables).
 */
static inline unsigned long try_to_share_buffers(unsigned long address,
	dev_t dev, int *b, int size)
{
	struct buffer_head * bh;
	int block;

	block = b[0];
	if (!block)
		return 0;
	bh = get_hash_table(dev, block, size);
	if (bh)
		return check_aligned(bh, address, dev, b, size);
	return try_to_load_aligned(address, dev, b, size);
}

/*
 * bread_page reads four buffers into memory at the desired address. It's
 * a function of its own, as there is some speed to be got by reading them
 * all at the same time, not waiting for one to be read, and then another
 * etc. This also allows us to optimize memory usage by sharing code pages
 * and filesystem buffers..
 */
unsigned long bread_page(unsigned long address, dev_t dev, int b[], int size, int no_share)
{
	struct buffer_head * bh[MAX_BUF_PER_PAGE];
	unsigned long where;
	int i, j;

	if (!no_share) {
		where = try_to_share_buffers(address, dev, b, size);
		if (where)
			return where;
	}
	++current->mm->maj_flt;
 	for (i=0, j=0; j<PAGE_SIZE ; i++, j+= size) {
		bh[i] = NULL;
		if (b[i])
			bh[i] = getblk(dev, b[i], size);
	}
	read_buffers(bh,i);
	where = address;
 	for (i=0, j=0; j<PAGE_SIZE ; i++, j += size, where += size) {
		if (bh[i]) {
			if (bh[i]->b_uptodate)
				memcpy((void *) where, bh[i]->b_data, size);
			brelse(bh[i]);
		} else
			memset((void *) where, 0, size);
	}
	return address;
}

/*
 * bwrite_page writes a page out to the buffer cache and/or the physical device.
 * It's used for mmap writes (the same way bread_page() is used for mmap reads).
 */
void bwrite_page(unsigned long address, dev_t dev, int b[], int size)
{
	struct buffer_head * bh[MAX_BUF_PER_PAGE];
	int i, j;

 	for (i=0, j=0; j<PAGE_SIZE ; i++, j+= size) {
		bh[i] = NULL;
		if (b[i])
			bh[i] = getblk(dev, b[i], size);
	}
 	for (i=0, j=0; j<PAGE_SIZE ; i++, j += size, address += size) {
		if (bh[i]) {
			memcpy(bh[i]->b_data, (void *) address, size);
			bh[i]->b_uptodate = 1;
			mark_buffer_dirty(bh[i], 0);
			brelse(bh[i]);
		} else
			memset((void *) address, 0, size);
	}	
}

/*
 * Try to increase the number of buffers available: the size argument
 * is used to determine what kind of buffers we want.
 */
static int grow_buffers(int pri, int size)
{
	unsigned long page;
	struct buffer_head *bh, *tmp;
	struct buffer_head * insert_point;
	int isize;

	if ((size & 511) || (size > PAGE_SIZE)) {
		printk("VFS: grow_buffers: size = %d\n",size);
		return 0;
	}

	isize = BUFSIZE_INDEX(size);

	if (!(page = __get_free_page(pri)))
		return 0;
	bh = create_buffers(page, size);
	if (!bh) {
		free_page(page);
		return 0;
	}

	insert_point = free_list[isize];

	tmp = bh;
	while (1) {
	        nr_free[isize]++;
		if (insert_point) {
			tmp->b_next_free = insert_point->b_next_free;
			tmp->b_prev_free = insert_point;
			insert_point->b_next_free->b_prev_free = tmp;
			insert_point->b_next_free = tmp;
		} else {
			tmp->b_prev_free = tmp;
			tmp->b_next_free = tmp;
		}
		insert_point = tmp;
		++nr_buffers;
		if (tmp->b_this_page)
			tmp = tmp->b_this_page;
		else
			break;
	}
	free_list[isize] = bh;
	buffer_pages[MAP_NR(page)] = bh;
	tmp->b_this_page = bh;
	wake_up(&buffer_wait);
	buffermem += PAGE_SIZE;
	return 1;
}


/* =========== Reduce the buffer memory ============= */

/*
 * try_to_free() checks if all the buffers on this particular page
 * are unused, and free's the page if so.
 */
static int try_to_free(struct buffer_head * bh, struct buffer_head ** bhp)
{
	unsigned long page;
	struct buffer_head * tmp, * p;
        int isize = BUFSIZE_INDEX(bh->b_size);

	*bhp = bh;
	page = (unsigned long) bh->b_data;
	page &= PAGE_MASK;
	tmp = bh;
	do {
		if (!tmp)
			return 0;
		if (tmp->b_count || tmp->b_dirt || tmp->b_lock || tmp->b_wait)
			return 0;
		tmp = tmp->b_this_page;
	} while (tmp != bh);
	tmp = bh;
	do {
		p = tmp;
		tmp = tmp->b_this_page;
		nr_buffers--;
		nr_buffers_size[isize]--;
		if (p == *bhp)
		  {
		    *bhp = p->b_prev_free;
		    if (p == *bhp) /* Was this the last in the list? */
		      *bhp = NULL;
		  }
		remove_from_queues(p);
		put_unused_buffer_head(p);
	} while (tmp != bh);
	buffermem -= PAGE_SIZE;
	buffer_pages[MAP_NR(page)] = NULL;
	free_page(page);
	return !mem_map[MAP_NR(page)];
}


/*
 * Consult the load average for buffers and decide whether or not
 * we should shrink the buffers of one size or not.  If we decide yes,
 * do it and return 1.  Else return 0.  Do not attempt to shrink size
 * that is specified.
 *
 * I would prefer not to use a load average, but the way things are now it
 * seems unavoidable.  The way to get rid of it would be to force clustering
 * universally, so that when we reclaim buffers we always reclaim an entire
 * page.  Doing this would mean that we all need to move towards QMAGIC.
 */

static int maybe_shrink_lav_buffers(int size)
{	   
	int nlist;
	int isize;
	int total_lav, total_n_buffers, n_sizes;
	
	/* Do not consider the shared buffers since they would not tend
	   to have getblk called very often, and this would throw off
	   the lav.  They are not easily reclaimable anyway (let the swapper
	   make the first move). */
  
	total_lav = total_n_buffers = n_sizes = 0;
	for(nlist = 0; nlist < NR_SIZES; nlist++)
	 {
		 total_lav += buffers_lav[nlist];
		 if(nr_buffers_size[nlist]) n_sizes++;
		 total_n_buffers += nr_buffers_size[nlist];
		 total_n_buffers -= nr_buffers_st[nlist][BUF_SHARED]; 
	 }
	
	/* See if we have an excessive number of buffers of a particular
	   size - if so, victimize that bunch. */
  
	isize = (size ? BUFSIZE_INDEX(size) : -1);
	
	if (n_sizes > 1)
		 for(nlist = 0; nlist < NR_SIZES; nlist++)
		  {
			  if(nlist == isize) continue;
			  if(nr_buffers_size[nlist] &&
			     bdf_prm.b_un.lav_const * buffers_lav[nlist]*total_n_buffers < 
			     total_lav * (nr_buffers_size[nlist] - nr_buffers_st[nlist][BUF_SHARED]))
				   if(shrink_specific_buffers(6, bufferindex_size[nlist])) 
					    return 1;
		  }
	return 0;
}
/*
 * Try to free up some pages by shrinking the buffer-cache
 *
 * Priority tells the routine how hard to try to shrink the
 * buffers: 3 means "don't bother too much", while a value
 * of 0 means "we'd better get some free pages now".
 *
 * "limit" is meant to limit the shrink-action only to pages
 * that are in the 0 - limit address range, for DMA re-allocations.
 * We ignore that right now.
 */
int shrink_buffers(unsigned int priority, unsigned long limit)
{
	if (priority < 2) {
		sync_buffers(0,0);
	}

	if(priority == 2) wakeup_bdflush(1);

	if(maybe_shrink_lav_buffers(0)) return 1;

	/* No good candidate size - take any size we can find */
        return shrink_specific_buffers(priority, 0);
}

static int shrink_specific_buffers(unsigned int priority, int size)
{
	struct buffer_head *bh;
	int nlist;
	int i, isize, isize1;

#ifdef DEBUG
	if(size) printk("Shrinking buffers of size %d\n", size);
#endif
	/* First try the free lists, and see if we can get a complete page
	   from here */
	isize1 = (size ? BUFSIZE_INDEX(size) : -1);

	for(isize = 0; isize<NR_SIZES; isize++){
		if(isize1 != -1 && isize1 != isize) continue;
		bh = free_list[isize];
		if(!bh) continue;
		for (i=0 ; !i || bh != free_list[isize]; bh = bh->b_next_free, i++) {
			if (bh->b_count || !bh->b_this_page)
				 continue;
			if (try_to_free(bh, &bh))
				 return 1;
			if(!bh) break; /* Some interrupt must have used it after we
					  freed the page.  No big deal - keep looking */
		}
	}
	
	/* Not enough in the free lists, now try the lru list */
	
	for(nlist = 0; nlist < NR_LIST; nlist++) {
	repeat1:
		if(priority > 3 && nlist == BUF_SHARED) continue;
		bh = lru_list[nlist];
		if(!bh) continue;
		i = 2*nr_buffers_type[nlist] >> priority;
		for ( ; i-- > 0 ; bh = bh->b_next_free) {
			/* We may have stalled while waiting for I/O to complete. */
			if(bh->b_list != nlist) goto repeat1;
			if (bh->b_count || !bh->b_this_page)
				 continue;
			if(size && bh->b_size != size) continue;
			if (bh->b_lock)
				 if (priority)
					  continue;
				 else
					  wait_on_buffer(bh);
			if (bh->b_dirt) {
				bh->b_count++;
				bh->b_flushtime = 0;
				ll_rw_block(WRITEA, 1, &bh);
				bh->b_count--;
				continue;
			}
			if (try_to_free(bh, &bh))
				 return 1;
			if(!bh) break;
		}
	}
	return 0;
}


/* ================== Debugging =================== */

void show_buffers(void)
{
	struct buffer_head * bh;
	int found = 0, locked = 0, dirty = 0, used = 0, lastused = 0;
	int shared;
	int nlist, isize;

	printk("Buffer memory:   %6dkB\n",buffermem>>10);
	printk("Buffer heads:    %6d\n",nr_buffer_heads);
	printk("Buffer blocks:   %6d\n",nr_buffers);

	for(nlist = 0; nlist < NR_LIST; nlist++) {
	  shared = found = locked = dirty = used = lastused = 0;
	  bh = lru_list[nlist];
	  if(!bh) continue;
	  do {
		found++;
		if (bh->b_lock)
			locked++;
		if (bh->b_dirt)
			dirty++;
		if(mem_map[MAP_NR(((unsigned long) bh->b_data))] !=1) shared++;
		if (bh->b_count)
			used++, lastused = found;
		bh = bh->b_next_free;
	      } while (bh != lru_list[nlist]);
	printk("Buffer[%d] mem: %d buffers, %d used (last=%d), %d locked, %d dirty %d shrd\n",
		nlist, found, used, lastused, locked, dirty, shared);
	};
	printk("Size    [LAV]     Free  Clean  Unshar     Lck    Lck1   Dirty  Shared\n");
	for(isize = 0; isize<NR_SIZES; isize++){
		printk("%5d [%5d]: %7d ", bufferindex_size[isize],
		       buffers_lav[isize], nr_free[isize]);
		for(nlist = 0; nlist < NR_LIST; nlist++)
			 printk("%7d ", nr_buffers_st[isize][nlist]);
		printk("\n");
	}
}


/* ====================== Cluster patches for ext2 ==================== */

/*
 * try_to_reassign() checks if all the buffers on this particular page
 * are unused, and reassign to a new cluster them if this is true.
 */
static inline int try_to_reassign(struct buffer_head * bh, struct buffer_head ** bhp,
			   dev_t dev, unsigned int starting_block)
{
	unsigned long page;
	struct buffer_head * tmp, * p;

	*bhp = bh;
	page = (unsigned long) bh->b_data;
	page &= PAGE_MASK;
	if(mem_map[MAP_NR(page)] != 1) return 0;
	tmp = bh;
	do {
		if (!tmp)
			 return 0;
		
		if (tmp->b_count || tmp->b_dirt || tmp->b_lock)
			 return 0;
		tmp = tmp->b_this_page;
	} while (tmp != bh);
	tmp = bh;
	
	while((unsigned long) tmp->b_data & (PAGE_SIZE - 1)) 
		 tmp = tmp->b_this_page;
	
	/* This is the buffer at the head of the page */
	bh = tmp;
	do {
		p = tmp;
		tmp = tmp->b_this_page;
		remove_from_queues(p);
		p->b_dev=dev;
		p->b_uptodate = 0;
		p->b_req = 0;
		p->b_blocknr=starting_block++;
		insert_into_queues(p);
	} while (tmp != bh);
	return 1;
}

/*
 * Try to find a free cluster by locating a page where
 * all of the buffers are unused.  We would like this function
 * to be atomic, so we do not call anything that might cause
 * the process to sleep.  The priority is somewhat similar to
 * the priority used in shrink_buffers.
 * 
 * My thinking is that the kernel should end up using whole
 * pages for the buffer cache as much of the time as possible.
 * This way the other buffers on a particular page are likely
 * to be very near each other on the free list, and we will not
 * be expiring data prematurely.  For now we only cannibalize buffers
 * of the same size to keep the code simpler.
 */
static int reassign_cluster(dev_t dev, 
		     unsigned int starting_block, int size)
{
	struct buffer_head *bh;
        int isize = BUFSIZE_INDEX(size);
	int i;

	/* We want to give ourselves a really good shot at generating
	   a cluster, and since we only take buffers from the free
	   list, we "overfill" it a little. */

	while(nr_free[isize] < 32) refill_freelist(size);

	bh = free_list[isize];
	if(bh)
		 for (i=0 ; !i || bh != free_list[isize] ; bh = bh->b_next_free, i++) {
			 if (!bh->b_this_page)	continue;
			 if (try_to_reassign(bh, &bh, dev, starting_block))
				 return 4;
		 }
	return 0;
}

/* This function tries to generate a new cluster of buffers
 * from a new page in memory.  We should only do this if we have
 * not expanded the buffer cache to the maximum size that we allow.
 */
static unsigned long try_to_generate_cluster(dev_t dev, int block, int size)
{
	struct buffer_head * bh, * tmp, * arr[MAX_BUF_PER_PAGE];
        int isize = BUFSIZE_INDEX(size);
	unsigned long offset;
	unsigned long page;
	int nblock;

	page = get_free_page(GFP_NOBUFFER);
	if(!page) return 0;

	bh = create_buffers(page, size);
	if (!bh) {
		free_page(page);
		return 0;
	};
	nblock = block;
	for (offset = 0 ; offset < PAGE_SIZE ; offset += size) {
		if (find_buffer(dev, nblock++, size))
			 goto not_aligned;
	}
	tmp = bh;
	nblock = 0;
	while (1) {
		arr[nblock++] = bh;
		bh->b_count = 1;
		bh->b_dirt = 0;
		bh->b_flushtime = 0;
		bh->b_lock = 0;
		bh->b_uptodate = 0;
		bh->b_req = 0;
		bh->b_dev = dev;
		bh->b_list = BUF_CLEAN;
		bh->b_blocknr = block++;
		nr_buffers++;
		nr_buffers_size[isize]++;
		insert_into_queues(bh);
		if (bh->b_this_page)
			bh = bh->b_this_page;
		else
			break;
	}
	buffermem += PAGE_SIZE;
	buffer_pages[MAP_NR(page)] = bh;
	bh->b_this_page = tmp;
	while (nblock-- > 0)
		brelse(arr[nblock]);
	return 4; /* ?? */
not_aligned:
	while ((tmp = bh) != NULL) {
		bh = bh->b_this_page;
		put_unused_buffer_head(tmp);
	}
	free_page(page);
	return 0;
}

unsigned long generate_cluster(dev_t dev, int b[], int size)
{
	int i, offset;
	
	for (i = 0, offset = 0 ; offset < PAGE_SIZE ; i++, offset += size) {
		if(i && b[i]-1 != b[i-1]) return 0;  /* No need to cluster */
		if(find_buffer(dev, b[i], size)) return 0;
	};

	/* OK, we have a candidate for a new cluster */
	
	/* See if one size of buffer is over-represented in the buffer cache,
	   if so reduce the numbers of buffers */
	if(maybe_shrink_lav_buffers(size))
	 {
		 int retval;
		 retval = try_to_generate_cluster(dev, b[0], size);
		 if(retval) return retval;
	 };
	
	if (nr_free_pages > min_free_pages*2) 
		 return try_to_generate_cluster(dev, b[0], size);
	else
		 return reassign_cluster(dev, b[0], size);
}


/* ===================== Init ======================= */

/*
 * This initializes the initial buffer free list.  nr_buffers_type is set
 * to one less the actual number of buffers, as a sop to backwards
 * compatibility --- the old code did this (I think unintentionally,
 * but I'm not sure), and programs in the ps package expect it.
 * 					- TYT 8/30/92
 */
void buffer_init(void)
{
	int i;
        int isize = BUFSIZE_INDEX(BLOCK_SIZE);

	if (high_memory >= 4*1024*1024) {
		if(high_memory >= 16*1024*1024)
			 nr_hash = 16381;
		else
			 nr_hash = 4093;
	} else {
		nr_hash = 997;
	};
	
	hash_table = (struct buffer_head **) vmalloc(nr_hash * 
						     sizeof(struct buffer_head *));


	buffer_pages = (struct buffer_head **) vmalloc(MAP_NR(high_memory) * 
						     sizeof(struct buffer_head *));
	for (i = 0 ; i < MAP_NR(high_memory) ; i++)
		buffer_pages[i] = NULL;

	for (i = 0 ; i < nr_hash ; i++)
		hash_table[i] = NULL;
	lru_list[BUF_CLEAN] = 0;
	grow_buffers(GFP_KERNEL, BLOCK_SIZE);
	if (!free_list[isize])
		panic("VFS: Unable to initialize buffer free list!");
	return;
}


/* ====================== bdflush support =================== */

/* This is a simple kernel daemon, whose job it is to provide a dynamically
 * response to dirty buffers.  Once this process is activated, we write back
 * a limited number of buffers to the disks and then go back to sleep again.
 * In effect this is a process which never leaves kernel mode, and does not have
 * any user memory associated with it except for the stack.  There is also
 * a kernel stack page, which obviously must be separate from the user stack.
 */
struct wait_queue * bdflush_wait = NULL;
struct wait_queue * bdflush_done = NULL;

static int bdflush_running = 0;

static void wakeup_bdflush(int wait)
{
	if(!bdflush_running){
		printk("Warning - bdflush not running\n");
		sync_buffers(0,0);
		return;
	};
	wake_up(&bdflush_wait);
	if(wait) sleep_on(&bdflush_done);
}



/* 
 * Here we attempt to write back old buffers.  We also try and flush inodes 
 * and supers as well, since this function is essentially "update", and 
 * otherwise there would be no way of ensuring that these quantities ever 
 * get written back.  Ideally, we would have a timestamp on the inodes
 * and superblocks so that we could write back only the old ones as well
 */

asmlinkage int sync_old_buffers(void)
{
	int i, isize;
	int ndirty, nwritten;
	int nlist;
	int ncount;
	struct buffer_head * bh, *next;

	sync_supers(0);
	sync_inodes(0);

	ncount = 0;
#ifdef DEBUG
	for(nlist = 0; nlist < NR_LIST; nlist++)
#else
	for(nlist = BUF_DIRTY; nlist <= BUF_DIRTY; nlist++)
#endif
	{
		ndirty = 0;
		nwritten = 0;
	repeat:
		bh = lru_list[nlist];
		if(bh) 
			 for (i = nr_buffers_type[nlist]; i-- > 0; bh = next) {
				 /* We may have stalled while waiting for I/O to complete. */
				 if(bh->b_list != nlist) goto repeat;
				 next = bh->b_next_free;
				 if(!lru_list[nlist]) {
					 printk("Dirty list empty %d\n", i);
					 break;
				 }
				 
				 /* Clean buffer on dirty list?  Refile it */
				 if (nlist == BUF_DIRTY && !bh->b_dirt && !bh->b_lock)
				  {
					  refile_buffer(bh);
					  continue;
				  }
				 
				 if (bh->b_lock || !bh->b_dirt)
					  continue;
				 ndirty++;
				 if(bh->b_flushtime > jiffies) continue;
				 nwritten++;
				 bh->b_count++;
				 bh->b_flushtime = 0;
#ifdef DEBUG
				 if(nlist != BUF_DIRTY) ncount++;
#endif
				 ll_rw_block(WRITE, 1, &bh);
				 bh->b_count--;
			 }
	}
#ifdef DEBUG
	if (ncount) printk("sync_old_buffers: %d dirty buffers not on dirty list\n", ncount);
	printk("Wrote %d/%d buffers\n", nwritten, ndirty);
#endif
	
	/* We assume that we only come through here on a regular
	   schedule, like every 5 seconds.  Now update load averages.  
	   Shift usage counts to prevent overflow. */
	for(isize = 0; isize<NR_SIZES; isize++){
		CALC_LOAD(buffers_lav[isize], bdf_prm.b_un.lav_const, buffer_usage[isize]);
		buffer_usage[isize] = 0;
	};
	return 0;
}


/* This is the interface to bdflush.  As we get more sophisticated, we can
 * pass tuning parameters to this "process", to adjust how it behaves.  If you
 * invoke this again after you have done this once, you would simply modify 
 * the tuning parameters.  We would want to verify each parameter, however,
 * to make sure that it is reasonable. */

asmlinkage int sys_bdflush(int func, long data)
{
	int i, error;
	int ndirty;
	int nlist;
	int ncount;
	struct buffer_head * bh, *next;

	if (!suser())
		return -EPERM;

	if (func == 1)
		 return sync_old_buffers();

	/* Basically func 0 means start, 1 means read param 1, 2 means write param 1, etc */
	if (func >= 2) {
		i = (func-2) >> 1;
		if (i < 0 || i >= N_PARAM)
			return -EINVAL;
		if((func & 1) == 0) {
			error = verify_area(VERIFY_WRITE, (void *) data, sizeof(int));
			if (error)
				return error;
			put_user(bdf_prm.data[i], (int*)data);
			return 0;
		};
		if (data < bdflush_min[i] || data > bdflush_max[i])
			return -EINVAL;
		bdf_prm.data[i] = data;
		return 0;
	};
	
	if (bdflush_running)
		return -EBUSY; /* Only one copy of this running at one time */
	bdflush_running++;
	
	/* OK, from here on is the daemon */
	
	for (;;) {
#ifdef DEBUG
		printk("bdflush() activated...");
#endif
		
		ncount = 0;
#ifdef DEBUG
		for(nlist = 0; nlist < NR_LIST; nlist++)
#else
		for(nlist = BUF_DIRTY; nlist <= BUF_DIRTY; nlist++)
#endif
		 {
			 ndirty = 0;
		 repeat:
			 bh = lru_list[nlist];
			 if(bh) 
				  for (i = nr_buffers_type[nlist]; i-- > 0 && ndirty < bdf_prm.b_un.ndirty; 
				       bh = next) {
					  /* We may have stalled while waiting for I/O to complete. */
					  if(bh->b_list != nlist) goto repeat;
					  next = bh->b_next_free;
					  if(!lru_list[nlist]) {
						  printk("Dirty list empty %d\n", i);
						  break;
					  }
					  
					  /* Clean buffer on dirty list?  Refile it */
					  if (nlist == BUF_DIRTY && !bh->b_dirt && !bh->b_lock)
					   {
						   refile_buffer(bh);
						   continue;
					   }
					  
					  if (bh->b_lock || !bh->b_dirt)
						   continue;
					  /* Should we write back buffers that are shared or not??
					     currently dirty buffers are not shared, so it does not matter */
					  bh->b_count++;
					  ndirty++;
					  bh->b_flushtime = 0;
					  ll_rw_block(WRITE, 1, &bh);
#ifdef DEBUG
					  if(nlist != BUF_DIRTY) ncount++;
#endif
					  bh->b_count--;
				  }
		 }
#ifdef DEBUG
		if (ncount) printk("sys_bdflush: %d dirty buffers not on dirty list\n", ncount);
		printk("sleeping again.\n");
#endif
		wake_up(&bdflush_done);
		
		/* If there are still a lot of dirty buffers around, skip the sleep
		   and flush some more */
		
		if(nr_buffers_type[BUF_DIRTY] <= (nr_buffers - nr_buffers_type[BUF_SHARED]) * 
		   bdf_prm.b_un.nfract/100) {
		   	if (current->signal & (1 << (SIGKILL-1))) {
				bdflush_running--;
		   		return 0;
			}
		   	current->signal = 0;
			interruptible_sleep_on(&bdflush_wait);
		}
	}
}


/*
 * Overrides for Emacs so that we follow Linus's tabbing style.
 * Emacs will notice this stuff at the end of the file and automatically
 * adjust the settings for this buffer only.  This must remain at the end
 * of the file.
 * ---------------------------------------------------------------------------
 * Local variables:
 * c-indent-level: 8
 * c-brace-imaginary-offset: 0
 * c-brace-offset: -8
 * c-argdecl-indent: 8
 * c-label-offset: -8
 * c-continued-statement-offset: 8
 * c-continued-brace-offset: 0
 * End:
 */