Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
/*
 *  linux/fs/buffer.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 */

/*
 *  'buffer.c' implements the buffer-cache functions. Race-conditions have
 * been avoided by NEVER letting an interrupt change a buffer (except for the
 * data, of course), but instead letting the caller do it.
 */

/* Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 */

/* Removed a lot of unnecessary code and simplified things now that
 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
 */

/* Speed up hash, lru, and free list operations.  Use gfp() for allocating
 * hash table, use SLAB cache for buffer heads. -DaveM
 */

/* Added 32k buffer block sizes - these are required older ARM systems.
 * - RMK
 */

#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/string.h>
#include <linux/locks.h>
#include <linux/errno.h>
#include <linux/malloc.h>
#include <linux/slab.h>
#include <linux/pagemap.h>
#include <linux/swap.h>
#include <linux/swapctl.h>
#include <linux/smp.h>
#include <linux/smp_lock.h>
#include <linux/vmalloc.h>
#include <linux/blkdev.h>
#include <linux/sysrq.h>
#include <linux/file.h>
#include <linux/init.h>
#include <linux/quotaops.h>

#include <asm/system.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/bitops.h>

#define NR_SIZES 7
static char buffersize_index[65] =
{-1,  0,  1, -1,  2, -1, -1, -1, 3, -1, -1, -1, -1, -1, -1, -1,
  4, -1, -1, -1, -1, -1, -1, -1, -1,-1, -1, -1, -1, -1, -1, -1,
  5, -1, -1, -1, -1, -1, -1, -1, -1,-1, -1, -1, -1, -1, -1, -1,
 -1, -1, -1, -1, -1, -1, -1, -1, -1,-1, -1, -1, -1, -1, -1, -1,
  6};

#define BUFSIZE_INDEX(X) ((int) buffersize_index[(X)>>9])
#define MAX_BUF_PER_PAGE (PAGE_SIZE / 512)
#define NR_RESERVED (2*MAX_BUF_PER_PAGE)
#define MAX_UNUSED_BUFFERS NR_RESERVED+20 /* don't ever have more than this 
					     number of unused buffer heads */

/*
 * Hash table mask..
 */
static unsigned long bh_hash_mask = 0;

static int grow_buffers(int pri, int size);

static struct buffer_head ** hash_table;
static struct buffer_head * lru_list[NR_LIST] = {NULL, };
static struct buffer_head * free_list[NR_SIZES] = {NULL, };

static kmem_cache_t *bh_cachep;

static struct buffer_head * unused_list = NULL;
static struct buffer_head * reuse_list = NULL;
static struct wait_queue * buffer_wait = NULL;

static int nr_buffers = 0;
static int nr_buffers_type[NR_LIST] = {0,};
static int nr_buffer_heads = 0;
static int nr_unused_buffer_heads = 0;
static int refilled = 0;       /* Set NZ when a buffer freelist is refilled 
				  this is used by the loop device */

/* This is used by some architectures to estimate available memory. */
int buffermem = 0;

/* Here is the parameter block for the bdflush process. If you add or
 * remove any of the parameters, make sure to update kernel/sysctl.c.
 */

#define N_PARAM 9

/* The dummy values in this structure are left in there for compatibility
 * with old programs that play with the /proc entries.
 */
union bdflush_param{
	struct {
		int nfract;  /* Percentage of buffer cache dirty to 
				activate bdflush */
		int ndirty;  /* Maximum number of dirty blocks to write out per
				wake-cycle */
		int nrefill; /* Number of clean buffers to try to obtain
				each time we call refill */
		int nref_dirt; /* Dirty buffer threshold for activating bdflush
				  when trying to refill buffers. */
		int dummy1;    /* unused */
		int age_buffer;  /* Time for normal buffer to age before 
				    we flush it */
		int age_super;  /* Time for superblock to age before we 
				   flush it */
		int dummy2;    /* unused */
		int dummy3;    /* unused */
	} b_un;
	unsigned int data[N_PARAM];
} bdf_prm = {{40, 500, 64, 256, 15, 30*HZ, 5*HZ, 1884, 2}};

/* These are the min and max parameter values that we will allow to be assigned */
int bdflush_min[N_PARAM] = {  0,  10,    5,   25,  0,   100,   100, 1, 1};
int bdflush_max[N_PARAM] = {100,5000, 2000, 2000,100, 60000, 60000, 2047, 5};

void wakeup_bdflush(int);

/*
 * Rewrote the wait-routines to use the "new" wait-queue functionality,
 * and getting rid of the cli-sti pairs. The wait-queue routines still
 * need cli-sti, but now it's just a couple of 386 instructions or so.
 *
 * Note that the real wait_on_buffer() is an inline function that checks
 * if 'b_wait' is set before calling this, so that the queues aren't set
 * up unnecessarily.
 */
void __wait_on_buffer(struct buffer_head * bh)
{
	struct task_struct *tsk = current;
	struct wait_queue wait;

	bh->b_count++;
	wait.task = tsk;
	add_wait_queue(&bh->b_wait, &wait);
repeat:
	tsk->state = TASK_UNINTERRUPTIBLE;
	run_task_queue(&tq_disk);
	if (buffer_locked(bh)) {
		schedule();
		goto repeat;
	}
	tsk->state = TASK_RUNNING;
	remove_wait_queue(&bh->b_wait, &wait);
	bh->b_count--;
}

/* Call sync_buffers with wait!=0 to ensure that the call does not
 * return until all buffer writes have completed.  Sync() may return
 * before the writes have finished; fsync() may not.
 */

/* Godamity-damn.  Some buffers (bitmaps for filesystems)
 * spontaneously dirty themselves without ever brelse being called.
 * We will ultimately want to put these in a separate list, but for
 * now we search all of the lists for dirty buffers.
 */
static int sync_buffers(kdev_t dev, int wait)
{
	int i, retry, pass = 0, err = 0;
	struct buffer_head * bh, *next;

	/* One pass for no-wait, three for wait:
	 * 0) write out all dirty, unlocked buffers;
	 * 1) write out all dirty buffers, waiting if locked;
	 * 2) wait for completion by waiting for all buffers to unlock.
	 */
	do {
		retry = 0;
repeat:
		/* We search all lists as a failsafe mechanism, not because we expect
		 * there to be dirty buffers on any of the other lists.
		 */
		bh = lru_list[BUF_DIRTY];
		if (!bh)
			goto repeat2;
		for (i = nr_buffers_type[BUF_DIRTY]*2 ; i-- > 0 ; bh = next) {
			if (bh->b_list != BUF_DIRTY)
				goto repeat;
			next = bh->b_next_free;
			if (!lru_list[BUF_DIRTY])
				break;
			if (dev && bh->b_dev != dev)
				continue;
			if (buffer_locked(bh)) {
				/* Buffer is locked; skip it unless wait is
				 * requested AND pass > 0.
				 */
				if (!wait || !pass) {
					retry = 1;
					continue;
				}
				wait_on_buffer (bh);
				goto repeat;
			}

			/* If an unlocked buffer is not uptodate, there has
			 * been an IO error. Skip it.
			 */
			if (wait && buffer_req(bh) && !buffer_locked(bh) &&
			    !buffer_dirty(bh) && !buffer_uptodate(bh)) {
				err = -EIO;
				continue;
			}

			/* Don't write clean buffers.  Don't write ANY buffers
			 * on the third pass.
			 */
			if (!buffer_dirty(bh) || pass >= 2)
				continue;

			/* Don't bother about locked buffers.
			 *
			 * XXX We checked if it was locked above and there is no
			 * XXX way we could have slept in between. -DaveM
			 */
			if (buffer_locked(bh))
				continue;
			bh->b_count++;
			next->b_count++;
			bh->b_flushtime = 0;
			ll_rw_block(WRITE, 1, &bh);
			bh->b_count--;
			next->b_count--;
			retry = 1;
		}

    repeat2:
		bh = lru_list[BUF_LOCKED];
		if (!bh)
			break;
		for (i = nr_buffers_type[BUF_LOCKED]*2 ; i-- > 0 ; bh = next) {
			if (bh->b_list != BUF_LOCKED)
				goto repeat2;
			next = bh->b_next_free;
			if (!lru_list[BUF_LOCKED])
				break;
			if (dev && bh->b_dev != dev)
				continue;
			if (buffer_locked(bh)) {
				/* Buffer is locked; skip it unless wait is
				 * requested AND pass > 0.
				 */
				if (!wait || !pass) {
					retry = 1;
					continue;
				}
				wait_on_buffer (bh);
				goto repeat2;
			}
		}

		/* If we are waiting for the sync to succeed, and if any dirty
		 * blocks were written, then repeat; on the second pass, only
		 * wait for buffers being written (do not pass to write any
		 * more buffers on the second pass).
		 */
	} while (wait && retry && ++pass<=2);
	return err;
}

void sync_dev(kdev_t dev)
{
	sync_buffers(dev, 0);
	sync_supers(dev);
	sync_inodes(dev);
	sync_buffers(dev, 0);
	DQUOT_SYNC(dev);
	/*
	 * FIXME(eric) we need to sync the physical devices here.
	 * This is because some (scsi) controllers have huge amounts of
	 * cache onboard (hundreds of Mb), and we need to instruct
	 * them to commit all of the dirty memory to disk, and we should
	 * not return until this has happened.
	 *
	 * This would need to get implemented by going through the assorted
	 * layers so that each block major number can be synced, and this
	 * would call down into the upper and mid-layer scsi.
	 */
}

int fsync_dev(kdev_t dev)
{
	sync_buffers(dev, 0);
	sync_supers(dev);
	sync_inodes(dev);
	DQUOT_SYNC(dev);
	return sync_buffers(dev, 1);
}

asmlinkage int sys_sync(void)
{
	lock_kernel();
	fsync_dev(0);
	unlock_kernel();
	return 0;
}

/*
 *	filp may be NULL if called via the msync of a vma.
 */
 
int file_fsync(struct file *filp, struct dentry *dentry)
{
	struct inode * inode = dentry->d_inode;
	struct super_block * sb;
	kdev_t dev;

	/* sync the inode to buffers */
	write_inode_now(inode);

	/* sync the superblock to buffers */
	sb = inode->i_sb;
	wait_on_super(sb);
	if (sb->s_op && sb->s_op->write_super)
		sb->s_op->write_super(sb);

	/* .. finally sync the buffers to disk */
	dev = inode->i_dev;
	return sync_buffers(dev, 1);
}

asmlinkage int sys_fsync(unsigned int fd)
{
	struct file * file;
	struct dentry * dentry;
	struct inode * inode;
	int err;

	lock_kernel();
	err = -EBADF;
	file = fget(fd);
	if (!file)
		goto out;

	dentry = file->f_dentry;
	if (!dentry)
		goto out_putf;

	inode = dentry->d_inode;
	if (!inode)
		goto out_putf;

	err = -EINVAL;
	if (!file->f_op || !file->f_op->fsync)
		goto out_putf;

	/* We need to protect against concurrent writers.. */
	down(&inode->i_sem);
	err = file->f_op->fsync(file, dentry);
	up(&inode->i_sem);

out_putf:
	fput(file);
out:
	unlock_kernel();
	return err;
}

asmlinkage int sys_fdatasync(unsigned int fd)
{
	struct file * file;
	struct dentry * dentry;
	struct inode * inode;
	int err;

	lock_kernel();
	err = -EBADF;
	file = fget(fd);
	if (!file)
		goto out;

	dentry = file->f_dentry;
	if (!dentry)
		goto out_putf;

	inode = dentry->d_inode;
	if (!inode)
		goto out_putf;

	err = -EINVAL;
	if (!file->f_op || !file->f_op->fsync)
		goto out_putf;

	/* this needs further work, at the moment it is identical to fsync() */
	err = file->f_op->fsync(file, dentry);

out_putf:
	fput(file);
out:
	unlock_kernel();
	return err;
}

void invalidate_buffers(kdev_t dev)
{
	int i;
	int nlist;
	struct buffer_head * bh;

	for(nlist = 0; nlist < NR_LIST; nlist++) {
		bh = lru_list[nlist];
		for (i = nr_buffers_type[nlist]*2 ; --i > 0 ; bh = bh->b_next_free) {
			if (bh->b_dev != dev)
				continue;
			wait_on_buffer(bh);
			if (bh->b_dev != dev)
				continue;
			if (bh->b_count)
				continue;
			bh->b_flushtime = 0;
			clear_bit(BH_Protected, &bh->b_state);
			clear_bit(BH_Uptodate, &bh->b_state);
			clear_bit(BH_Dirty, &bh->b_state);
			clear_bit(BH_Req, &bh->b_state);
		}
	}
}

#define _hashfn(dev,block) (((unsigned)(HASHDEV(dev)^block)) & bh_hash_mask)
#define hash(dev,block) hash_table[_hashfn(dev,block)]

static inline void remove_from_hash_queue(struct buffer_head * bh)
{
	if (bh->b_pprev) {
		if(bh->b_next)
			bh->b_next->b_pprev = bh->b_pprev;
		*bh->b_pprev = bh->b_next;
		bh->b_pprev = NULL;
	}
}

static inline void remove_from_lru_list(struct buffer_head * bh)
{
	if (!(bh->b_prev_free) || !(bh->b_next_free))
		panic("VFS: LRU block list corrupted");
	if (bh->b_dev == B_FREE)
		panic("LRU list corrupted");
	bh->b_prev_free->b_next_free = bh->b_next_free;
	bh->b_next_free->b_prev_free = bh->b_prev_free;

	if (lru_list[bh->b_list] == bh)
		 lru_list[bh->b_list] = bh->b_next_free;
	if (lru_list[bh->b_list] == bh)
		 lru_list[bh->b_list] = NULL;
	bh->b_next_free = bh->b_prev_free = NULL;
}

static inline void remove_from_free_list(struct buffer_head * bh)
{
	int isize = BUFSIZE_INDEX(bh->b_size);
	if (!(bh->b_prev_free) || !(bh->b_next_free))
		panic("VFS: Free block list corrupted");
	if(bh->b_dev != B_FREE)
		panic("Free list corrupted");
	if(!free_list[isize])
		panic("Free list empty");
	if(bh->b_next_free == bh)
		 free_list[isize] = NULL;
	else {
		bh->b_prev_free->b_next_free = bh->b_next_free;
		bh->b_next_free->b_prev_free = bh->b_prev_free;
		if (free_list[isize] == bh)
			 free_list[isize] = bh->b_next_free;
	}
	bh->b_next_free = bh->b_prev_free = NULL;
}

static inline void remove_from_queues(struct buffer_head * bh)
{
	if(bh->b_dev == B_FREE) {
		remove_from_free_list(bh); /* Free list entries should not be
					      in the hash queue */
		return;
	}
	nr_buffers_type[bh->b_list]--;
	remove_from_hash_queue(bh);
	remove_from_lru_list(bh);
}

static inline void put_last_lru(struct buffer_head * bh)
{
	if (bh) {
		struct buffer_head **bhp = &lru_list[bh->b_list];

		if (bh == *bhp) {
			*bhp = bh->b_next_free;
			return;
		}

		if(bh->b_dev == B_FREE)
			panic("Wrong block for lru list");

		/* Add to back of free list. */
		remove_from_lru_list(bh);
		if(!*bhp) {
			*bhp = bh;
			(*bhp)->b_prev_free = bh;
		}

		bh->b_next_free = *bhp;
		bh->b_prev_free = (*bhp)->b_prev_free;
		(*bhp)->b_prev_free->b_next_free = bh;
		(*bhp)->b_prev_free = bh;
	}
}

static inline void put_last_free(struct buffer_head * bh)
{
	if (bh) {
		struct buffer_head **bhp = &free_list[BUFSIZE_INDEX(bh->b_size)];

		bh->b_dev = B_FREE;  /* So it is obvious we are on the free list. */

		/* Add to back of free list. */
		if(!*bhp) {
			*bhp = bh;
			bh->b_prev_free = bh;
		}

		bh->b_next_free = *bhp;
		bh->b_prev_free = (*bhp)->b_prev_free;
		(*bhp)->b_prev_free->b_next_free = bh;
		(*bhp)->b_prev_free = bh;
	}
}

static inline void insert_into_queues(struct buffer_head * bh)
{
	/* put at end of free list */
	if(bh->b_dev == B_FREE) {
		put_last_free(bh);
	} else {
		struct buffer_head **bhp = &lru_list[bh->b_list];

		if(!*bhp) {
			*bhp = bh;
			bh->b_prev_free = bh;
		}

		if (bh->b_next_free)
			panic("VFS: buffer LRU pointers corrupted");

		bh->b_next_free = *bhp;
		bh->b_prev_free = (*bhp)->b_prev_free;
		(*bhp)->b_prev_free->b_next_free = bh;
		(*bhp)->b_prev_free = bh;

		nr_buffers_type[bh->b_list]++;

		/* Put the buffer in new hash-queue if it has a device. */
		if (bh->b_dev) {
			struct buffer_head **bhp = &hash(bh->b_dev, bh->b_blocknr);
			if((bh->b_next = *bhp) != NULL)
				(*bhp)->b_pprev = &bh->b_next;
			*bhp = bh;
			bh->b_pprev = bhp;	/* Exists in bh hashes. */
		} else
			bh->b_pprev = NULL;	/* Not in bh hashes. */
	}
}

struct buffer_head * find_buffer(kdev_t dev, int block, int size)
{		
	struct buffer_head * next;

	next = hash(dev,block);
	for (;;) {
		struct buffer_head *tmp = next;
		if (!next)
			break;
		next = tmp->b_next;
		if (tmp->b_blocknr != block || tmp->b_size != size || tmp->b_dev != dev)
			continue;
		next = tmp;
		break;
	}
	return next;
}

/*
 * Why like this, I hear you say... The reason is race-conditions.
 * As we don't lock buffers (unless we are reading them, that is),
 * something might happen to it while we sleep (ie a read-error
 * will force it bad). This shouldn't really happen currently, but
 * the code is ready.
 */
struct buffer_head * get_hash_table(kdev_t dev, int block, int size)
{
	struct buffer_head * bh;
	for (;;) {
		bh = find_buffer(dev,block,size);
		if (!bh)
			break;
		bh->b_count++;
		bh->b_lru_time = jiffies;
		if (!buffer_locked(bh)) 
			break;
		__wait_on_buffer(bh);
		if (bh->b_dev == dev		&&
		    bh->b_blocknr == block	&&
		    bh->b_size == size)
			break;
		bh->b_count--;
	}
	return bh;
}

unsigned int get_hardblocksize(kdev_t dev)
{
	/*
	 * Get the hard sector size for the given device.  If we don't know
	 * what it is, return 0.
	 */
	if (hardsect_size[MAJOR(dev)] != NULL) {
		int blksize = hardsect_size[MAJOR(dev)][MINOR(dev)];
		if (blksize != 0)
			return blksize;
	}

	/*
	 * We don't know what the hardware sector size for this device is.
	 * Return 0 indicating that we don't know.
	 */
	return 0;
}

void set_blocksize(kdev_t dev, int size)
{
	extern int *blksize_size[];
	int i, nlist;
	struct buffer_head * bh, *bhnext;

	if (!blksize_size[MAJOR(dev)])
		return;

	/* Size must be a power of two, and between 512 and PAGE_SIZE */
	if (size > PAGE_SIZE || size < 512 || (size & (size-1)))
		panic("Invalid blocksize passed to set_blocksize");

	if (blksize_size[MAJOR(dev)][MINOR(dev)] == 0 && size == BLOCK_SIZE) {
		blksize_size[MAJOR(dev)][MINOR(dev)] = size;
		return;
	}
	if (blksize_size[MAJOR(dev)][MINOR(dev)] == size)
		return;
	sync_buffers(dev, 2);
	blksize_size[MAJOR(dev)][MINOR(dev)] = size;

	/* We need to be quite careful how we do this - we are moving entries
	 * around on the free list, and we can get in a loop if we are not careful.
	 */
	for(nlist = 0; nlist < NR_LIST; nlist++) {
		bh = lru_list[nlist];
		for (i = nr_buffers_type[nlist]*2 ; --i > 0 ; bh = bhnext) {
			if(!bh)
				break;

			bhnext = bh->b_next_free; 
			if (bh->b_dev != dev)
				 continue;
			if (bh->b_size == size)
				 continue;
			bhnext->b_count++;
			wait_on_buffer(bh);
			bhnext->b_count--;
			if (bh->b_dev == dev && bh->b_size != size) {
				clear_bit(BH_Dirty, &bh->b_state);
				clear_bit(BH_Uptodate, &bh->b_state);
				clear_bit(BH_Req, &bh->b_state);
				bh->b_flushtime = 0;
			}
			remove_from_hash_queue(bh);
		}
	}
}

/*
 * Find a candidate buffer to be reclaimed. 
 * N.B. Must search the entire BUF_LOCKED list rather than terminating
 * when the first locked buffer is found.  Buffers are unlocked at 
 * completion of IO, and under some conditions there may be (many)
 * unlocked buffers after the first locked one.
 */
static struct buffer_head *find_candidate(struct buffer_head *bh,
					  int *list_len, int size)
{
	if (!bh)
		goto no_candidate;

	for (; (*list_len) > 0; bh = bh->b_next_free, (*list_len)--) {
		if (size != bh->b_size) {
			/* This provides a mechanism for freeing blocks
			 * of other sizes, this is necessary now that we
			 * no longer have the lav code.
			 */
			try_to_free_buffer(bh,&bh,1);
			if (!bh)
				break;
			continue;
		}
		else if (!bh->b_count		&& 
			 !buffer_locked(bh)	&& 
			 !buffer_protected(bh)	&&
			 !buffer_dirty(bh)) 
			return bh;
	}

no_candidate:
	return NULL;
}

static void refill_freelist(int size)
{
	struct buffer_head * bh, * next;
	struct buffer_head * candidate[BUF_DIRTY];
	int buffers[BUF_DIRTY];
	int i;
	int needed, obtained=0;

	refilled = 1;
	
	/* We are going to try to locate this much memory. */
	needed = bdf_prm.b_un.nrefill * size;  

	while ((nr_free_pages > freepages.min*2) &&
	        (buffermem >> PAGE_SHIFT) * 100 < (buffer_mem.max_percent * num_physpages) &&
		grow_buffers(GFP_BUFFER, size)) {
		obtained += PAGE_SIZE;
		if (obtained >= needed)
			return;
	}

	/*
	 * Update the needed amount based on the number of potentially
	 * freeable buffers. We don't want to free more than one quarter
	 * of the available buffers.
	 */
	i = (nr_buffers_type[BUF_CLEAN] + nr_buffers_type[BUF_LOCKED]) >> 2;
	if (i < bdf_prm.b_un.nrefill) {
		needed = i * size;
		if (needed < PAGE_SIZE)
			needed = PAGE_SIZE;
	}

	/* 
	 * OK, we cannot grow the buffer cache, now try to get some
	 * from the lru list.
	 */
repeat:
	if (obtained >= needed)
		return;

	/*
	 * First set the candidate pointers to usable buffers.  This
	 * should be quick nearly all of the time.  N.B. There must be 
	 * no blocking calls after setting up the candidate[] array!
	 */
	for (i = BUF_CLEAN; i<BUF_DIRTY; i++) {
		buffers[i] = nr_buffers_type[i];
		candidate[i] = find_candidate(lru_list[i], &buffers[i], size);
	}
	
	/*
	 * Select the older of the available buffers until we reach our goal.
	 */
	for (;;) {
		i = BUF_CLEAN;
		if (!candidate[BUF_CLEAN]) {
			if (!candidate[BUF_LOCKED])
				break;
			i = BUF_LOCKED;
		}
		else if (candidate[BUF_LOCKED] &&
				(candidate[BUF_LOCKED]->b_lru_time < 
				 candidate[BUF_CLEAN ]->b_lru_time))
			i = BUF_LOCKED;
		/*
		 * Free the selected buffer and get the next candidate.
		 */
		bh = candidate[i];
		next = bh->b_next_free;

		obtained += bh->b_size;
		remove_from_queues(bh);
		put_last_free(bh);
		if (obtained >= needed)
			return;

		if (--buffers[i] && bh != next)
			candidate[i] = find_candidate(next, &buffers[i], size);
		else
			candidate[i] = NULL;
	}	

	/*
	 * If there are dirty buffers, do a non-blocking wake-up.
	 * This increases the chances of having buffers available
	 * for the next call ...
	 */
	if (nr_buffers_type[BUF_DIRTY])
		wakeup_bdflush(0);

	/*
	 * Allocate buffers to reach half our goal, if possible.
	 * Since the allocation doesn't block, there's no reason
	 * to search the buffer lists again. Then return if there
	 * are _any_ free buffers.
	 */
	while (obtained < (needed >> 1) &&
	       nr_free_pages > freepages.min + 5 &&
	       grow_buffers(GFP_BUFFER, size))
		obtained += PAGE_SIZE;

	if (free_list[BUFSIZE_INDEX(size)])
		return;

	/*
	 * If there are dirty buffers, wait while bdflush writes
	 * them out. The buffers become locked, but we can just
	 * wait for one to unlock ...
	 */
	if (nr_buffers_type[BUF_DIRTY])
		wakeup_bdflush(1);

	/*
	 * In order to prevent a buffer shortage from exhausting
	 * the system's reserved pages, we force tasks to wait 
	 * before using reserved pages for buffers.  This is easily
	 * accomplished by waiting on an unused locked buffer.
	 */
	if ((bh = lru_list[BUF_LOCKED]) != NULL) {
		for (i = nr_buffers_type[BUF_LOCKED]; i--; bh = bh->b_next_free)
		{
			if (bh->b_size != size)
				continue;
			if (bh->b_count)
				continue;
			if (!buffer_locked(bh))
				continue;
			if (buffer_dirty(bh) || buffer_protected(bh))
				continue;
			if (MAJOR(bh->b_dev) == LOOP_MAJOR)
				continue;
			/*
			 * We've found an unused, locked, non-dirty buffer of
			 * the correct size.  Claim it so no one else can, 
			 * then wait for it to unlock.
			 */
			bh->b_count++;
			wait_on_buffer(bh);
			bh->b_count--;
			/*
			 * Loop back to harvest this (and maybe other) buffers.
			 */
			goto repeat;
		}
	}

	/*
	 * Convert a reserved page into buffers ... should happen only rarely.
	 */
	if (grow_buffers(GFP_ATOMIC, size)) {
#ifdef BUFFER_DEBUG
printk("refill_freelist: used reserve page\n");
#endif
		return;
	}

	/*
	 * System is _very_ low on memory ... sleep and try later.
	 */
#ifdef BUFFER_DEBUG
printk("refill_freelist: task %s waiting for buffers\n", current->comm);
#endif
	schedule();
	goto repeat;
}

void init_buffer(struct buffer_head *bh, kdev_t dev, int block,
		 bh_end_io_t *handler, void *dev_id)
{
	bh->b_count = 1;
	bh->b_list = BUF_CLEAN;
	bh->b_flushtime = 0;
	bh->b_dev = dev;
	bh->b_blocknr = block;
	bh->b_end_io = handler;
	bh->b_dev_id = dev_id;
}

static void end_buffer_io_sync(struct buffer_head *bh, int uptodate)
{
	mark_buffer_uptodate(bh, uptodate);
	unlock_buffer(bh);
}

/*
 * Ok, this is getblk, and it isn't very clear, again to hinder
 * race-conditions. Most of the code is seldom used, (ie repeating),
 * so it should be much more efficient than it looks.
 *
 * The algorithm is changed: hopefully better, and an elusive bug removed.
 *
 * 14.02.92: changed it to sync dirty buffers a bit: better performance
 * when the filesystem starts to get full of dirty blocks (I hope).
 */
struct buffer_head * getblk(kdev_t dev, int block, int size)
{
	struct buffer_head * bh;
	int isize;

repeat:
	bh = get_hash_table(dev, block, size);
	if (bh) {
		if (!buffer_dirty(bh)) {
			if (buffer_uptodate(bh))
				 put_last_lru(bh);
			bh->b_flushtime = 0;
		}
		set_bit(BH_Touched, &bh->b_state);
		return bh;
	}

	isize = BUFSIZE_INDEX(size);
get_free:
	bh = free_list[isize];
	if (!bh)
		goto refill;
	remove_from_free_list(bh);

	/* OK, FINALLY we know that this buffer is the only one of its kind,
	 * and that it's unused (b_count=0), unlocked, and clean.
	 */
	init_buffer(bh, dev, block, end_buffer_io_sync, NULL);
	bh->b_lru_time	= jiffies;
	bh->b_state=(1<<BH_Touched);
	insert_into_queues(bh);
	return bh;

	/*
	 * If we block while refilling the free list, somebody may
	 * create the buffer first ... search the hashes again.
	 */
refill:
	refill_freelist(size);
	if (!find_buffer(dev,block,size))
		goto get_free;
	goto repeat;
}

void set_writetime(struct buffer_head * buf, int flag)
{
	int newtime;

	if (buffer_dirty(buf)) {
		/* Move buffer to dirty list if jiffies is clear. */
		newtime = jiffies + (flag ? bdf_prm.b_un.age_super : 
				     bdf_prm.b_un.age_buffer);
		if(!buf->b_flushtime || buf->b_flushtime > newtime)
			 buf->b_flushtime = newtime;
	} else {
		buf->b_flushtime = 0;
	}
}


/*
 * Put a buffer into the appropriate list, without side-effects.
 */
static inline void file_buffer(struct buffer_head *bh, int list)
{
	remove_from_queues(bh);
	bh->b_list = list;
	insert_into_queues(bh);
}

/*
 * A buffer may need to be moved from one buffer list to another
 * (e.g. in case it is not shared any more). Handle this.
 */
void refile_buffer(struct buffer_head * buf)
{
	int dispose;

	if(buf->b_dev == B_FREE) {
		printk("Attempt to refile free buffer\n");
		return;
	}
	if (buffer_dirty(buf))
		dispose = BUF_DIRTY;
	else if (buffer_locked(buf))
		dispose = BUF_LOCKED;
	else
		dispose = BUF_CLEAN;
	if(dispose != buf->b_list) {
		file_buffer(buf, dispose);
		if(dispose == BUF_DIRTY) {
			int too_many = (nr_buffers * bdf_prm.b_un.nfract/100);

			/* This buffer is dirty, maybe we need to start flushing.
			 * If too high a percentage of the buffers are dirty...
			 */
			if (nr_buffers_type[BUF_DIRTY] > too_many)
				wakeup_bdflush(0);

			/* If this is a loop device, and
			 * more than half of the buffers are dirty...
			 * (Prevents no-free-buffers deadlock with loop device.)
			 */
			if (MAJOR(buf->b_dev) == LOOP_MAJOR &&
			    nr_buffers_type[BUF_DIRTY]*2>nr_buffers)
				wakeup_bdflush(1);
		}
	}
}

/*
 * Release a buffer head
 */
void __brelse(struct buffer_head * buf)
{
	wait_on_buffer(buf);

	/* If dirty, mark the time this buffer should be written back. */
	set_writetime(buf, 0);
	refile_buffer(buf);

	if (buf->b_count) {
		buf->b_count--;
		return;
	}
	printk("VFS: brelse: Trying to free free buffer\n");
}

/*
 * bforget() is like brelse(), except it removes the buffer
 * from the hash-queues (so that it won't be re-used if it's
 * shared).
 */
void __bforget(struct buffer_head * buf)
{
	wait_on_buffer(buf);
	mark_buffer_clean(buf);
	clear_bit(BH_Protected, &buf->b_state);
	remove_from_hash_queue(buf);
	buf->b_dev = NODEV;
	refile_buffer(buf);
	if (!--buf->b_count)
		return;
	printk("VFS: forgot an in-use buffer! (count=%d)\n",
		buf->b_count);
}

/*
 * bread() reads a specified block and returns the buffer that contains
 * it. It returns NULL if the block was unreadable.
 */
struct buffer_head * bread(kdev_t dev, int block, int size)
{
	struct buffer_head * bh = getblk(dev, block, size);

	if (bh) {
		if (buffer_uptodate(bh))
			return bh;
		ll_rw_block(READ, 1, &bh);
		wait_on_buffer(bh);
		if (buffer_uptodate(bh))
			return bh;
		brelse(bh);
		return NULL;
	}
	printk("VFS: bread: impossible error\n");
	return NULL;
}

/*
 * Ok, breada can be used as bread, but additionally to mark other
 * blocks for reading as well. End the argument list with a negative
 * number.
 */

#define NBUF 16

struct buffer_head * breada(kdev_t dev, int block, int bufsize,
	unsigned int pos, unsigned int filesize)
{
	struct buffer_head * bhlist[NBUF];
	unsigned int blocks;
	struct buffer_head * bh;
	int index;
	int i, j;

	if (pos >= filesize)
		return NULL;

	if (block < 0 || !(bh = getblk(dev,block,bufsize)))
		return NULL;

	index = BUFSIZE_INDEX(bh->b_size);

	if (buffer_uptodate(bh))
		return(bh);   
	else ll_rw_block(READ, 1, &bh);

	blocks = (filesize - pos) >> (9+index);

	if (blocks < (read_ahead[MAJOR(dev)] >> index))
		blocks = read_ahead[MAJOR(dev)] >> index;
	if (blocks > NBUF) 
		blocks = NBUF;

/*	if (blocks) printk("breada (new) %d blocks\n",blocks); */


	bhlist[0] = bh;
	j = 1;
	for(i=1; i<blocks; i++) {
		bh = getblk(dev,block+i,bufsize);
		if (buffer_uptodate(bh)) {
			brelse(bh);
			break;
		}
		else bhlist[j++] = bh;
	}

	/* Request the read for these buffers, and then release them. */
	if (j>1)  
		ll_rw_block(READA, (j-1), bhlist+1); 
	for(i=1; i<j; i++)
		brelse(bhlist[i]);

	/* Wait for this buffer, and then continue on. */
	bh = bhlist[0];
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;
	brelse(bh);
	return NULL;
}

/*
 * Note: the caller should wake up the buffer_wait list if needed.
 */
static void put_unused_buffer_head(struct buffer_head * bh)
{
	if (nr_unused_buffer_heads >= MAX_UNUSED_BUFFERS) {
		nr_buffer_heads--;
		kmem_cache_free(bh_cachep, bh);
		return;
	}

	memset(bh,0,sizeof(*bh));
	nr_unused_buffer_heads++;
	bh->b_next_free = unused_list;
	unused_list = bh;
}

/* 
 * We can't put completed temporary IO buffer_heads directly onto the
 * unused_list when they become unlocked, since the device driver
 * end_request routines still expect access to the buffer_head's
 * fields after the final unlock.  So, the device driver puts them on
 * the reuse_list instead once IO completes, and we recover these to
 * the unused_list here.
 *
 * Note that we don't do a wakeup here, but return a flag indicating
 * whether we got any buffer heads. A task ready to sleep can check
 * the returned value, and any tasks already sleeping will have been
 * awakened when the buffer heads were added to the reuse list.
 */
static inline int recover_reusable_buffer_heads(void)
{
	struct buffer_head *head = xchg(&reuse_list, NULL);
	int found = 0;
	
	if (head) {
		do {
			struct buffer_head *bh = head;
			head = head->b_next_free;
			put_unused_buffer_head(bh);
		} while (head);
		found = 1;
	}
	return found;
}

/*
 * Reserve NR_RESERVED buffer heads for async IO requests to avoid
 * no-buffer-head deadlock.  Return NULL on failure; waiting for
 * buffer heads is now handled in create_buffers().
 */ 
static struct buffer_head * get_unused_buffer_head(int async)
{
	struct buffer_head * bh;

	recover_reusable_buffer_heads();
	if (nr_unused_buffer_heads > NR_RESERVED) {
		bh = unused_list;
		unused_list = bh->b_next_free;
		nr_unused_buffer_heads--;
		return bh;
	}

	/* This is critical.  We can't swap out pages to get
	 * more buffer heads, because the swap-out may need
	 * more buffer-heads itself.  Thus SLAB_ATOMIC.
	 */
	if((bh = kmem_cache_alloc(bh_cachep, SLAB_ATOMIC)) != NULL) {
		memset(bh, 0, sizeof(*bh));
		nr_buffer_heads++;
		return bh;
	}

	/*
	 * If we need an async buffer, use the reserved buffer heads.
	 */
	if (async && unused_list) {
		bh = unused_list;
		unused_list = bh->b_next_free;
		nr_unused_buffer_heads--;
		return bh;
	}

#if 0
	/*
	 * (Pending further analysis ...)
	 * Ordinary (non-async) requests can use a different memory priority
	 * to free up pages. Any swapping thus generated will use async
	 * buffer heads.
	 */
	if(!async &&
	   (bh = kmem_cache_alloc(bh_cachep, SLAB_KERNEL)) != NULL) {
		memset(bh, 0, sizeof(*bh));
		nr_buffer_heads++;
		return bh;
	}
#endif

	return NULL;
}

/*
 * Create the appropriate buffers when given a page for data area and
 * the size of each buffer.. Use the bh->b_this_page linked list to
 * follow the buffers created.  Return NULL if unable to create more
 * buffers.
 * The async flag is used to differentiate async IO (paging, swapping)
 * from ordinary buffer allocations, and only async requests are allowed
 * to sleep waiting for buffer heads. 
 */
static struct buffer_head * create_buffers(unsigned long page, 
						unsigned long size, int async)
{
	struct wait_queue wait = { current, NULL };
	struct buffer_head *bh, *head;
	long offset;

try_again:
	head = NULL;
	offset = PAGE_SIZE;
	while ((offset -= size) >= 0) {
		bh = get_unused_buffer_head(async);
		if (!bh)
			goto no_grow;

		bh->b_dev = B_FREE;  /* Flag as unused */
		bh->b_this_page = head;
		head = bh;

		bh->b_state = 0;
		bh->b_next_free = NULL;
		bh->b_count = 0;
		bh->b_size = size;

		bh->b_data = (char *) (page+offset);
		bh->b_list = 0;
	}
	return head;
/*
 * In case anything failed, we just free everything we got.
 */
no_grow:
	if (head) {
		do {
			bh = head;
			head = head->b_this_page;
			put_unused_buffer_head(bh);
		} while (head);

		/* Wake up any waiters ... */
		wake_up(&buffer_wait);
	}

	/*
	 * Return failure for non-async IO requests.  Async IO requests
	 * are not allowed to fail, so we have to wait until buffer heads
	 * become available.  But we don't want tasks sleeping with 
	 * partially complete buffers, so all were released above.
	 */
	if (!async)
		return NULL;

	/* We're _really_ low on memory. Now we just
	 * wait for old buffer heads to become free due to
	 * finishing IO.  Since this is an async request and
	 * the reserve list is empty, we're sure there are 
	 * async buffer heads in use.
	 */
	run_task_queue(&tq_disk);

	/* 
	 * Set our state for sleeping, then check again for buffer heads.
	 * This ensures we won't miss a wake_up from an interrupt.
	 */
	add_wait_queue(&buffer_wait, &wait);
	current->state = TASK_UNINTERRUPTIBLE;
	if (!recover_reusable_buffer_heads())
		schedule();
	remove_wait_queue(&buffer_wait, &wait);
	current->state = TASK_RUNNING;
	goto try_again;
}

/* Run the hooks that have to be done when a page I/O has completed. */
static inline void after_unlock_page (struct page * page)
{
	if (test_and_clear_bit(PG_decr_after, &page->flags)) {
		atomic_dec(&nr_async_pages);
#ifdef DEBUG_SWAP
		printk ("DebugVM: Finished IO on page %p, nr_async_pages %d\n",
			(char *) page_address(page), 
			atomic_read(&nr_async_pages));
#endif
	}
	if (test_and_clear_bit(PG_swap_unlock_after, &page->flags))
		swap_after_unlock_page(page->offset);
	if (test_and_clear_bit(PG_free_after, &page->flags))
		__free_page(page);
}

/*
 * Free all temporary buffers belonging to a page.
 * This needs to be called with interrupts disabled.
 */
static inline void free_async_buffers (struct buffer_head * bh)
{
	struct buffer_head *tmp, *tail;

	/*
	 * Link all the buffers into the b_next_free list,
	 * so we only have to do one xchg() operation ...
	 */
	tail = bh;
	while ((tmp = tail->b_this_page) != bh) {
		tail->b_next_free = tmp;
		tail = tmp;
	};

	/* Update the reuse list */
	tail->b_next_free = xchg(&reuse_list, NULL);
	reuse_list = bh;

	/* Wake up any waiters ... */
	wake_up(&buffer_wait);
}

static void end_buffer_io_async(struct buffer_head * bh, int uptodate)
{
	unsigned long flags;
	struct buffer_head *tmp;
	struct page *page;

	mark_buffer_uptodate(bh, uptodate);
	unlock_buffer(bh);

	/* This is a temporary buffer used for page I/O. */
	page = mem_map + MAP_NR(bh->b_data);
	if (!PageLocked(page))
		goto not_locked;
	if (bh->b_count != 1)
		goto bad_count;

	if (!test_bit(BH_Uptodate, &bh->b_state))
		set_bit(PG_error, &page->flags);

	/*
	 * Be _very_ careful from here on. Bad things can happen if
	 * two buffer heads end IO at almost the same time and both
	 * decide that the page is now completely done.
	 *
	 * Async buffer_heads are here only as labels for IO, and get
	 * thrown away once the IO for this page is complete.  IO is
	 * deemed complete once all buffers have been visited
	 * (b_count==0) and are now unlocked. We must make sure that
	 * only the _last_ buffer that decrements its count is the one
	 * that free's the page..
	 */
	save_flags(flags);
	cli();
	bh->b_count--;
	tmp = bh;
	do {
		if (tmp->b_count)
			goto still_busy;
		tmp = tmp->b_this_page;
	} while (tmp != bh);

	/* OK, the async IO on this page is complete. */
	free_async_buffers(bh);
	restore_flags(flags);
	clear_bit(PG_locked, &page->flags);
	wake_up(&page->wait);
	after_unlock_page(page);
	return;

still_busy:
	restore_flags(flags);
	return;

not_locked:
	printk ("Whoops: end_buffer_io_async: async io complete on unlocked page\n");
	return;

bad_count:
	printk ("Whoops: end_buffer_io_async: b_count != 1 on async io.\n");
	return;
}

/*
 * Start I/O on a page.
 * This function expects the page to be locked and may return before I/O is complete.
 * You then have to check page->locked, page->uptodate, and maybe wait on page->wait.
 */
int brw_page(int rw, struct page *page, kdev_t dev, int b[], int size, int bmap)
{
	struct buffer_head *bh, *prev, *next, *arr[MAX_BUF_PER_PAGE];
	int block, nr;

	if (!PageLocked(page))
		panic("brw_page: page not locked for I/O");
	clear_bit(PG_uptodate, &page->flags);
	clear_bit(PG_error, &page->flags);
	/*
	 * Allocate async buffer heads pointing to this page, just for I/O.
	 * They do _not_ show up in the buffer hash table!
	 * They are _not_ registered in page->buffers either!
	 */
	bh = create_buffers(page_address(page), size, 1);
	if (!bh) {
		/* WSH: exit here leaves page->count incremented */
		clear_bit(PG_locked, &page->flags);
		wake_up(&page->wait);
		return -ENOMEM;
	}
	nr = 0;
	next = bh;
	do {
		struct buffer_head * tmp;
		block = *(b++);

		init_buffer(next, dev, block, end_buffer_io_async, NULL);
		set_bit(BH_Uptodate, &next->b_state);

		/*
		 * When we use bmap, we define block zero to represent
		 * a hole.  ll_rw_page, however, may legitimately
		 * access block zero, and we need to distinguish the
		 * two cases.
		 */
		if (bmap && !block) {
			memset(next->b_data, 0, size);
			next->b_count--;
			continue;
		}
		tmp = get_hash_table(dev, block, size);
		if (tmp) {
			if (!buffer_uptodate(tmp)) {
				if (rw == READ)
					ll_rw_block(READ, 1, &tmp);
				wait_on_buffer(tmp);
			}
			if (rw == READ) 
				memcpy(next->b_data, tmp->b_data, size);
			else {
				memcpy(tmp->b_data, next->b_data, size);
				mark_buffer_dirty(tmp, 0);
			}
			brelse(tmp);
			next->b_count--;
			continue;
		}
		if (rw == READ)
			clear_bit(BH_Uptodate, &next->b_state);
		else
			set_bit(BH_Dirty, &next->b_state);
		arr[nr++] = next;
	} while (prev = next, (next = next->b_this_page) != NULL);
	prev->b_this_page = bh;
	
	if (nr) {
		ll_rw_block(rw, nr, arr);
		/* The rest of the work is done in mark_buffer_uptodate()
		 * and unlock_buffer(). */
	} else {
		unsigned long flags;
		clear_bit(PG_locked, &page->flags);
		set_bit(PG_uptodate, &page->flags);
		wake_up(&page->wait);
		save_flags(flags);
		cli();
		free_async_buffers(bh);
		restore_flags(flags);
		after_unlock_page(page);
	}
	++current->maj_flt;
	return 0;
}

/*
 * This is called by end_request() when I/O has completed.
 */
void mark_buffer_uptodate(struct buffer_head * bh, int on)
{
	if (on) {
		struct buffer_head *tmp = bh;
		set_bit(BH_Uptodate, &bh->b_state);
		/* If a page has buffers and all these buffers are uptodate,
		 * then the page is uptodate. */
		do {
			if (!test_bit(BH_Uptodate, &tmp->b_state))
				return;
			tmp=tmp->b_this_page;
		} while (tmp && tmp != bh);
		set_bit(PG_uptodate, &mem_map[MAP_NR(bh->b_data)].flags);
		return;
	}
	clear_bit(BH_Uptodate, &bh->b_state);
}

/*
 * Generic "readpage" function for block devices that have the normal
 * bmap functionality. This is most of the block device filesystems.
 * Reads the page asynchronously --- the unlock_buffer() and
 * mark_buffer_uptodate() functions propagate buffer state into the
 * page struct once IO has completed.
 */
int generic_readpage(struct file * file, struct page * page)
{
	struct dentry *dentry = file->f_dentry;
	struct inode *inode = dentry->d_inode;
	unsigned long block;
	int *p, nr[PAGE_SIZE/512];
	int i;

	atomic_inc(&page->count);
	set_bit(PG_locked, &page->flags);
	set_bit(PG_free_after, &page->flags);
	
	i = PAGE_SIZE >> inode->i_sb->s_blocksize_bits;
	block = page->offset >> inode->i_sb->s_blocksize_bits;
	p = nr;
	do {
		*p = inode->i_op->bmap(inode, block);
		i--;
		block++;
		p++;
	} while (i > 0);

	/* IO start */
	brw_page(READ, page, inode->i_dev, nr, inode->i_sb->s_blocksize, 1);
	return 0;
}

/*
 * Try to increase the number of buffers available: the size argument
 * is used to determine what kind of buffers we want.
 */
static int grow_buffers(int pri, int size)
{
	unsigned long page;
	struct buffer_head *bh, *tmp;
	struct buffer_head * insert_point;
	int isize;

	if ((size & 511) || (size > PAGE_SIZE)) {
		printk("VFS: grow_buffers: size = %d\n",size);
		return 0;
	}

	if (!(page = __get_free_page(pri)))
		return 0;
	bh = create_buffers(page, size, 0);
	if (!bh) {
		free_page(page);
		return 0;
	}

	isize = BUFSIZE_INDEX(size);
	insert_point = free_list[isize];

	tmp = bh;
	while (1) {
		if (insert_point) {
			tmp->b_next_free = insert_point->b_next_free;
			tmp->b_prev_free = insert_point;
			insert_point->b_next_free->b_prev_free = tmp;
			insert_point->b_next_free = tmp;
		} else {
			tmp->b_prev_free = tmp;
			tmp->b_next_free = tmp;
		}
		insert_point = tmp;
		++nr_buffers;
		if (tmp->b_this_page)
			tmp = tmp->b_this_page;
		else
			break;
	}
	tmp->b_this_page = bh;
	free_list[isize] = bh;
	mem_map[MAP_NR(page)].buffers = bh;
	buffermem += PAGE_SIZE;
	return 1;
}


/* =========== Reduce the buffer memory ============= */

static inline int buffer_waiting(struct buffer_head * bh)
{
	return waitqueue_active(&bh->b_wait);
}

/*
 * try_to_free_buffer() checks if all the buffers on this particular page
 * are unused, and free's the page if so.
 */
int try_to_free_buffer(struct buffer_head * bh, struct buffer_head ** bhp,
		       int priority)
{
	unsigned long page;
	struct buffer_head * tmp, * p;

	*bhp = bh;
	page = (unsigned long) bh->b_data;
	page &= PAGE_MASK;
	tmp = bh;
	do {
		if (!tmp)
			return 0;
		if (tmp->b_count || buffer_protected(tmp) ||
		    buffer_dirty(tmp) || buffer_locked(tmp) ||
		    buffer_waiting(tmp))
			return 0;
		if (priority && buffer_touched(tmp))
			return 0;
		tmp = tmp->b_this_page;
	} while (tmp != bh);

	tmp = bh;
	do {
		p = tmp;
		tmp = tmp->b_this_page;
		nr_buffers--;
		if (p == *bhp) {
			*bhp = p->b_prev_free;
			if (p == *bhp) /* Was this the last in the list? */
				*bhp = NULL;
		}
		remove_from_queues(p);
		put_unused_buffer_head(p);
	} while (tmp != bh);
	/* Wake up anyone waiting for buffer heads */
	wake_up(&buffer_wait);

	buffermem -= PAGE_SIZE;
	mem_map[MAP_NR(page)].buffers = NULL;
	free_page(page);
	return 1;
}

/* ================== Debugging =================== */

void show_buffers(void)
{
	struct buffer_head * bh;
	int found = 0, locked = 0, dirty = 0, used = 0, lastused = 0;
	int protected = 0;
	int nlist;
	static char *buf_types[NR_LIST] = {"CLEAN","LOCKED","DIRTY"};

	printk("Buffer memory:   %6dkB\n",buffermem>>10);
	printk("Buffer heads:    %6d\n",nr_buffer_heads);
	printk("Buffer blocks:   %6d\n",nr_buffers);

	for(nlist = 0; nlist < NR_LIST; nlist++) {
	  found = locked = dirty = used = lastused = protected = 0;
	  bh = lru_list[nlist];
	  if(!bh) continue;

	  do {
		found++;
		if (buffer_locked(bh))
			locked++;
		if (buffer_protected(bh))
			protected++;
		if (buffer_dirty(bh))
			dirty++;
		if (bh->b_count)
			used++, lastused = found;
		bh = bh->b_next_free;
	  } while (bh != lru_list[nlist]);
	  printk("%8s: %d buffers, %d used (last=%d), "
		 "%d locked, %d protected, %d dirty\n",
		 buf_types[nlist], found, used, lastused,
		 locked, protected, dirty);
	};
}


/* ===================== Init ======================= */

/*
 * allocate the hash table and init the free list
 * Use gfp() for the hash table to decrease TLB misses, use
 * SLAB cache for buffer heads.
 */
void __init buffer_init(void)
{
	int order = 5;		/* Currently maximum order.. */
	unsigned int nr_hash;

	nr_hash = (1UL << order) * PAGE_SIZE / sizeof(struct buffer_head *);
	hash_table = (struct buffer_head **) __get_free_pages(GFP_ATOMIC, order);
	
	if (!hash_table)
		panic("Failed to allocate buffer hash table\n");
	memset(hash_table, 0, nr_hash * sizeof(struct buffer_head *));
	bh_hash_mask = nr_hash-1;

	bh_cachep = kmem_cache_create("buffer_head",
				      sizeof(struct buffer_head),
				      0,
				      SLAB_HWCACHE_ALIGN, NULL, NULL);
	if(!bh_cachep)
		panic("Cannot create buffer head SLAB cache\n");
	/*
	 * Allocate the reserved buffer heads.
	 */
	while (nr_buffer_heads < NR_RESERVED) {
		struct buffer_head * bh;

		bh = kmem_cache_alloc(bh_cachep, SLAB_ATOMIC);
		if (!bh)
			break;
		put_unused_buffer_head(bh);
		nr_buffer_heads++;
	}

	lru_list[BUF_CLEAN] = 0;
	grow_buffers(GFP_KERNEL, BLOCK_SIZE);
}


/* ====================== bdflush support =================== */

/* This is a simple kernel daemon, whose job it is to provide a dynamic
 * response to dirty buffers.  Once this process is activated, we write back
 * a limited number of buffers to the disks and then go back to sleep again.
 */
static struct wait_queue * bdflush_wait = NULL;
static struct wait_queue * bdflush_done = NULL;
struct task_struct *bdflush_tsk = 0;

void wakeup_bdflush(int wait)
{
	if (current == bdflush_tsk)
		return;
	wake_up(&bdflush_wait);
	if (wait) {
		run_task_queue(&tq_disk);
		sleep_on(&bdflush_done);
	}
}


/* 
 * Here we attempt to write back old buffers.  We also try to flush inodes 
 * and supers as well, since this function is essentially "update", and 
 * otherwise there would be no way of ensuring that these quantities ever 
 * get written back.  Ideally, we would have a timestamp on the inodes
 * and superblocks so that we could write back only the old ones as well
 */

asmlinkage int sync_old_buffers(void)
{
	int i;
	int ndirty, nwritten;
	int nlist;
	int ncount;
	struct buffer_head * bh, *next;

	sync_supers(0);
	sync_inodes(0);

	ncount = 0;
#ifdef DEBUG
	for(nlist = 0; nlist < NR_LIST; nlist++)
#else
	for(nlist = BUF_DIRTY; nlist <= BUF_DIRTY; nlist++)
#endif
	{
		ndirty = 0;
		nwritten = 0;
	repeat:

		bh = lru_list[nlist];
		if(bh) 
			 for (i = nr_buffers_type[nlist]; i-- > 0; bh = next) {
				 /* We may have stalled while waiting for I/O to complete. */
				 if(bh->b_list != nlist) goto repeat;
				 next = bh->b_next_free;
				 if(!lru_list[nlist]) {
					 printk("Dirty list empty %d\n", i);
					 break;
				 }
				 
				 /* Clean buffer on dirty list?  Refile it */
				 if (nlist == BUF_DIRTY && !buffer_dirty(bh) && !buffer_locked(bh))
				  {
					  refile_buffer(bh);
					  continue;
				  }
				 
				 if (buffer_locked(bh) || !buffer_dirty(bh))
					  continue;
				 ndirty++;
				 if(bh->b_flushtime > jiffies) continue;
				 nwritten++;
				 next->b_count++;
				 bh->b_count++;
				 bh->b_flushtime = 0;
#ifdef DEBUG
				 if(nlist != BUF_DIRTY) ncount++;
#endif
				 ll_rw_block(WRITE, 1, &bh);
				 bh->b_count--;
				 next->b_count--;
			 }
	}
	run_task_queue(&tq_disk);
#ifdef DEBUG
	if (ncount) printk("sync_old_buffers: %d dirty buffers not on dirty list\n", ncount);
	printk("Wrote %d/%d buffers\n", nwritten, ndirty);
#endif
	run_task_queue(&tq_disk);
	return 0;
}


/* This is the interface to bdflush.  As we get more sophisticated, we can
 * pass tuning parameters to this "process", to adjust how it behaves. 
 * We would want to verify each parameter, however, to make sure that it 
 * is reasonable. */

asmlinkage int sys_bdflush(int func, long data)
{
	int i, error = -EPERM;

	lock_kernel();
	if (!capable(CAP_SYS_ADMIN))
		goto out;

	if (func == 1) {
		 error = sync_old_buffers();
		 goto out;
	}

	/* Basically func 1 means read param 1, 2 means write param 1, etc */
	if (func >= 2) {
		i = (func-2) >> 1;
		error = -EINVAL;
		if (i < 0 || i >= N_PARAM)
			goto out;
		if((func & 1) == 0) {
			error = put_user(bdf_prm.data[i], (int*)data);
			goto out;
		}
		if (data < bdflush_min[i] || data > bdflush_max[i])
			goto out;
		bdf_prm.data[i] = data;
		error = 0;
		goto out;
	};

	/* Having func 0 used to launch the actual bdflush and then never
	 * return (unless explicitly killed). We return zero here to 
	 * remain semi-compatible with present update(8) programs.
	 */
	error = 0;
out:
	unlock_kernel();
	return error;
}

/* This is the actual bdflush daemon itself. It used to be started from
 * the syscall above, but now we launch it ourselves internally with
 * kernel_thread(...)  directly after the first thread in init/main.c */

/* To prevent deadlocks for a loop device:
 * 1) Do non-blocking writes to loop (avoids deadlock with running
 *	out of request blocks).
 * 2) But do a blocking write if the only dirty buffers are loop buffers
 *	(otherwise we go into an infinite busy-loop).
 * 3) Quit writing loop blocks if a freelist went low (avoids deadlock
 *	with running out of free buffers for loop's "real" device).
*/
int bdflush(void * unused) 
{
	int i;
	int ndirty;
	int nlist;
	int ncount;
	struct buffer_head * bh, *next;
	int major;
	int wrta_cmd = WRITEA;	/* non-blocking write for LOOP */

	/*
	 *	We have a bare-bones task_struct, and really should fill
	 *	in a few more things so "top" and /proc/2/{exe,root,cwd}
	 *	display semi-sane things. Not real crucial though...  
	 */

	current->session = 1;
	current->pgrp = 1;
	sprintf(current->comm, "kflushd");
	bdflush_tsk = current;

	/*
	 *	As a kernel thread we want to tamper with system buffers
	 *	and other internals and thus be subject to the SMP locking
	 *	rules. (On a uniprocessor box this does nothing).
	 */
	lock_kernel();
		 
	for (;;) {
#ifdef DEBUG
		printk("bdflush() activated...");
#endif

		CHECK_EMERGENCY_SYNC

		ncount = 0;
#ifdef DEBUG
		for(nlist = 0; nlist < NR_LIST; nlist++)
#else
		for(nlist = BUF_DIRTY; nlist <= BUF_DIRTY; nlist++)
#endif
		 {
			 ndirty = 0;
			 refilled = 0;
		 repeat:

			 bh = lru_list[nlist];
			 if(bh) 
				  for (i = nr_buffers_type[nlist]; i-- > 0 && ndirty < bdf_prm.b_un.ndirty; 
				       bh = next) {
					  /* We may have stalled while waiting for I/O to complete. */
					  if(bh->b_list != nlist) goto repeat;
					  next = bh->b_next_free;
					  if(!lru_list[nlist]) {
						  printk("Dirty list empty %d\n", i);
						  break;
					  }
					  
					  /* Clean buffer on dirty list?  Refile it */
					  if (nlist == BUF_DIRTY && !buffer_dirty(bh) && !buffer_locked(bh))
					   {
						   refile_buffer(bh);
						   continue;
					   }
					  
					  if (buffer_locked(bh) || !buffer_dirty(bh))
						   continue;
					  major = MAJOR(bh->b_dev);
					  /* Should we write back buffers that are shared or not??
					     currently dirty buffers are not shared, so it does not matter */
					  if (refilled && major == LOOP_MAJOR)
						   continue;
					  next->b_count++;
					  bh->b_count++;
					  ndirty++;
					  bh->b_flushtime = 0;
					  if (major == LOOP_MAJOR) {
						  ll_rw_block(wrta_cmd,1, &bh);
						  wrta_cmd = WRITEA;
						  if (buffer_dirty(bh))
							  --ndirty;
					  }
					  else
					  ll_rw_block(WRITE, 1, &bh);
#ifdef DEBUG
					  if(nlist != BUF_DIRTY) ncount++;
#endif
					  bh->b_count--;
					  next->b_count--;
				  }
		 }
#ifdef DEBUG
		if (ncount) printk("sys_bdflush: %d dirty buffers not on dirty list\n", ncount);
		printk("sleeping again.\n");
#endif
		/* If we didn't write anything, but there are still
		 * dirty buffers, then make the next write to a
		 * loop device to be a blocking write.
		 * This lets us block--which we _must_ do! */
		if (ndirty == 0 && nr_buffers_type[BUF_DIRTY] > 0 && wrta_cmd != WRITE) {
			wrta_cmd = WRITE;
			continue;
		}
		run_task_queue(&tq_disk);
		wake_up(&bdflush_done);
		
		/* If there are still a lot of dirty buffers around, skip the sleep
		   and flush some more */
		if(ndirty == 0 || nr_buffers_type[BUF_DIRTY] <= nr_buffers * bdf_prm.b_un.nfract/100) {
			spin_lock_irq(&current->sigmask_lock);
			flush_signals(current);
			spin_unlock_irq(&current->sigmask_lock);

			interruptible_sleep_on(&bdflush_wait);
		}
	}
}