Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 | /* * linux/fs/buffer.c * * Copyright (C) 1991, 1992 Linus Torvalds */ /* * 'buffer.c' implements the buffer-cache functions. Race-conditions have * been avoided by NEVER letting an interrupt change a buffer (except for the * data, of course), but instead letting the caller do it. */ /* Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 */ /* Removed a lot of unnecessary code and simplified things now that * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 */ /* Speed up hash, lru, and free list operations. Use gfp() for allocating * hash table, use SLAB cache for buffer heads. -DaveM */ /* Added 32k buffer block sizes - these are required older ARM systems. * - RMK */ #include <linux/sched.h> #include <linux/kernel.h> #include <linux/major.h> #include <linux/string.h> #include <linux/locks.h> #include <linux/errno.h> #include <linux/malloc.h> #include <linux/slab.h> #include <linux/pagemap.h> #include <linux/swap.h> #include <linux/swapctl.h> #include <linux/smp.h> #include <linux/smp_lock.h> #include <linux/vmalloc.h> #include <linux/blkdev.h> #include <linux/sysrq.h> #include <linux/file.h> #include <linux/init.h> #include <linux/quotaops.h> #include <asm/system.h> #include <asm/uaccess.h> #include <asm/io.h> #include <asm/bitops.h> #define NR_SIZES 7 static char buffersize_index[65] = {-1, 0, 1, -1, 2, -1, -1, -1, 3, -1, -1, -1, -1, -1, -1, -1, 4, -1, -1, -1, -1, -1, -1, -1, -1,-1, -1, -1, -1, -1, -1, -1, 5, -1, -1, -1, -1, -1, -1, -1, -1,-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,-1, -1, -1, -1, -1, -1, -1, 6}; #define BUFSIZE_INDEX(X) ((int) buffersize_index[(X)>>9]) #define MAX_BUF_PER_PAGE (PAGE_SIZE / 512) #define NR_RESERVED (2*MAX_BUF_PER_PAGE) #define MAX_UNUSED_BUFFERS NR_RESERVED+20 /* don't ever have more than this number of unused buffer heads */ /* * Hash table mask.. */ static unsigned long bh_hash_mask = 0; static int grow_buffers(int pri, int size); static struct buffer_head ** hash_table; static struct buffer_head * lru_list[NR_LIST] = {NULL, }; static struct buffer_head * free_list[NR_SIZES] = {NULL, }; static kmem_cache_t *bh_cachep; static struct buffer_head * unused_list = NULL; static struct buffer_head * reuse_list = NULL; static struct wait_queue * buffer_wait = NULL; static int nr_buffers = 0; static int nr_buffers_type[NR_LIST] = {0,}; static int nr_buffer_heads = 0; static int nr_unused_buffer_heads = 0; static int refilled = 0; /* Set NZ when a buffer freelist is refilled this is used by the loop device */ /* This is used by some architectures to estimate available memory. */ int buffermem = 0; /* Here is the parameter block for the bdflush process. If you add or * remove any of the parameters, make sure to update kernel/sysctl.c. */ #define N_PARAM 9 /* The dummy values in this structure are left in there for compatibility * with old programs that play with the /proc entries. */ union bdflush_param{ struct { int nfract; /* Percentage of buffer cache dirty to activate bdflush */ int ndirty; /* Maximum number of dirty blocks to write out per wake-cycle */ int nrefill; /* Number of clean buffers to try to obtain each time we call refill */ int nref_dirt; /* Dirty buffer threshold for activating bdflush when trying to refill buffers. */ int dummy1; /* unused */ int age_buffer; /* Time for normal buffer to age before we flush it */ int age_super; /* Time for superblock to age before we flush it */ int dummy2; /* unused */ int dummy3; /* unused */ } b_un; unsigned int data[N_PARAM]; } bdf_prm = {{40, 500, 64, 256, 15, 30*HZ, 5*HZ, 1884, 2}}; /* These are the min and max parameter values that we will allow to be assigned */ int bdflush_min[N_PARAM] = { 0, 10, 5, 25, 0, 100, 100, 1, 1}; int bdflush_max[N_PARAM] = {100,5000, 2000, 2000,100, 60000, 60000, 2047, 5}; void wakeup_bdflush(int); /* * Rewrote the wait-routines to use the "new" wait-queue functionality, * and getting rid of the cli-sti pairs. The wait-queue routines still * need cli-sti, but now it's just a couple of 386 instructions or so. * * Note that the real wait_on_buffer() is an inline function that checks * if 'b_wait' is set before calling this, so that the queues aren't set * up unnecessarily. */ void __wait_on_buffer(struct buffer_head * bh) { struct task_struct *tsk = current; struct wait_queue wait; bh->b_count++; wait.task = tsk; add_wait_queue(&bh->b_wait, &wait); repeat: tsk->state = TASK_UNINTERRUPTIBLE; run_task_queue(&tq_disk); if (buffer_locked(bh)) { schedule(); goto repeat; } tsk->state = TASK_RUNNING; remove_wait_queue(&bh->b_wait, &wait); bh->b_count--; } /* Call sync_buffers with wait!=0 to ensure that the call does not * return until all buffer writes have completed. Sync() may return * before the writes have finished; fsync() may not. */ /* Godamity-damn. Some buffers (bitmaps for filesystems) * spontaneously dirty themselves without ever brelse being called. * We will ultimately want to put these in a separate list, but for * now we search all of the lists for dirty buffers. */ static int sync_buffers(kdev_t dev, int wait) { int i, retry, pass = 0, err = 0; struct buffer_head * bh, *next; /* One pass for no-wait, three for wait: * 0) write out all dirty, unlocked buffers; * 1) write out all dirty buffers, waiting if locked; * 2) wait for completion by waiting for all buffers to unlock. */ do { retry = 0; repeat: /* We search all lists as a failsafe mechanism, not because we expect * there to be dirty buffers on any of the other lists. */ bh = lru_list[BUF_DIRTY]; if (!bh) goto repeat2; for (i = nr_buffers_type[BUF_DIRTY]*2 ; i-- > 0 ; bh = next) { if (bh->b_list != BUF_DIRTY) goto repeat; next = bh->b_next_free; if (!lru_list[BUF_DIRTY]) break; if (dev && bh->b_dev != dev) continue; if (buffer_locked(bh)) { /* Buffer is locked; skip it unless wait is * requested AND pass > 0. */ if (!wait || !pass) { retry = 1; continue; } wait_on_buffer (bh); goto repeat; } /* If an unlocked buffer is not uptodate, there has * been an IO error. Skip it. */ if (wait && buffer_req(bh) && !buffer_locked(bh) && !buffer_dirty(bh) && !buffer_uptodate(bh)) { err = -EIO; continue; } /* Don't write clean buffers. Don't write ANY buffers * on the third pass. */ if (!buffer_dirty(bh) || pass >= 2) continue; /* Don't bother about locked buffers. * * XXX We checked if it was locked above and there is no * XXX way we could have slept in between. -DaveM */ if (buffer_locked(bh)) continue; bh->b_count++; next->b_count++; bh->b_flushtime = 0; ll_rw_block(WRITE, 1, &bh); bh->b_count--; next->b_count--; retry = 1; } repeat2: bh = lru_list[BUF_LOCKED]; if (!bh) break; for (i = nr_buffers_type[BUF_LOCKED]*2 ; i-- > 0 ; bh = next) { if (bh->b_list != BUF_LOCKED) goto repeat2; next = bh->b_next_free; if (!lru_list[BUF_LOCKED]) break; if (dev && bh->b_dev != dev) continue; if (buffer_locked(bh)) { /* Buffer is locked; skip it unless wait is * requested AND pass > 0. */ if (!wait || !pass) { retry = 1; continue; } wait_on_buffer (bh); goto repeat2; } } /* If we are waiting for the sync to succeed, and if any dirty * blocks were written, then repeat; on the second pass, only * wait for buffers being written (do not pass to write any * more buffers on the second pass). */ } while (wait && retry && ++pass<=2); return err; } void sync_dev(kdev_t dev) { sync_buffers(dev, 0); sync_supers(dev); sync_inodes(dev); sync_buffers(dev, 0); DQUOT_SYNC(dev); /* * FIXME(eric) we need to sync the physical devices here. * This is because some (scsi) controllers have huge amounts of * cache onboard (hundreds of Mb), and we need to instruct * them to commit all of the dirty memory to disk, and we should * not return until this has happened. * * This would need to get implemented by going through the assorted * layers so that each block major number can be synced, and this * would call down into the upper and mid-layer scsi. */ } int fsync_dev(kdev_t dev) { sync_buffers(dev, 0); sync_supers(dev); sync_inodes(dev); DQUOT_SYNC(dev); return sync_buffers(dev, 1); } asmlinkage int sys_sync(void) { lock_kernel(); fsync_dev(0); unlock_kernel(); return 0; } /* * filp may be NULL if called via the msync of a vma. */ int file_fsync(struct file *filp, struct dentry *dentry) { struct inode * inode = dentry->d_inode; struct super_block * sb; kdev_t dev; /* sync the inode to buffers */ write_inode_now(inode); /* sync the superblock to buffers */ sb = inode->i_sb; wait_on_super(sb); if (sb->s_op && sb->s_op->write_super) sb->s_op->write_super(sb); /* .. finally sync the buffers to disk */ dev = inode->i_dev; return sync_buffers(dev, 1); } asmlinkage int sys_fsync(unsigned int fd) { struct file * file; struct dentry * dentry; struct inode * inode; int err; lock_kernel(); err = -EBADF; file = fget(fd); if (!file) goto out; dentry = file->f_dentry; if (!dentry) goto out_putf; inode = dentry->d_inode; if (!inode) goto out_putf; err = -EINVAL; if (!file->f_op || !file->f_op->fsync) goto out_putf; /* We need to protect against concurrent writers.. */ down(&inode->i_sem); err = file->f_op->fsync(file, dentry); up(&inode->i_sem); out_putf: fput(file); out: unlock_kernel(); return err; } asmlinkage int sys_fdatasync(unsigned int fd) { struct file * file; struct dentry * dentry; struct inode * inode; int err; lock_kernel(); err = -EBADF; file = fget(fd); if (!file) goto out; dentry = file->f_dentry; if (!dentry) goto out_putf; inode = dentry->d_inode; if (!inode) goto out_putf; err = -EINVAL; if (!file->f_op || !file->f_op->fsync) goto out_putf; /* this needs further work, at the moment it is identical to fsync() */ err = file->f_op->fsync(file, dentry); out_putf: fput(file); out: unlock_kernel(); return err; } void invalidate_buffers(kdev_t dev) { int i; int nlist; struct buffer_head * bh; for(nlist = 0; nlist < NR_LIST; nlist++) { bh = lru_list[nlist]; for (i = nr_buffers_type[nlist]*2 ; --i > 0 ; bh = bh->b_next_free) { if (bh->b_dev != dev) continue; wait_on_buffer(bh); if (bh->b_dev != dev) continue; if (bh->b_count) continue; bh->b_flushtime = 0; clear_bit(BH_Protected, &bh->b_state); clear_bit(BH_Uptodate, &bh->b_state); clear_bit(BH_Dirty, &bh->b_state); clear_bit(BH_Req, &bh->b_state); } } } #define _hashfn(dev,block) (((unsigned)(HASHDEV(dev)^block)) & bh_hash_mask) #define hash(dev,block) hash_table[_hashfn(dev,block)] static inline void remove_from_hash_queue(struct buffer_head * bh) { if (bh->b_pprev) { if(bh->b_next) bh->b_next->b_pprev = bh->b_pprev; *bh->b_pprev = bh->b_next; bh->b_pprev = NULL; } } static inline void remove_from_lru_list(struct buffer_head * bh) { if (!(bh->b_prev_free) || !(bh->b_next_free)) panic("VFS: LRU block list corrupted"); if (bh->b_dev == B_FREE) panic("LRU list corrupted"); bh->b_prev_free->b_next_free = bh->b_next_free; bh->b_next_free->b_prev_free = bh->b_prev_free; if (lru_list[bh->b_list] == bh) lru_list[bh->b_list] = bh->b_next_free; if (lru_list[bh->b_list] == bh) lru_list[bh->b_list] = NULL; bh->b_next_free = bh->b_prev_free = NULL; } static inline void remove_from_free_list(struct buffer_head * bh) { int isize = BUFSIZE_INDEX(bh->b_size); if (!(bh->b_prev_free) || !(bh->b_next_free)) panic("VFS: Free block list corrupted"); if(bh->b_dev != B_FREE) panic("Free list corrupted"); if(!free_list[isize]) panic("Free list empty"); if(bh->b_next_free == bh) free_list[isize] = NULL; else { bh->b_prev_free->b_next_free = bh->b_next_free; bh->b_next_free->b_prev_free = bh->b_prev_free; if (free_list[isize] == bh) free_list[isize] = bh->b_next_free; } bh->b_next_free = bh->b_prev_free = NULL; } static inline void remove_from_queues(struct buffer_head * bh) { if(bh->b_dev == B_FREE) { remove_from_free_list(bh); /* Free list entries should not be in the hash queue */ return; } nr_buffers_type[bh->b_list]--; remove_from_hash_queue(bh); remove_from_lru_list(bh); } static inline void put_last_lru(struct buffer_head * bh) { if (bh) { struct buffer_head **bhp = &lru_list[bh->b_list]; if (bh == *bhp) { *bhp = bh->b_next_free; return; } if(bh->b_dev == B_FREE) panic("Wrong block for lru list"); /* Add to back of free list. */ remove_from_lru_list(bh); if(!*bhp) { *bhp = bh; (*bhp)->b_prev_free = bh; } bh->b_next_free = *bhp; bh->b_prev_free = (*bhp)->b_prev_free; (*bhp)->b_prev_free->b_next_free = bh; (*bhp)->b_prev_free = bh; } } static inline void put_last_free(struct buffer_head * bh) { if (bh) { struct buffer_head **bhp = &free_list[BUFSIZE_INDEX(bh->b_size)]; bh->b_dev = B_FREE; /* So it is obvious we are on the free list. */ /* Add to back of free list. */ if(!*bhp) { *bhp = bh; bh->b_prev_free = bh; } bh->b_next_free = *bhp; bh->b_prev_free = (*bhp)->b_prev_free; (*bhp)->b_prev_free->b_next_free = bh; (*bhp)->b_prev_free = bh; } } static inline void insert_into_queues(struct buffer_head * bh) { /* put at end of free list */ if(bh->b_dev == B_FREE) { put_last_free(bh); } else { struct buffer_head **bhp = &lru_list[bh->b_list]; if(!*bhp) { *bhp = bh; bh->b_prev_free = bh; } if (bh->b_next_free) panic("VFS: buffer LRU pointers corrupted"); bh->b_next_free = *bhp; bh->b_prev_free = (*bhp)->b_prev_free; (*bhp)->b_prev_free->b_next_free = bh; (*bhp)->b_prev_free = bh; nr_buffers_type[bh->b_list]++; /* Put the buffer in new hash-queue if it has a device. */ if (bh->b_dev) { struct buffer_head **bhp = &hash(bh->b_dev, bh->b_blocknr); if((bh->b_next = *bhp) != NULL) (*bhp)->b_pprev = &bh->b_next; *bhp = bh; bh->b_pprev = bhp; /* Exists in bh hashes. */ } else bh->b_pprev = NULL; /* Not in bh hashes. */ } } struct buffer_head * find_buffer(kdev_t dev, int block, int size) { struct buffer_head * next; next = hash(dev,block); for (;;) { struct buffer_head *tmp = next; if (!next) break; next = tmp->b_next; if (tmp->b_blocknr != block || tmp->b_size != size || tmp->b_dev != dev) continue; next = tmp; break; } return next; } /* * Why like this, I hear you say... The reason is race-conditions. * As we don't lock buffers (unless we are reading them, that is), * something might happen to it while we sleep (ie a read-error * will force it bad). This shouldn't really happen currently, but * the code is ready. */ struct buffer_head * get_hash_table(kdev_t dev, int block, int size) { struct buffer_head * bh; for (;;) { bh = find_buffer(dev,block,size); if (!bh) break; bh->b_count++; bh->b_lru_time = jiffies; if (!buffer_locked(bh)) break; __wait_on_buffer(bh); if (bh->b_dev == dev && bh->b_blocknr == block && bh->b_size == size) break; bh->b_count--; } return bh; } unsigned int get_hardblocksize(kdev_t dev) { /* * Get the hard sector size for the given device. If we don't know * what it is, return 0. */ if (hardsect_size[MAJOR(dev)] != NULL) { int blksize = hardsect_size[MAJOR(dev)][MINOR(dev)]; if (blksize != 0) return blksize; } /* * We don't know what the hardware sector size for this device is. * Return 0 indicating that we don't know. */ return 0; } void set_blocksize(kdev_t dev, int size) { extern int *blksize_size[]; int i, nlist; struct buffer_head * bh, *bhnext; if (!blksize_size[MAJOR(dev)]) return; /* Size must be a power of two, and between 512 and PAGE_SIZE */ if (size > PAGE_SIZE || size < 512 || (size & (size-1))) panic("Invalid blocksize passed to set_blocksize"); if (blksize_size[MAJOR(dev)][MINOR(dev)] == 0 && size == BLOCK_SIZE) { blksize_size[MAJOR(dev)][MINOR(dev)] = size; return; } if (blksize_size[MAJOR(dev)][MINOR(dev)] == size) return; sync_buffers(dev, 2); blksize_size[MAJOR(dev)][MINOR(dev)] = size; /* We need to be quite careful how we do this - we are moving entries * around on the free list, and we can get in a loop if we are not careful. */ for(nlist = 0; nlist < NR_LIST; nlist++) { bh = lru_list[nlist]; for (i = nr_buffers_type[nlist]*2 ; --i > 0 ; bh = bhnext) { if(!bh) break; bhnext = bh->b_next_free; if (bh->b_dev != dev) continue; if (bh->b_size == size) continue; bhnext->b_count++; wait_on_buffer(bh); bhnext->b_count--; if (bh->b_dev == dev && bh->b_size != size) { clear_bit(BH_Dirty, &bh->b_state); clear_bit(BH_Uptodate, &bh->b_state); clear_bit(BH_Req, &bh->b_state); bh->b_flushtime = 0; } remove_from_hash_queue(bh); } } } /* * Find a candidate buffer to be reclaimed. * N.B. Must search the entire BUF_LOCKED list rather than terminating * when the first locked buffer is found. Buffers are unlocked at * completion of IO, and under some conditions there may be (many) * unlocked buffers after the first locked one. */ static struct buffer_head *find_candidate(struct buffer_head *bh, int *list_len, int size) { if (!bh) goto no_candidate; for (; (*list_len) > 0; bh = bh->b_next_free, (*list_len)--) { if (size != bh->b_size) { /* This provides a mechanism for freeing blocks * of other sizes, this is necessary now that we * no longer have the lav code. */ try_to_free_buffer(bh,&bh,1); if (!bh) break; continue; } else if (!bh->b_count && !buffer_locked(bh) && !buffer_protected(bh) && !buffer_dirty(bh)) return bh; } no_candidate: return NULL; } static void refill_freelist(int size) { struct buffer_head * bh, * next; struct buffer_head * candidate[BUF_DIRTY]; int buffers[BUF_DIRTY]; int i; int needed, obtained=0; refilled = 1; /* We are going to try to locate this much memory. */ needed = bdf_prm.b_un.nrefill * size; while ((nr_free_pages > freepages.min*2) && (buffermem >> PAGE_SHIFT) * 100 < (buffer_mem.max_percent * num_physpages) && grow_buffers(GFP_BUFFER, size)) { obtained += PAGE_SIZE; if (obtained >= needed) return; } /* * Update the needed amount based on the number of potentially * freeable buffers. We don't want to free more than one quarter * of the available buffers. */ i = (nr_buffers_type[BUF_CLEAN] + nr_buffers_type[BUF_LOCKED]) >> 2; if (i < bdf_prm.b_un.nrefill) { needed = i * size; if (needed < PAGE_SIZE) needed = PAGE_SIZE; } /* * OK, we cannot grow the buffer cache, now try to get some * from the lru list. */ repeat: if (obtained >= needed) return; /* * First set the candidate pointers to usable buffers. This * should be quick nearly all of the time. N.B. There must be * no blocking calls after setting up the candidate[] array! */ for (i = BUF_CLEAN; i<BUF_DIRTY; i++) { buffers[i] = nr_buffers_type[i]; candidate[i] = find_candidate(lru_list[i], &buffers[i], size); } /* * Select the older of the available buffers until we reach our goal. */ for (;;) { i = BUF_CLEAN; if (!candidate[BUF_CLEAN]) { if (!candidate[BUF_LOCKED]) break; i = BUF_LOCKED; } else if (candidate[BUF_LOCKED] && (candidate[BUF_LOCKED]->b_lru_time < candidate[BUF_CLEAN ]->b_lru_time)) i = BUF_LOCKED; /* * Free the selected buffer and get the next candidate. */ bh = candidate[i]; next = bh->b_next_free; obtained += bh->b_size; remove_from_queues(bh); put_last_free(bh); if (obtained >= needed) return; if (--buffers[i] && bh != next) candidate[i] = find_candidate(next, &buffers[i], size); else candidate[i] = NULL; } /* * If there are dirty buffers, do a non-blocking wake-up. * This increases the chances of having buffers available * for the next call ... */ if (nr_buffers_type[BUF_DIRTY]) wakeup_bdflush(0); /* * Allocate buffers to reach half our goal, if possible. * Since the allocation doesn't block, there's no reason * to search the buffer lists again. Then return if there * are _any_ free buffers. */ while (obtained < (needed >> 1) && nr_free_pages > freepages.min + 5 && grow_buffers(GFP_BUFFER, size)) obtained += PAGE_SIZE; if (free_list[BUFSIZE_INDEX(size)]) return; /* * If there are dirty buffers, wait while bdflush writes * them out. The buffers become locked, but we can just * wait for one to unlock ... */ if (nr_buffers_type[BUF_DIRTY]) wakeup_bdflush(1); /* * In order to prevent a buffer shortage from exhausting * the system's reserved pages, we force tasks to wait * before using reserved pages for buffers. This is easily * accomplished by waiting on an unused locked buffer. */ if ((bh = lru_list[BUF_LOCKED]) != NULL) { for (i = nr_buffers_type[BUF_LOCKED]; i--; bh = bh->b_next_free) { if (bh->b_size != size) continue; if (bh->b_count) continue; if (!buffer_locked(bh)) continue; if (buffer_dirty(bh) || buffer_protected(bh)) continue; if (MAJOR(bh->b_dev) == LOOP_MAJOR) continue; /* * We've found an unused, locked, non-dirty buffer of * the correct size. Claim it so no one else can, * then wait for it to unlock. */ bh->b_count++; wait_on_buffer(bh); bh->b_count--; /* * Loop back to harvest this (and maybe other) buffers. */ goto repeat; } } /* * Convert a reserved page into buffers ... should happen only rarely. */ if (grow_buffers(GFP_ATOMIC, size)) { #ifdef BUFFER_DEBUG printk("refill_freelist: used reserve page\n"); #endif return; } /* * System is _very_ low on memory ... sleep and try later. */ #ifdef BUFFER_DEBUG printk("refill_freelist: task %s waiting for buffers\n", current->comm); #endif schedule(); goto repeat; } void init_buffer(struct buffer_head *bh, kdev_t dev, int block, bh_end_io_t *handler, void *dev_id) { bh->b_count = 1; bh->b_list = BUF_CLEAN; bh->b_flushtime = 0; bh->b_dev = dev; bh->b_blocknr = block; bh->b_end_io = handler; bh->b_dev_id = dev_id; } static void end_buffer_io_sync(struct buffer_head *bh, int uptodate) { mark_buffer_uptodate(bh, uptodate); unlock_buffer(bh); } /* * Ok, this is getblk, and it isn't very clear, again to hinder * race-conditions. Most of the code is seldom used, (ie repeating), * so it should be much more efficient than it looks. * * The algorithm is changed: hopefully better, and an elusive bug removed. * * 14.02.92: changed it to sync dirty buffers a bit: better performance * when the filesystem starts to get full of dirty blocks (I hope). */ struct buffer_head * getblk(kdev_t dev, int block, int size) { struct buffer_head * bh; int isize; repeat: bh = get_hash_table(dev, block, size); if (bh) { if (!buffer_dirty(bh)) { if (buffer_uptodate(bh)) put_last_lru(bh); bh->b_flushtime = 0; } set_bit(BH_Touched, &bh->b_state); return bh; } isize = BUFSIZE_INDEX(size); get_free: bh = free_list[isize]; if (!bh) goto refill; remove_from_free_list(bh); /* OK, FINALLY we know that this buffer is the only one of its kind, * and that it's unused (b_count=0), unlocked, and clean. */ init_buffer(bh, dev, block, end_buffer_io_sync, NULL); bh->b_lru_time = jiffies; bh->b_state=(1<<BH_Touched); insert_into_queues(bh); return bh; /* * If we block while refilling the free list, somebody may * create the buffer first ... search the hashes again. */ refill: refill_freelist(size); if (!find_buffer(dev,block,size)) goto get_free; goto repeat; } void set_writetime(struct buffer_head * buf, int flag) { int newtime; if (buffer_dirty(buf)) { /* Move buffer to dirty list if jiffies is clear. */ newtime = jiffies + (flag ? bdf_prm.b_un.age_super : bdf_prm.b_un.age_buffer); if(!buf->b_flushtime || buf->b_flushtime > newtime) buf->b_flushtime = newtime; } else { buf->b_flushtime = 0; } } /* * Put a buffer into the appropriate list, without side-effects. */ static inline void file_buffer(struct buffer_head *bh, int list) { remove_from_queues(bh); bh->b_list = list; insert_into_queues(bh); } /* * A buffer may need to be moved from one buffer list to another * (e.g. in case it is not shared any more). Handle this. */ void refile_buffer(struct buffer_head * buf) { int dispose; if(buf->b_dev == B_FREE) { printk("Attempt to refile free buffer\n"); return; } if (buffer_dirty(buf)) dispose = BUF_DIRTY; else if (buffer_locked(buf)) dispose = BUF_LOCKED; else dispose = BUF_CLEAN; if(dispose != buf->b_list) { file_buffer(buf, dispose); if(dispose == BUF_DIRTY) { int too_many = (nr_buffers * bdf_prm.b_un.nfract/100); /* This buffer is dirty, maybe we need to start flushing. * If too high a percentage of the buffers are dirty... */ if (nr_buffers_type[BUF_DIRTY] > too_many) wakeup_bdflush(0); /* If this is a loop device, and * more than half of the buffers are dirty... * (Prevents no-free-buffers deadlock with loop device.) */ if (MAJOR(buf->b_dev) == LOOP_MAJOR && nr_buffers_type[BUF_DIRTY]*2>nr_buffers) wakeup_bdflush(1); } } } /* * Release a buffer head */ void __brelse(struct buffer_head * buf) { wait_on_buffer(buf); /* If dirty, mark the time this buffer should be written back. */ set_writetime(buf, 0); refile_buffer(buf); if (buf->b_count) { buf->b_count--; return; } printk("VFS: brelse: Trying to free free buffer\n"); } /* * bforget() is like brelse(), except it removes the buffer * from the hash-queues (so that it won't be re-used if it's * shared). */ void __bforget(struct buffer_head * buf) { wait_on_buffer(buf); mark_buffer_clean(buf); clear_bit(BH_Protected, &buf->b_state); remove_from_hash_queue(buf); buf->b_dev = NODEV; refile_buffer(buf); if (!--buf->b_count) return; printk("VFS: forgot an in-use buffer! (count=%d)\n", buf->b_count); } /* * bread() reads a specified block and returns the buffer that contains * it. It returns NULL if the block was unreadable. */ struct buffer_head * bread(kdev_t dev, int block, int size) { struct buffer_head * bh = getblk(dev, block, size); if (bh) { if (buffer_uptodate(bh)) return bh; ll_rw_block(READ, 1, &bh); wait_on_buffer(bh); if (buffer_uptodate(bh)) return bh; brelse(bh); return NULL; } printk("VFS: bread: impossible error\n"); return NULL; } /* * Ok, breada can be used as bread, but additionally to mark other * blocks for reading as well. End the argument list with a negative * number. */ #define NBUF 16 struct buffer_head * breada(kdev_t dev, int block, int bufsize, unsigned int pos, unsigned int filesize) { struct buffer_head * bhlist[NBUF]; unsigned int blocks; struct buffer_head * bh; int index; int i, j; if (pos >= filesize) return NULL; if (block < 0 || !(bh = getblk(dev,block,bufsize))) return NULL; index = BUFSIZE_INDEX(bh->b_size); if (buffer_uptodate(bh)) return(bh); else ll_rw_block(READ, 1, &bh); blocks = (filesize - pos) >> (9+index); if (blocks < (read_ahead[MAJOR(dev)] >> index)) blocks = read_ahead[MAJOR(dev)] >> index; if (blocks > NBUF) blocks = NBUF; /* if (blocks) printk("breada (new) %d blocks\n",blocks); */ bhlist[0] = bh; j = 1; for(i=1; i<blocks; i++) { bh = getblk(dev,block+i,bufsize); if (buffer_uptodate(bh)) { brelse(bh); break; } else bhlist[j++] = bh; } /* Request the read for these buffers, and then release them. */ if (j>1) ll_rw_block(READA, (j-1), bhlist+1); for(i=1; i<j; i++) brelse(bhlist[i]); /* Wait for this buffer, and then continue on. */ bh = bhlist[0]; wait_on_buffer(bh); if (buffer_uptodate(bh)) return bh; brelse(bh); return NULL; } /* * Note: the caller should wake up the buffer_wait list if needed. */ static void put_unused_buffer_head(struct buffer_head * bh) { if (nr_unused_buffer_heads >= MAX_UNUSED_BUFFERS) { nr_buffer_heads--; kmem_cache_free(bh_cachep, bh); return; } memset(bh,0,sizeof(*bh)); nr_unused_buffer_heads++; bh->b_next_free = unused_list; unused_list = bh; } /* * We can't put completed temporary IO buffer_heads directly onto the * unused_list when they become unlocked, since the device driver * end_request routines still expect access to the buffer_head's * fields after the final unlock. So, the device driver puts them on * the reuse_list instead once IO completes, and we recover these to * the unused_list here. * * Note that we don't do a wakeup here, but return a flag indicating * whether we got any buffer heads. A task ready to sleep can check * the returned value, and any tasks already sleeping will have been * awakened when the buffer heads were added to the reuse list. */ static inline int recover_reusable_buffer_heads(void) { struct buffer_head *head = xchg(&reuse_list, NULL); int found = 0; if (head) { do { struct buffer_head *bh = head; head = head->b_next_free; put_unused_buffer_head(bh); } while (head); found = 1; } return found; } /* * Reserve NR_RESERVED buffer heads for async IO requests to avoid * no-buffer-head deadlock. Return NULL on failure; waiting for * buffer heads is now handled in create_buffers(). */ static struct buffer_head * get_unused_buffer_head(int async) { struct buffer_head * bh; recover_reusable_buffer_heads(); if (nr_unused_buffer_heads > NR_RESERVED) { bh = unused_list; unused_list = bh->b_next_free; nr_unused_buffer_heads--; return bh; } /* This is critical. We can't swap out pages to get * more buffer heads, because the swap-out may need * more buffer-heads itself. Thus SLAB_ATOMIC. */ if((bh = kmem_cache_alloc(bh_cachep, SLAB_ATOMIC)) != NULL) { memset(bh, 0, sizeof(*bh)); nr_buffer_heads++; return bh; } /* * If we need an async buffer, use the reserved buffer heads. */ if (async && unused_list) { bh = unused_list; unused_list = bh->b_next_free; nr_unused_buffer_heads--; return bh; } #if 0 /* * (Pending further analysis ...) * Ordinary (non-async) requests can use a different memory priority * to free up pages. Any swapping thus generated will use async * buffer heads. */ if(!async && (bh = kmem_cache_alloc(bh_cachep, SLAB_KERNEL)) != NULL) { memset(bh, 0, sizeof(*bh)); nr_buffer_heads++; return bh; } #endif return NULL; } /* * Create the appropriate buffers when given a page for data area and * the size of each buffer.. Use the bh->b_this_page linked list to * follow the buffers created. Return NULL if unable to create more * buffers. * The async flag is used to differentiate async IO (paging, swapping) * from ordinary buffer allocations, and only async requests are allowed * to sleep waiting for buffer heads. */ static struct buffer_head * create_buffers(unsigned long page, unsigned long size, int async) { struct wait_queue wait = { current, NULL }; struct buffer_head *bh, *head; long offset; try_again: head = NULL; offset = PAGE_SIZE; while ((offset -= size) >= 0) { bh = get_unused_buffer_head(async); if (!bh) goto no_grow; bh->b_dev = B_FREE; /* Flag as unused */ bh->b_this_page = head; head = bh; bh->b_state = 0; bh->b_next_free = NULL; bh->b_count = 0; bh->b_size = size; bh->b_data = (char *) (page+offset); bh->b_list = 0; } return head; /* * In case anything failed, we just free everything we got. */ no_grow: if (head) { do { bh = head; head = head->b_this_page; put_unused_buffer_head(bh); } while (head); /* Wake up any waiters ... */ wake_up(&buffer_wait); } /* * Return failure for non-async IO requests. Async IO requests * are not allowed to fail, so we have to wait until buffer heads * become available. But we don't want tasks sleeping with * partially complete buffers, so all were released above. */ if (!async) return NULL; /* We're _really_ low on memory. Now we just * wait for old buffer heads to become free due to * finishing IO. Since this is an async request and * the reserve list is empty, we're sure there are * async buffer heads in use. */ run_task_queue(&tq_disk); /* * Set our state for sleeping, then check again for buffer heads. * This ensures we won't miss a wake_up from an interrupt. */ add_wait_queue(&buffer_wait, &wait); current->state = TASK_UNINTERRUPTIBLE; if (!recover_reusable_buffer_heads()) schedule(); remove_wait_queue(&buffer_wait, &wait); current->state = TASK_RUNNING; goto try_again; } /* Run the hooks that have to be done when a page I/O has completed. */ static inline void after_unlock_page (struct page * page) { if (test_and_clear_bit(PG_decr_after, &page->flags)) { atomic_dec(&nr_async_pages); #ifdef DEBUG_SWAP printk ("DebugVM: Finished IO on page %p, nr_async_pages %d\n", (char *) page_address(page), atomic_read(&nr_async_pages)); #endif } if (test_and_clear_bit(PG_swap_unlock_after, &page->flags)) swap_after_unlock_page(page->offset); if (test_and_clear_bit(PG_free_after, &page->flags)) __free_page(page); } /* * Free all temporary buffers belonging to a page. * This needs to be called with interrupts disabled. */ static inline void free_async_buffers (struct buffer_head * bh) { struct buffer_head *tmp, *tail; /* * Link all the buffers into the b_next_free list, * so we only have to do one xchg() operation ... */ tail = bh; while ((tmp = tail->b_this_page) != bh) { tail->b_next_free = tmp; tail = tmp; }; /* Update the reuse list */ tail->b_next_free = xchg(&reuse_list, NULL); reuse_list = bh; /* Wake up any waiters ... */ wake_up(&buffer_wait); } static void end_buffer_io_async(struct buffer_head * bh, int uptodate) { unsigned long flags; struct buffer_head *tmp; struct page *page; mark_buffer_uptodate(bh, uptodate); unlock_buffer(bh); /* This is a temporary buffer used for page I/O. */ page = mem_map + MAP_NR(bh->b_data); if (!PageLocked(page)) goto not_locked; if (bh->b_count != 1) goto bad_count; if (!test_bit(BH_Uptodate, &bh->b_state)) set_bit(PG_error, &page->flags); /* * Be _very_ careful from here on. Bad things can happen if * two buffer heads end IO at almost the same time and both * decide that the page is now completely done. * * Async buffer_heads are here only as labels for IO, and get * thrown away once the IO for this page is complete. IO is * deemed complete once all buffers have been visited * (b_count==0) and are now unlocked. We must make sure that * only the _last_ buffer that decrements its count is the one * that free's the page.. */ save_flags(flags); cli(); bh->b_count--; tmp = bh; do { if (tmp->b_count) goto still_busy; tmp = tmp->b_this_page; } while (tmp != bh); /* OK, the async IO on this page is complete. */ free_async_buffers(bh); restore_flags(flags); clear_bit(PG_locked, &page->flags); wake_up(&page->wait); after_unlock_page(page); return; still_busy: restore_flags(flags); return; not_locked: printk ("Whoops: end_buffer_io_async: async io complete on unlocked page\n"); return; bad_count: printk ("Whoops: end_buffer_io_async: b_count != 1 on async io.\n"); return; } /* * Start I/O on a page. * This function expects the page to be locked and may return before I/O is complete. * You then have to check page->locked, page->uptodate, and maybe wait on page->wait. */ int brw_page(int rw, struct page *page, kdev_t dev, int b[], int size, int bmap) { struct buffer_head *bh, *prev, *next, *arr[MAX_BUF_PER_PAGE]; int block, nr; if (!PageLocked(page)) panic("brw_page: page not locked for I/O"); clear_bit(PG_uptodate, &page->flags); clear_bit(PG_error, &page->flags); /* * Allocate async buffer heads pointing to this page, just for I/O. * They do _not_ show up in the buffer hash table! * They are _not_ registered in page->buffers either! */ bh = create_buffers(page_address(page), size, 1); if (!bh) { /* WSH: exit here leaves page->count incremented */ clear_bit(PG_locked, &page->flags); wake_up(&page->wait); return -ENOMEM; } nr = 0; next = bh; do { struct buffer_head * tmp; block = *(b++); init_buffer(next, dev, block, end_buffer_io_async, NULL); set_bit(BH_Uptodate, &next->b_state); /* * When we use bmap, we define block zero to represent * a hole. ll_rw_page, however, may legitimately * access block zero, and we need to distinguish the * two cases. */ if (bmap && !block) { memset(next->b_data, 0, size); next->b_count--; continue; } tmp = get_hash_table(dev, block, size); if (tmp) { if (!buffer_uptodate(tmp)) { if (rw == READ) ll_rw_block(READ, 1, &tmp); wait_on_buffer(tmp); } if (rw == READ) memcpy(next->b_data, tmp->b_data, size); else { memcpy(tmp->b_data, next->b_data, size); mark_buffer_dirty(tmp, 0); } brelse(tmp); next->b_count--; continue; } if (rw == READ) clear_bit(BH_Uptodate, &next->b_state); else set_bit(BH_Dirty, &next->b_state); arr[nr++] = next; } while (prev = next, (next = next->b_this_page) != NULL); prev->b_this_page = bh; if (nr) { ll_rw_block(rw, nr, arr); /* The rest of the work is done in mark_buffer_uptodate() * and unlock_buffer(). */ } else { unsigned long flags; clear_bit(PG_locked, &page->flags); set_bit(PG_uptodate, &page->flags); wake_up(&page->wait); save_flags(flags); cli(); free_async_buffers(bh); restore_flags(flags); after_unlock_page(page); } ++current->maj_flt; return 0; } /* * This is called by end_request() when I/O has completed. */ void mark_buffer_uptodate(struct buffer_head * bh, int on) { if (on) { struct buffer_head *tmp = bh; set_bit(BH_Uptodate, &bh->b_state); /* If a page has buffers and all these buffers are uptodate, * then the page is uptodate. */ do { if (!test_bit(BH_Uptodate, &tmp->b_state)) return; tmp=tmp->b_this_page; } while (tmp && tmp != bh); set_bit(PG_uptodate, &mem_map[MAP_NR(bh->b_data)].flags); return; } clear_bit(BH_Uptodate, &bh->b_state); } /* * Generic "readpage" function for block devices that have the normal * bmap functionality. This is most of the block device filesystems. * Reads the page asynchronously --- the unlock_buffer() and * mark_buffer_uptodate() functions propagate buffer state into the * page struct once IO has completed. */ int generic_readpage(struct file * file, struct page * page) { struct dentry *dentry = file->f_dentry; struct inode *inode = dentry->d_inode; unsigned long block; int *p, nr[PAGE_SIZE/512]; int i; atomic_inc(&page->count); set_bit(PG_locked, &page->flags); set_bit(PG_free_after, &page->flags); i = PAGE_SIZE >> inode->i_sb->s_blocksize_bits; block = page->offset >> inode->i_sb->s_blocksize_bits; p = nr; do { *p = inode->i_op->bmap(inode, block); i--; block++; p++; } while (i > 0); /* IO start */ brw_page(READ, page, inode->i_dev, nr, inode->i_sb->s_blocksize, 1); return 0; } /* * Try to increase the number of buffers available: the size argument * is used to determine what kind of buffers we want. */ static int grow_buffers(int pri, int size) { unsigned long page; struct buffer_head *bh, *tmp; struct buffer_head * insert_point; int isize; if ((size & 511) || (size > PAGE_SIZE)) { printk("VFS: grow_buffers: size = %d\n",size); return 0; } if (!(page = __get_free_page(pri))) return 0; bh = create_buffers(page, size, 0); if (!bh) { free_page(page); return 0; } isize = BUFSIZE_INDEX(size); insert_point = free_list[isize]; tmp = bh; while (1) { if (insert_point) { tmp->b_next_free = insert_point->b_next_free; tmp->b_prev_free = insert_point; insert_point->b_next_free->b_prev_free = tmp; insert_point->b_next_free = tmp; } else { tmp->b_prev_free = tmp; tmp->b_next_free = tmp; } insert_point = tmp; ++nr_buffers; if (tmp->b_this_page) tmp = tmp->b_this_page; else break; } tmp->b_this_page = bh; free_list[isize] = bh; mem_map[MAP_NR(page)].buffers = bh; buffermem += PAGE_SIZE; return 1; } /* =========== Reduce the buffer memory ============= */ static inline int buffer_waiting(struct buffer_head * bh) { return waitqueue_active(&bh->b_wait); } /* * try_to_free_buffer() checks if all the buffers on this particular page * are unused, and free's the page if so. */ int try_to_free_buffer(struct buffer_head * bh, struct buffer_head ** bhp, int priority) { unsigned long page; struct buffer_head * tmp, * p; *bhp = bh; page = (unsigned long) bh->b_data; page &= PAGE_MASK; tmp = bh; do { if (!tmp) return 0; if (tmp->b_count || buffer_protected(tmp) || buffer_dirty(tmp) || buffer_locked(tmp) || buffer_waiting(tmp)) return 0; if (priority && buffer_touched(tmp)) return 0; tmp = tmp->b_this_page; } while (tmp != bh); tmp = bh; do { p = tmp; tmp = tmp->b_this_page; nr_buffers--; if (p == *bhp) { *bhp = p->b_prev_free; if (p == *bhp) /* Was this the last in the list? */ *bhp = NULL; } remove_from_queues(p); put_unused_buffer_head(p); } while (tmp != bh); /* Wake up anyone waiting for buffer heads */ wake_up(&buffer_wait); buffermem -= PAGE_SIZE; mem_map[MAP_NR(page)].buffers = NULL; free_page(page); return 1; } /* ================== Debugging =================== */ void show_buffers(void) { struct buffer_head * bh; int found = 0, locked = 0, dirty = 0, used = 0, lastused = 0; int protected = 0; int nlist; static char *buf_types[NR_LIST] = {"CLEAN","LOCKED","DIRTY"}; printk("Buffer memory: %6dkB\n",buffermem>>10); printk("Buffer heads: %6d\n",nr_buffer_heads); printk("Buffer blocks: %6d\n",nr_buffers); for(nlist = 0; nlist < NR_LIST; nlist++) { found = locked = dirty = used = lastused = protected = 0; bh = lru_list[nlist]; if(!bh) continue; do { found++; if (buffer_locked(bh)) locked++; if (buffer_protected(bh)) protected++; if (buffer_dirty(bh)) dirty++; if (bh->b_count) used++, lastused = found; bh = bh->b_next_free; } while (bh != lru_list[nlist]); printk("%8s: %d buffers, %d used (last=%d), " "%d locked, %d protected, %d dirty\n", buf_types[nlist], found, used, lastused, locked, protected, dirty); }; } /* ===================== Init ======================= */ /* * allocate the hash table and init the free list * Use gfp() for the hash table to decrease TLB misses, use * SLAB cache for buffer heads. */ void __init buffer_init(void) { int order = 5; /* Currently maximum order.. */ unsigned int nr_hash; nr_hash = (1UL << order) * PAGE_SIZE / sizeof(struct buffer_head *); hash_table = (struct buffer_head **) __get_free_pages(GFP_ATOMIC, order); if (!hash_table) panic("Failed to allocate buffer hash table\n"); memset(hash_table, 0, nr_hash * sizeof(struct buffer_head *)); bh_hash_mask = nr_hash-1; bh_cachep = kmem_cache_create("buffer_head", sizeof(struct buffer_head), 0, SLAB_HWCACHE_ALIGN, NULL, NULL); if(!bh_cachep) panic("Cannot create buffer head SLAB cache\n"); /* * Allocate the reserved buffer heads. */ while (nr_buffer_heads < NR_RESERVED) { struct buffer_head * bh; bh = kmem_cache_alloc(bh_cachep, SLAB_ATOMIC); if (!bh) break; put_unused_buffer_head(bh); nr_buffer_heads++; } lru_list[BUF_CLEAN] = 0; grow_buffers(GFP_KERNEL, BLOCK_SIZE); } /* ====================== bdflush support =================== */ /* This is a simple kernel daemon, whose job it is to provide a dynamic * response to dirty buffers. Once this process is activated, we write back * a limited number of buffers to the disks and then go back to sleep again. */ static struct wait_queue * bdflush_wait = NULL; static struct wait_queue * bdflush_done = NULL; struct task_struct *bdflush_tsk = 0; void wakeup_bdflush(int wait) { if (current == bdflush_tsk) return; wake_up(&bdflush_wait); if (wait) { run_task_queue(&tq_disk); sleep_on(&bdflush_done); } } /* * Here we attempt to write back old buffers. We also try to flush inodes * and supers as well, since this function is essentially "update", and * otherwise there would be no way of ensuring that these quantities ever * get written back. Ideally, we would have a timestamp on the inodes * and superblocks so that we could write back only the old ones as well */ asmlinkage int sync_old_buffers(void) { int i; int ndirty, nwritten; int nlist; int ncount; struct buffer_head * bh, *next; sync_supers(0); sync_inodes(0); ncount = 0; #ifdef DEBUG for(nlist = 0; nlist < NR_LIST; nlist++) #else for(nlist = BUF_DIRTY; nlist <= BUF_DIRTY; nlist++) #endif { ndirty = 0; nwritten = 0; repeat: bh = lru_list[nlist]; if(bh) for (i = nr_buffers_type[nlist]; i-- > 0; bh = next) { /* We may have stalled while waiting for I/O to complete. */ if(bh->b_list != nlist) goto repeat; next = bh->b_next_free; if(!lru_list[nlist]) { printk("Dirty list empty %d\n", i); break; } /* Clean buffer on dirty list? Refile it */ if (nlist == BUF_DIRTY && !buffer_dirty(bh) && !buffer_locked(bh)) { refile_buffer(bh); continue; } if (buffer_locked(bh) || !buffer_dirty(bh)) continue; ndirty++; if(bh->b_flushtime > jiffies) continue; nwritten++; next->b_count++; bh->b_count++; bh->b_flushtime = 0; #ifdef DEBUG if(nlist != BUF_DIRTY) ncount++; #endif ll_rw_block(WRITE, 1, &bh); bh->b_count--; next->b_count--; } } run_task_queue(&tq_disk); #ifdef DEBUG if (ncount) printk("sync_old_buffers: %d dirty buffers not on dirty list\n", ncount); printk("Wrote %d/%d buffers\n", nwritten, ndirty); #endif run_task_queue(&tq_disk); return 0; } /* This is the interface to bdflush. As we get more sophisticated, we can * pass tuning parameters to this "process", to adjust how it behaves. * We would want to verify each parameter, however, to make sure that it * is reasonable. */ asmlinkage int sys_bdflush(int func, long data) { int i, error = -EPERM; lock_kernel(); if (!capable(CAP_SYS_ADMIN)) goto out; if (func == 1) { error = sync_old_buffers(); goto out; } /* Basically func 1 means read param 1, 2 means write param 1, etc */ if (func >= 2) { i = (func-2) >> 1; error = -EINVAL; if (i < 0 || i >= N_PARAM) goto out; if((func & 1) == 0) { error = put_user(bdf_prm.data[i], (int*)data); goto out; } if (data < bdflush_min[i] || data > bdflush_max[i]) goto out; bdf_prm.data[i] = data; error = 0; goto out; }; /* Having func 0 used to launch the actual bdflush and then never * return (unless explicitly killed). We return zero here to * remain semi-compatible with present update(8) programs. */ error = 0; out: unlock_kernel(); return error; } /* This is the actual bdflush daemon itself. It used to be started from * the syscall above, but now we launch it ourselves internally with * kernel_thread(...) directly after the first thread in init/main.c */ /* To prevent deadlocks for a loop device: * 1) Do non-blocking writes to loop (avoids deadlock with running * out of request blocks). * 2) But do a blocking write if the only dirty buffers are loop buffers * (otherwise we go into an infinite busy-loop). * 3) Quit writing loop blocks if a freelist went low (avoids deadlock * with running out of free buffers for loop's "real" device). */ int bdflush(void * unused) { int i; int ndirty; int nlist; int ncount; struct buffer_head * bh, *next; int major; int wrta_cmd = WRITEA; /* non-blocking write for LOOP */ /* * We have a bare-bones task_struct, and really should fill * in a few more things so "top" and /proc/2/{exe,root,cwd} * display semi-sane things. Not real crucial though... */ current->session = 1; current->pgrp = 1; sprintf(current->comm, "kflushd"); bdflush_tsk = current; /* * As a kernel thread we want to tamper with system buffers * and other internals and thus be subject to the SMP locking * rules. (On a uniprocessor box this does nothing). */ lock_kernel(); for (;;) { #ifdef DEBUG printk("bdflush() activated..."); #endif CHECK_EMERGENCY_SYNC ncount = 0; #ifdef DEBUG for(nlist = 0; nlist < NR_LIST; nlist++) #else for(nlist = BUF_DIRTY; nlist <= BUF_DIRTY; nlist++) #endif { ndirty = 0; refilled = 0; repeat: bh = lru_list[nlist]; if(bh) for (i = nr_buffers_type[nlist]; i-- > 0 && ndirty < bdf_prm.b_un.ndirty; bh = next) { /* We may have stalled while waiting for I/O to complete. */ if(bh->b_list != nlist) goto repeat; next = bh->b_next_free; if(!lru_list[nlist]) { printk("Dirty list empty %d\n", i); break; } /* Clean buffer on dirty list? Refile it */ if (nlist == BUF_DIRTY && !buffer_dirty(bh) && !buffer_locked(bh)) { refile_buffer(bh); continue; } if (buffer_locked(bh) || !buffer_dirty(bh)) continue; major = MAJOR(bh->b_dev); /* Should we write back buffers that are shared or not?? currently dirty buffers are not shared, so it does not matter */ if (refilled && major == LOOP_MAJOR) continue; next->b_count++; bh->b_count++; ndirty++; bh->b_flushtime = 0; if (major == LOOP_MAJOR) { ll_rw_block(wrta_cmd,1, &bh); wrta_cmd = WRITEA; if (buffer_dirty(bh)) --ndirty; } else ll_rw_block(WRITE, 1, &bh); #ifdef DEBUG if(nlist != BUF_DIRTY) ncount++; #endif bh->b_count--; next->b_count--; } } #ifdef DEBUG if (ncount) printk("sys_bdflush: %d dirty buffers not on dirty list\n", ncount); printk("sleeping again.\n"); #endif /* If we didn't write anything, but there are still * dirty buffers, then make the next write to a * loop device to be a blocking write. * This lets us block--which we _must_ do! */ if (ndirty == 0 && nr_buffers_type[BUF_DIRTY] > 0 && wrta_cmd != WRITE) { wrta_cmd = WRITE; continue; } run_task_queue(&tq_disk); wake_up(&bdflush_done); /* If there are still a lot of dirty buffers around, skip the sleep and flush some more */ if(ndirty == 0 || nr_buffers_type[BUF_DIRTY] <= nr_buffers * bdf_prm.b_un.nfract/100) { spin_lock_irq(¤t->sigmask_lock); flush_signals(current); spin_unlock_irq(¤t->sigmask_lock); interruptible_sleep_on(&bdflush_wait); } } } |