Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 | /* * linux/mm/memory.c * * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds */ /* * demand-loading started 01.12.91 - seems it is high on the list of * things wanted, and it should be easy to implement. - Linus */ /* * Ok, demand-loading was easy, shared pages a little bit tricker. Shared * pages started 02.12.91, seems to work. - Linus. * * Tested sharing by executing about 30 /bin/sh: under the old kernel it * would have taken more than the 6M I have free, but it worked well as * far as I could see. * * Also corrected some "invalidate()"s - I wasn't doing enough of them. */ /* * Real VM (paging to/from disk) started 18.12.91. Much more work and * thought has to go into this. Oh, well.. * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. * Found it. Everything seems to work now. * 20.12.91 - Ok, making the swap-device changeable like the root. */ /* * 05.04.94 - Multi-page memory management added for v1.1. * Idea by Alex Bligh (alex@cconcepts.co.uk) * * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG * (Gerhard.Wichert@pdb.siemens.de) */ #include <linux/kernel_stat.h> #include <linux/mm.h> #include <linux/hugetlb.h> #include <linux/mman.h> #include <linux/swap.h> #include <linux/highmem.h> #include <linux/pagemap.h> #include <linux/vcache.h> #include <linux/rmap-locking.h> #include <asm/pgalloc.h> #include <asm/rmap.h> #include <asm/uaccess.h> #include <asm/tlb.h> #include <asm/tlbflush.h> #include <asm/pgtable.h> #include <linux/swapops.h> #ifndef CONFIG_DISCONTIGMEM /* use the per-pgdat data instead for discontigmem - mbligh */ unsigned long max_mapnr; struct page *mem_map; #endif unsigned long num_physpages; void * high_memory; struct page *highmem_start_page; /* * We special-case the C-O-W ZERO_PAGE, because it's such * a common occurrence (no need to read the page to know * that it's zero - better for the cache and memory subsystem). */ static inline void copy_cow_page(struct page * from, struct page * to, unsigned long address) { if (from == ZERO_PAGE(address)) { clear_user_highpage(to, address); return; } copy_user_highpage(to, from, address); } /* * Note: this doesn't free the actual pages themselves. That * has been handled earlier when unmapping all the memory regions. */ static inline void free_one_pmd(struct mmu_gather *tlb, pmd_t * dir) { struct page *page; if (pmd_none(*dir)) return; if (pmd_bad(*dir)) { pmd_ERROR(*dir); pmd_clear(dir); return; } page = pmd_page(*dir); pmd_clear(dir); pgtable_remove_rmap(page); pte_free_tlb(tlb, page); } static inline void free_one_pgd(struct mmu_gather *tlb, pgd_t * dir) { int j; pmd_t * pmd; if (pgd_none(*dir)) return; if (pgd_bad(*dir)) { pgd_ERROR(*dir); pgd_clear(dir); return; } pmd = pmd_offset(dir, 0); pgd_clear(dir); for (j = 0; j < PTRS_PER_PMD ; j++) free_one_pmd(tlb, pmd+j); pmd_free_tlb(tlb, pmd); } /* * This function clears all user-level page tables of a process - this * is needed by execve(), so that old pages aren't in the way. * * Must be called with pagetable lock held. */ void clear_page_tables(struct mmu_gather *tlb, unsigned long first, int nr) { pgd_t * page_dir = tlb->mm->pgd; page_dir += first; do { free_one_pgd(tlb, page_dir); page_dir++; } while (--nr); } pte_t * pte_alloc_map(struct mm_struct *mm, pmd_t *pmd, unsigned long address) { if (!pmd_present(*pmd)) { struct page *new; spin_unlock(&mm->page_table_lock); new = pte_alloc_one(mm, address); spin_lock(&mm->page_table_lock); if (!new) return NULL; /* * Because we dropped the lock, we should re-check the * entry, as somebody else could have populated it.. */ if (pmd_present(*pmd)) { pte_free(new); goto out; } pgtable_add_rmap(new, mm, address); pmd_populate(mm, pmd, new); } out: return pte_offset_map(pmd, address); } pte_t * pte_alloc_kernel(struct mm_struct *mm, pmd_t *pmd, unsigned long address) { if (!pmd_present(*pmd)) { pte_t *new; spin_unlock(&mm->page_table_lock); new = pte_alloc_one_kernel(mm, address); spin_lock(&mm->page_table_lock); if (!new) return NULL; /* * Because we dropped the lock, we should re-check the * entry, as somebody else could have populated it.. */ if (pmd_present(*pmd)) { pte_free_kernel(new); goto out; } pgtable_add_rmap(virt_to_page(new), mm, address); pmd_populate_kernel(mm, pmd, new); } out: return pte_offset_kernel(pmd, address); } #define PTE_TABLE_MASK ((PTRS_PER_PTE-1) * sizeof(pte_t)) #define PMD_TABLE_MASK ((PTRS_PER_PMD-1) * sizeof(pmd_t)) /* * copy one vm_area from one task to the other. Assumes the page tables * already present in the new task to be cleared in the whole range * covered by this vma. * * 08Jan98 Merged into one routine from several inline routines to reduce * variable count and make things faster. -jj * * dst->page_table_lock is held on entry and exit, * but may be dropped within pmd_alloc() and pte_alloc_map(). */ int copy_page_range(struct mm_struct *dst, struct mm_struct *src, struct vm_area_struct *vma) { pgd_t * src_pgd, * dst_pgd; unsigned long address = vma->vm_start; unsigned long end = vma->vm_end; unsigned long cow; struct pte_chain *pte_chain = NULL; if (is_vm_hugetlb_page(vma)) return copy_hugetlb_page_range(dst, src, vma); pte_chain = pte_chain_alloc(GFP_ATOMIC); if (!pte_chain) { spin_unlock(&dst->page_table_lock); pte_chain = pte_chain_alloc(GFP_KERNEL); spin_lock(&dst->page_table_lock); if (!pte_chain) goto nomem; } cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; src_pgd = pgd_offset(src, address)-1; dst_pgd = pgd_offset(dst, address)-1; for (;;) { pmd_t * src_pmd, * dst_pmd; src_pgd++; dst_pgd++; /* copy_pmd_range */ if (pgd_none(*src_pgd)) goto skip_copy_pmd_range; if (pgd_bad(*src_pgd)) { pgd_ERROR(*src_pgd); pgd_clear(src_pgd); skip_copy_pmd_range: address = (address + PGDIR_SIZE) & PGDIR_MASK; if (!address || (address >= end)) goto out; continue; } src_pmd = pmd_offset(src_pgd, address); dst_pmd = pmd_alloc(dst, dst_pgd, address); if (!dst_pmd) goto nomem; do { pte_t * src_pte, * dst_pte; /* copy_pte_range */ if (pmd_none(*src_pmd)) goto skip_copy_pte_range; if (pmd_bad(*src_pmd)) { pmd_ERROR(*src_pmd); pmd_clear(src_pmd); skip_copy_pte_range: address = (address + PMD_SIZE) & PMD_MASK; if (address >= end) goto out; goto cont_copy_pmd_range; } dst_pte = pte_alloc_map(dst, dst_pmd, address); if (!dst_pte) goto nomem; spin_lock(&src->page_table_lock); src_pte = pte_offset_map_nested(src_pmd, address); do { pte_t pte = *src_pte; struct page *page; unsigned long pfn; /* copy_one_pte */ if (pte_none(pte)) goto cont_copy_pte_range_noset; /* pte contains position in swap, so copy. */ if (!pte_present(pte)) { if (!pte_file(pte)) swap_duplicate(pte_to_swp_entry(pte)); set_pte(dst_pte, pte); goto cont_copy_pte_range_noset; } pfn = pte_pfn(pte); /* the pte points outside of valid memory, the * mapping is assumed to be good, meaningful * and not mapped via rmap - duplicate the * mapping as is. */ page = NULL; if (pfn_valid(pfn)) page = pfn_to_page(pfn); if (!page || PageReserved(page)) { set_pte(dst_pte, pte); goto cont_copy_pte_range_noset; } /* * If it's a COW mapping, write protect it both * in the parent and the child */ if (cow) { ptep_set_wrprotect(src_pte); pte = *src_pte; } /* * If it's a shared mapping, mark it clean in * the child */ if (vma->vm_flags & VM_SHARED) pte = pte_mkclean(pte); pte = pte_mkold(pte); get_page(page); dst->rss++; set_pte(dst_pte, pte); pte_chain = page_add_rmap(page, dst_pte, pte_chain); if (pte_chain) goto cont_copy_pte_range_noset; pte_chain = pte_chain_alloc(GFP_ATOMIC); if (pte_chain) goto cont_copy_pte_range_noset; /* * pte_chain allocation failed, and we need to * run page reclaim. */ pte_unmap_nested(src_pte); pte_unmap(dst_pte); spin_unlock(&src->page_table_lock); spin_unlock(&dst->page_table_lock); pte_chain = pte_chain_alloc(GFP_KERNEL); spin_lock(&dst->page_table_lock); if (!pte_chain) goto nomem; spin_lock(&src->page_table_lock); dst_pte = pte_offset_map(dst_pmd, address); src_pte = pte_offset_map_nested(src_pmd, address); cont_copy_pte_range_noset: address += PAGE_SIZE; if (address >= end) { pte_unmap_nested(src_pte); pte_unmap(dst_pte); goto out_unlock; } src_pte++; dst_pte++; } while ((unsigned long)src_pte & PTE_TABLE_MASK); pte_unmap_nested(src_pte-1); pte_unmap(dst_pte-1); spin_unlock(&src->page_table_lock); cont_copy_pmd_range: src_pmd++; dst_pmd++; } while ((unsigned long)src_pmd & PMD_TABLE_MASK); } out_unlock: spin_unlock(&src->page_table_lock); out: pte_chain_free(pte_chain); return 0; nomem: pte_chain_free(pte_chain); return -ENOMEM; } static void zap_pte_range(struct mmu_gather *tlb, pmd_t * pmd, unsigned long address, unsigned long size) { unsigned long offset; pte_t *ptep; if (pmd_none(*pmd)) return; if (pmd_bad(*pmd)) { pmd_ERROR(*pmd); pmd_clear(pmd); return; } ptep = pte_offset_map(pmd, address); offset = address & ~PMD_MASK; if (offset + size > PMD_SIZE) size = PMD_SIZE - offset; size &= PAGE_MASK; for (offset=0; offset < size; ptep++, offset += PAGE_SIZE) { pte_t pte = *ptep; if (pte_none(pte)) continue; if (pte_present(pte)) { unsigned long pfn = pte_pfn(pte); pte = ptep_get_and_clear(ptep); tlb_remove_tlb_entry(tlb, ptep, address+offset); if (pfn_valid(pfn)) { struct page *page = pfn_to_page(pfn); if (!PageReserved(page)) { if (pte_dirty(pte)) set_page_dirty(page); if (page->mapping && pte_young(pte) && !PageSwapCache(page)) mark_page_accessed(page); tlb->freed++; page_remove_rmap(page, ptep); tlb_remove_page(tlb, page); } } } else { if (!pte_file(pte)) free_swap_and_cache(pte_to_swp_entry(pte)); pte_clear(ptep); } } pte_unmap(ptep-1); } static void zap_pmd_range(struct mmu_gather *tlb, pgd_t * dir, unsigned long address, unsigned long size) { pmd_t * pmd; unsigned long end; if (pgd_none(*dir)) return; if (pgd_bad(*dir)) { pgd_ERROR(*dir); pgd_clear(dir); return; } pmd = pmd_offset(dir, address); end = address + size; if (end > ((address + PGDIR_SIZE) & PGDIR_MASK)) end = ((address + PGDIR_SIZE) & PGDIR_MASK); do { zap_pte_range(tlb, pmd, address, end - address); address = (address + PMD_SIZE) & PMD_MASK; pmd++; } while (address < end); } void unmap_page_range(struct mmu_gather *tlb, struct vm_area_struct *vma, unsigned long address, unsigned long end) { pgd_t * dir; if (is_vm_hugetlb_page(vma)) { unmap_hugepage_range(vma, address, end); return; } BUG_ON(address >= end); dir = pgd_offset(vma->vm_mm, address); tlb_start_vma(tlb, vma); do { zap_pmd_range(tlb, dir, address, end - address); address = (address + PGDIR_SIZE) & PGDIR_MASK; dir++; } while (address && (address < end)); tlb_end_vma(tlb, vma); } /* Dispose of an entire struct mmu_gather per rescheduling point */ #if defined(CONFIG_SMP) && defined(CONFIG_PREEMPT) #define ZAP_BLOCK_SIZE (FREE_PTE_NR * PAGE_SIZE) #endif /* For UP, 256 pages at a time gives nice low latency */ #if !defined(CONFIG_SMP) && defined(CONFIG_PREEMPT) #define ZAP_BLOCK_SIZE (256 * PAGE_SIZE) #endif /* No preempt: go for the best straight-line efficiency */ #if !defined(CONFIG_PREEMPT) #define ZAP_BLOCK_SIZE (~(0UL)) #endif /** * unmap_vmas - unmap a range of memory covered by a list of vma's * @tlbp: address of the caller's struct mmu_gather * @mm: the controlling mm_struct * @vma: the starting vma * @start_addr: virtual address at which to start unmapping * @end_addr: virtual address at which to end unmapping * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here * * Returns the number of vma's which were covered by the unmapping. * * Unmap all pages in the vma list. Called under page_table_lock. * * We aim to not hold page_table_lock for too long (for scheduling latency * reasons). So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to * return the ending mmu_gather to the caller. * * Only addresses between `start' and `end' will be unmapped. * * The VMA list must be sorted in ascending virtual address order. * * unmap_vmas() assumes that the caller will flush the whole unmapped address * range after unmap_vmas() returns. So the only responsibility here is to * ensure that any thus-far unmapped pages are flushed before unmap_vmas() * drops the lock and schedules. */ int unmap_vmas(struct mmu_gather **tlbp, struct mm_struct *mm, struct vm_area_struct *vma, unsigned long start_addr, unsigned long end_addr, unsigned long *nr_accounted) { unsigned long zap_bytes = ZAP_BLOCK_SIZE; unsigned long tlb_start; /* For tlb_finish_mmu */ int tlb_start_valid = 0; int ret = 0; if (vma) { /* debug. killme. */ if (end_addr <= vma->vm_start) printk("%s: end_addr(0x%08lx) <= vm_start(0x%08lx)\n", __FUNCTION__, end_addr, vma->vm_start); if (start_addr >= vma->vm_end) printk("%s: start_addr(0x%08lx) <= vm_end(0x%08lx)\n", __FUNCTION__, start_addr, vma->vm_end); } for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) { unsigned long start; unsigned long end; start = max(vma->vm_start, start_addr); if (start >= vma->vm_end) continue; end = min(vma->vm_end, end_addr); if (end <= vma->vm_start) continue; if (vma->vm_flags & VM_ACCOUNT) *nr_accounted += (end - start) >> PAGE_SHIFT; ret++; while (start != end) { unsigned long block; if (is_vm_hugetlb_page(vma)) block = end - start; else block = min(zap_bytes, end - start); if (!tlb_start_valid) { tlb_start = start; tlb_start_valid = 1; } unmap_page_range(*tlbp, vma, start, start + block); start += block; zap_bytes -= block; if ((long)zap_bytes > 0) continue; if (need_resched()) { tlb_finish_mmu(*tlbp, tlb_start, start); cond_resched_lock(&mm->page_table_lock); *tlbp = tlb_gather_mmu(mm, 0); tlb_start_valid = 0; } zap_bytes = ZAP_BLOCK_SIZE; } if (vma->vm_next && vma->vm_next->vm_start < vma->vm_end) printk("%s: VMA list is not sorted correctly!\n", __FUNCTION__); } return ret; } /** * zap_page_range - remove user pages in a given range * @vma: vm_area_struct holding the applicable pages * @address: starting address of pages to zap * @size: number of bytes to zap */ void zap_page_range(struct vm_area_struct *vma, unsigned long address, unsigned long size) { struct mm_struct *mm = vma->vm_mm; struct mmu_gather *tlb; unsigned long end = address + size; unsigned long nr_accounted = 0; might_sleep(); if (is_vm_hugetlb_page(vma)) { zap_hugepage_range(vma, address, size); return; } lru_add_drain(); spin_lock(&mm->page_table_lock); tlb = tlb_gather_mmu(mm, 0); unmap_vmas(&tlb, mm, vma, address, end, &nr_accounted); tlb_finish_mmu(tlb, address, end); spin_unlock(&mm->page_table_lock); } /* * Do a quick page-table lookup for a single page. * mm->page_table_lock must be held. */ struct page * follow_page(struct mm_struct *mm, unsigned long address, int write) { pgd_t *pgd; pmd_t *pmd; pte_t *ptep, pte; unsigned long pfn; struct vm_area_struct *vma; vma = hugepage_vma(mm, address); if (vma) return follow_huge_addr(mm, vma, address, write); pgd = pgd_offset(mm, address); if (pgd_none(*pgd) || pgd_bad(*pgd)) goto out; pmd = pmd_offset(pgd, address); if (pmd_none(*pmd)) goto out; if (pmd_huge(*pmd)) return follow_huge_pmd(mm, address, pmd, write); if (pmd_bad(*pmd)) goto out; ptep = pte_offset_map(pmd, address); if (!ptep) goto out; pte = *ptep; pte_unmap(ptep); if (pte_present(pte)) { if (!write || (pte_write(pte) && pte_dirty(pte))) { pfn = pte_pfn(pte); if (pfn_valid(pfn)) { struct page *page = pfn_to_page(pfn); mark_page_accessed(page); return page; } } } out: return NULL; } /* * Given a physical address, is there a useful struct page pointing to * it? This may become more complex in the future if we start dealing * with IO-aperture pages for direct-IO. */ static inline struct page *get_page_map(struct page *page) { if (!pfn_valid(page_to_pfn(page))) return 0; return page; } int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start, int len, int write, int force, struct page **pages, struct vm_area_struct **vmas) { int i; unsigned int flags; /* * Require read or write permissions. * If 'force' is set, we only require the "MAY" flags. */ flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); i = 0; do { struct vm_area_struct * vma; vma = find_extend_vma(mm, start); #ifdef FIXADDR_USER_START if (!vma && start >= FIXADDR_USER_START && start < FIXADDR_USER_END) { static struct vm_area_struct fixmap_vma = { /* Catch users - if there are any valid ones, we can make this be "&init_mm" or something. */ .vm_mm = NULL, .vm_start = FIXADDR_USER_START, .vm_end = FIXADDR_USER_END, .vm_page_prot = PAGE_READONLY, .vm_flags = VM_READ | VM_EXEC, }; unsigned long pg = start & PAGE_MASK; pgd_t *pgd; pmd_t *pmd; pte_t *pte; if (write) /* user fixmap pages are read-only */ return i ? : -EFAULT; pgd = pgd_offset_k(pg); if (!pgd) return i ? : -EFAULT; pmd = pmd_offset(pgd, pg); if (!pmd) return i ? : -EFAULT; pte = pte_offset_kernel(pmd, pg); if (!pte || !pte_present(*pte)) return i ? : -EFAULT; if (pages) { pages[i] = pte_page(*pte); get_page(pages[i]); } if (vmas) vmas[i] = &fixmap_vma; i++; start += PAGE_SIZE; len--; continue; } #endif if (!vma || (pages && (vma->vm_flags & VM_IO)) || !(flags & vma->vm_flags)) return i ? : -EFAULT; if (is_vm_hugetlb_page(vma)) { i = follow_hugetlb_page(mm, vma, pages, vmas, &start, &len, i); continue; } spin_lock(&mm->page_table_lock); do { struct page *map; while (!(map = follow_page(mm, start, write))) { spin_unlock(&mm->page_table_lock); switch (handle_mm_fault(mm,vma,start,write)) { case VM_FAULT_MINOR: tsk->min_flt++; break; case VM_FAULT_MAJOR: tsk->maj_flt++; break; case VM_FAULT_SIGBUS: return i ? i : -EFAULT; case VM_FAULT_OOM: return i ? i : -ENOMEM; default: BUG(); } spin_lock(&mm->page_table_lock); } if (pages) { pages[i] = get_page_map(map); if (!pages[i]) { spin_unlock(&mm->page_table_lock); while (i--) page_cache_release(pages[i]); i = -EFAULT; goto out; } flush_dcache_page(pages[i]); if (!PageReserved(pages[i])) page_cache_get(pages[i]); } if (vmas) vmas[i] = vma; i++; start += PAGE_SIZE; len--; } while(len && start < vma->vm_end); spin_unlock(&mm->page_table_lock); } while(len); out: return i; } static void zeromap_pte_range(pte_t * pte, unsigned long address, unsigned long size, pgprot_t prot) { unsigned long end; address &= ~PMD_MASK; end = address + size; if (end > PMD_SIZE) end = PMD_SIZE; do { pte_t zero_pte = pte_wrprotect(mk_pte(ZERO_PAGE(address), prot)); BUG_ON(!pte_none(*pte)); set_pte(pte, zero_pte); address += PAGE_SIZE; pte++; } while (address && (address < end)); } static inline int zeromap_pmd_range(struct mm_struct *mm, pmd_t * pmd, unsigned long address, unsigned long size, pgprot_t prot) { unsigned long end; address &= ~PGDIR_MASK; end = address + size; if (end > PGDIR_SIZE) end = PGDIR_SIZE; do { pte_t * pte = pte_alloc_map(mm, pmd, address); if (!pte) return -ENOMEM; zeromap_pte_range(pte, address, end - address, prot); pte_unmap(pte); address = (address + PMD_SIZE) & PMD_MASK; pmd++; } while (address && (address < end)); return 0; } int zeromap_page_range(struct vm_area_struct *vma, unsigned long address, unsigned long size, pgprot_t prot) { int error = 0; pgd_t * dir; unsigned long beg = address; unsigned long end = address + size; struct mm_struct *mm = vma->vm_mm; dir = pgd_offset(mm, address); flush_cache_range(vma, beg, end); if (address >= end) BUG(); spin_lock(&mm->page_table_lock); do { pmd_t *pmd = pmd_alloc(mm, dir, address); error = -ENOMEM; if (!pmd) break; error = zeromap_pmd_range(mm, pmd, address, end - address, prot); if (error) break; address = (address + PGDIR_SIZE) & PGDIR_MASK; dir++; } while (address && (address < end)); flush_tlb_range(vma, beg, end); spin_unlock(&mm->page_table_lock); return error; } /* * maps a range of physical memory into the requested pages. the old * mappings are removed. any references to nonexistent pages results * in null mappings (currently treated as "copy-on-access") */ static inline void remap_pte_range(pte_t * pte, unsigned long address, unsigned long size, unsigned long phys_addr, pgprot_t prot) { unsigned long end; unsigned long pfn; address &= ~PMD_MASK; end = address + size; if (end > PMD_SIZE) end = PMD_SIZE; pfn = phys_addr >> PAGE_SHIFT; do { BUG_ON(!pte_none(*pte)); if (!pfn_valid(pfn) || PageReserved(pfn_to_page(pfn))) set_pte(pte, pfn_pte(pfn, prot)); address += PAGE_SIZE; pfn++; pte++; } while (address && (address < end)); } static inline int remap_pmd_range(struct mm_struct *mm, pmd_t * pmd, unsigned long address, unsigned long size, unsigned long phys_addr, pgprot_t prot) { unsigned long base, end; base = address & PGDIR_MASK; address &= ~PGDIR_MASK; end = address + size; if (end > PGDIR_SIZE) end = PGDIR_SIZE; phys_addr -= address; do { pte_t * pte = pte_alloc_map(mm, pmd, base + address); if (!pte) return -ENOMEM; remap_pte_range(pte, base + address, end - address, address + phys_addr, prot); pte_unmap(pte); address = (address + PMD_SIZE) & PMD_MASK; pmd++; } while (address && (address < end)); return 0; } /* Note: this is only safe if the mm semaphore is held when called. */ int remap_page_range(struct vm_area_struct *vma, unsigned long from, unsigned long phys_addr, unsigned long size, pgprot_t prot) { int error = 0; pgd_t * dir; unsigned long beg = from; unsigned long end = from + size; struct mm_struct *mm = vma->vm_mm; phys_addr -= from; dir = pgd_offset(mm, from); flush_cache_range(vma, beg, end); if (from >= end) BUG(); spin_lock(&mm->page_table_lock); do { pmd_t *pmd = pmd_alloc(mm, dir, from); error = -ENOMEM; if (!pmd) break; error = remap_pmd_range(mm, pmd, from, end - from, phys_addr + from, prot); if (error) break; from = (from + PGDIR_SIZE) & PGDIR_MASK; dir++; } while (from && (from < end)); flush_tlb_range(vma, beg, end); spin_unlock(&mm->page_table_lock); return error; } /* * Establish a new mapping: * - flush the old one * - update the page tables * - inform the TLB about the new one * * We hold the mm semaphore for reading and vma->vm_mm->page_table_lock */ static inline void establish_pte(struct vm_area_struct * vma, unsigned long address, pte_t *page_table, pte_t entry) { set_pte(page_table, entry); flush_tlb_page(vma, address); update_mmu_cache(vma, address, entry); } /* * We hold the mm semaphore for reading and vma->vm_mm->page_table_lock */ static inline void break_cow(struct vm_area_struct * vma, struct page * new_page, unsigned long address, pte_t *page_table) { invalidate_vcache(address, vma->vm_mm, new_page); flush_cache_page(vma, address); establish_pte(vma, address, page_table, pte_mkwrite(pte_mkdirty(mk_pte(new_page, vma->vm_page_prot)))); } /* * This routine handles present pages, when users try to write * to a shared page. It is done by copying the page to a new address * and decrementing the shared-page counter for the old page. * * Goto-purists beware: the only reason for goto's here is that it results * in better assembly code.. The "default" path will see no jumps at all. * * Note that this routine assumes that the protection checks have been * done by the caller (the low-level page fault routine in most cases). * Thus we can safely just mark it writable once we've done any necessary * COW. * * We also mark the page dirty at this point even though the page will * change only once the write actually happens. This avoids a few races, * and potentially makes it more efficient. * * We hold the mm semaphore and the page_table_lock on entry and exit * with the page_table_lock released. */ static int do_wp_page(struct mm_struct *mm, struct vm_area_struct * vma, unsigned long address, pte_t *page_table, pmd_t *pmd, pte_t pte) { struct page *old_page, *new_page; unsigned long pfn = pte_pfn(pte); struct pte_chain *pte_chain = NULL; int ret; if (unlikely(!pfn_valid(pfn))) { /* * This should really halt the system so it can be debugged or * at least the kernel stops what it's doing before it corrupts * data, but for the moment just pretend this is OOM. */ pte_unmap(page_table); printk(KERN_ERR "do_wp_page: bogus page at address %08lx\n", address); goto oom; } old_page = pfn_to_page(pfn); if (!TestSetPageLocked(old_page)) { int reuse = can_share_swap_page(old_page); unlock_page(old_page); if (reuse) { flush_cache_page(vma, address); establish_pte(vma, address, page_table, pte_mkyoung(pte_mkdirty(pte_mkwrite(pte)))); pte_unmap(page_table); ret = VM_FAULT_MINOR; goto out; } } pte_unmap(page_table); /* * Ok, we need to copy. Oh, well.. */ page_cache_get(old_page); spin_unlock(&mm->page_table_lock); pte_chain = pte_chain_alloc(GFP_KERNEL); if (!pte_chain) goto no_mem; new_page = alloc_page(GFP_HIGHUSER); if (!new_page) goto no_mem; copy_cow_page(old_page,new_page,address); /* * Re-check the pte - we dropped the lock */ spin_lock(&mm->page_table_lock); page_table = pte_offset_map(pmd, address); if (pte_same(*page_table, pte)) { if (PageReserved(old_page)) ++mm->rss; page_remove_rmap(old_page, page_table); break_cow(vma, new_page, address, page_table); pte_chain = page_add_rmap(new_page, page_table, pte_chain); lru_cache_add_active(new_page); /* Free the old page.. */ new_page = old_page; } pte_unmap(page_table); page_cache_release(new_page); page_cache_release(old_page); ret = VM_FAULT_MINOR; goto out; no_mem: page_cache_release(old_page); oom: ret = VM_FAULT_OOM; out: spin_unlock(&mm->page_table_lock); pte_chain_free(pte_chain); return ret; } /* * Helper function for invalidate_mmap_range(). * Both hba and hlen are page numbers in PAGE_SIZE units. * An hlen of zero blows away the entire portion file after hba. */ static void invalidate_mmap_range_list(struct list_head *head, unsigned long const hba, unsigned long const hlen) { struct list_head *curr; unsigned long hea; /* last page of hole. */ unsigned long vba; unsigned long vea; /* last page of corresponding uva hole. */ struct vm_area_struct *vp; unsigned long zba; unsigned long zea; hea = hba + hlen - 1; /* avoid overflow. */ if (hea < hba) hea = ULONG_MAX; list_for_each(curr, head) { vp = list_entry(curr, struct vm_area_struct, shared); vba = vp->vm_pgoff; vea = vba + ((vp->vm_end - vp->vm_start) >> PAGE_SHIFT) - 1; if (hea < vba || vea < hba) continue; /* Mapping disjoint from hole. */ zba = (hba <= vba) ? vba : hba; zea = (vea <= hea) ? vea : hea; zap_page_range(vp, ((zba - vba) << PAGE_SHIFT) + vp->vm_start, (zea - zba + 1) << PAGE_SHIFT); } } /** * invalidate_mmap_range - invalidate the portion of all mmaps * in the specified address_space corresponding to the specified * page range in the underlying file. * @address_space: the address space containing mmaps to be invalidated. * @holebegin: byte in first page to invalidate, relative to the start of * the underlying file. This will be rounded down to a PAGE_SIZE * boundary. Note that this is different from vmtruncate(), which * must keep the partial page. In contrast, we must get rid of * partial pages. * @holelen: size of prospective hole in bytes. This will be rounded * up to a PAGE_SIZE boundary. A holelen of zero truncates to the * end of the file. */ void invalidate_mmap_range(struct address_space *mapping, loff_t const holebegin, loff_t const holelen) { unsigned long hba = holebegin >> PAGE_SHIFT; unsigned long hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; /* Check for overflow. */ if (sizeof(holelen) > sizeof(hlen)) { long long holeend = (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; if (holeend & ~(long long)ULONG_MAX) hlen = ULONG_MAX - hba + 1; } down(&mapping->i_shared_sem); /* Protect against page fault */ atomic_inc(&mapping->truncate_count); if (unlikely(!list_empty(&mapping->i_mmap))) invalidate_mmap_range_list(&mapping->i_mmap, hba, hlen); if (unlikely(!list_empty(&mapping->i_mmap_shared))) invalidate_mmap_range_list(&mapping->i_mmap_shared, hba, hlen); up(&mapping->i_shared_sem); } /* * Handle all mappings that got truncated by a "truncate()" * system call. * * NOTE! We have to be ready to update the memory sharing * between the file and the memory map for a potential last * incomplete page. Ugly, but necessary. */ int vmtruncate(struct inode * inode, loff_t offset) { struct address_space *mapping = inode->i_mapping; unsigned long limit; if (inode->i_size < offset) goto do_expand; i_size_write(inode, offset); invalidate_mmap_range(mapping, offset + PAGE_SIZE - 1, 0); truncate_inode_pages(mapping, offset); goto out_truncate; do_expand: limit = current->rlim[RLIMIT_FSIZE].rlim_cur; if (limit != RLIM_INFINITY && offset > limit) goto out_sig; if (offset > inode->i_sb->s_maxbytes) goto out; i_size_write(inode, offset); out_truncate: if (inode->i_op && inode->i_op->truncate) inode->i_op->truncate(inode); return 0; out_sig: send_sig(SIGXFSZ, current, 0); out: return -EFBIG; } /* * Primitive swap readahead code. We simply read an aligned block of * (1 << page_cluster) entries in the swap area. This method is chosen * because it doesn't cost us any seek time. We also make sure to queue * the 'original' request together with the readahead ones... */ void swapin_readahead(swp_entry_t entry) { int i, num; struct page *new_page; unsigned long offset; /* * Get the number of handles we should do readahead io to. */ num = valid_swaphandles(entry, &offset); for (i = 0; i < num; offset++, i++) { /* Ok, do the async read-ahead now */ new_page = read_swap_cache_async(swp_entry(swp_type(entry), offset)); if (!new_page) break; page_cache_release(new_page); } lru_add_drain(); /* Push any new pages onto the LRU now */ } /* * We hold the mm semaphore and the page_table_lock on entry and * should release the pagetable lock on exit.. */ static int do_swap_page(struct mm_struct * mm, struct vm_area_struct * vma, unsigned long address, pte_t *page_table, pmd_t *pmd, pte_t orig_pte, int write_access) { struct page *page; swp_entry_t entry = pte_to_swp_entry(orig_pte); pte_t pte; int ret = VM_FAULT_MINOR; struct pte_chain *pte_chain = NULL; pte_unmap(page_table); spin_unlock(&mm->page_table_lock); page = lookup_swap_cache(entry); if (!page) { swapin_readahead(entry); page = read_swap_cache_async(entry); if (!page) { /* * Back out if somebody else faulted in this pte while * we released the page table lock. */ spin_lock(&mm->page_table_lock); page_table = pte_offset_map(pmd, address); if (pte_same(*page_table, orig_pte)) ret = VM_FAULT_OOM; else ret = VM_FAULT_MINOR; pte_unmap(page_table); spin_unlock(&mm->page_table_lock); goto out; } /* Had to read the page from swap area: Major fault */ ret = VM_FAULT_MAJOR; inc_page_state(pgmajfault); } mark_page_accessed(page); pte_chain = pte_chain_alloc(GFP_KERNEL); if (!pte_chain) { ret = -ENOMEM; goto out; } lock_page(page); /* * Back out if somebody else faulted in this pte while we * released the page table lock. */ spin_lock(&mm->page_table_lock); page_table = pte_offset_map(pmd, address); if (!pte_same(*page_table, orig_pte)) { pte_unmap(page_table); spin_unlock(&mm->page_table_lock); unlock_page(page); page_cache_release(page); ret = VM_FAULT_MINOR; goto out; } /* The page isn't present yet, go ahead with the fault. */ swap_free(entry); if (vm_swap_full()) remove_exclusive_swap_page(page); mm->rss++; pte = mk_pte(page, vma->vm_page_prot); if (write_access && can_share_swap_page(page)) pte = pte_mkdirty(pte_mkwrite(pte)); unlock_page(page); flush_icache_page(vma, page); set_pte(page_table, pte); pte_chain = page_add_rmap(page, page_table, pte_chain); /* No need to invalidate - it was non-present before */ update_mmu_cache(vma, address, pte); pte_unmap(page_table); spin_unlock(&mm->page_table_lock); out: pte_chain_free(pte_chain); return ret; } /* * We are called with the MM semaphore and page_table_lock * spinlock held to protect against concurrent faults in * multithreaded programs. */ static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, pte_t *page_table, pmd_t *pmd, int write_access, unsigned long addr) { pte_t entry; struct page * page = ZERO_PAGE(addr); struct pte_chain *pte_chain; int ret; pte_chain = pte_chain_alloc(GFP_ATOMIC); if (!pte_chain) { pte_unmap(page_table); spin_unlock(&mm->page_table_lock); pte_chain = pte_chain_alloc(GFP_KERNEL); if (!pte_chain) goto no_mem; spin_lock(&mm->page_table_lock); page_table = pte_offset_map(pmd, addr); } /* Read-only mapping of ZERO_PAGE. */ entry = pte_wrprotect(mk_pte(ZERO_PAGE(addr), vma->vm_page_prot)); /* ..except if it's a write access */ if (write_access) { /* Allocate our own private page. */ pte_unmap(page_table); spin_unlock(&mm->page_table_lock); page = alloc_page(GFP_HIGHUSER); if (!page) goto no_mem; clear_user_highpage(page, addr); spin_lock(&mm->page_table_lock); page_table = pte_offset_map(pmd, addr); if (!pte_none(*page_table)) { pte_unmap(page_table); page_cache_release(page); spin_unlock(&mm->page_table_lock); ret = VM_FAULT_MINOR; goto out; } mm->rss++; entry = pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot))); lru_cache_add_active(page); mark_page_accessed(page); } set_pte(page_table, entry); /* ignores ZERO_PAGE */ pte_chain = page_add_rmap(page, page_table, pte_chain); pte_unmap(page_table); /* No need to invalidate - it was non-present before */ update_mmu_cache(vma, addr, entry); spin_unlock(&mm->page_table_lock); ret = VM_FAULT_MINOR; goto out; no_mem: ret = VM_FAULT_OOM; out: pte_chain_free(pte_chain); return ret; } /* * do_no_page() tries to create a new page mapping. It aggressively * tries to share with existing pages, but makes a separate copy if * the "write_access" parameter is true in order to avoid the next * page fault. * * As this is called only for pages that do not currently exist, we * do not need to flush old virtual caches or the TLB. * * This is called with the MM semaphore held and the page table * spinlock held. Exit with the spinlock released. */ static int do_no_page(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long address, int write_access, pte_t *page_table, pmd_t *pmd) { struct page * new_page; struct address_space *mapping; pte_t entry; struct pte_chain *pte_chain; int sequence; int ret; if (!vma->vm_ops || !vma->vm_ops->nopage) return do_anonymous_page(mm, vma, page_table, pmd, write_access, address); pte_unmap(page_table); spin_unlock(&mm->page_table_lock); mapping = vma->vm_file->f_dentry->d_inode->i_mapping; sequence = atomic_read(&mapping->truncate_count); smp_rmb(); /* Prevent CPU from reordering lock-free ->nopage() */ retry: new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, 0); /* no page was available -- either SIGBUS or OOM */ if (new_page == NOPAGE_SIGBUS) return VM_FAULT_SIGBUS; if (new_page == NOPAGE_OOM) return VM_FAULT_OOM; pte_chain = pte_chain_alloc(GFP_KERNEL); if (!pte_chain) goto oom; /* * Should we do an early C-O-W break? */ if (write_access && !(vma->vm_flags & VM_SHARED)) { struct page * page = alloc_page(GFP_HIGHUSER); if (!page) { page_cache_release(new_page); goto oom; } copy_user_highpage(page, new_page, address); page_cache_release(new_page); lru_cache_add_active(page); new_page = page; } spin_lock(&mm->page_table_lock); /* * For a file-backed vma, someone could have truncated or otherwise * invalidated this page. If invalidate_mmap_range got called, * retry getting the page. */ if (unlikely(sequence != atomic_read(&mapping->truncate_count))) { sequence = atomic_read(&mapping->truncate_count); spin_unlock(&mm->page_table_lock); page_cache_release(new_page); goto retry; } page_table = pte_offset_map(pmd, address); /* * This silly early PAGE_DIRTY setting removes a race * due to the bad i386 page protection. But it's valid * for other architectures too. * * Note that if write_access is true, we either now have * an exclusive copy of the page, or this is a shared mapping, * so we can make it writable and dirty to avoid having to * handle that later. */ /* Only go through if we didn't race with anybody else... */ if (pte_none(*page_table)) { ++mm->rss; flush_icache_page(vma, new_page); entry = mk_pte(new_page, vma->vm_page_prot); if (write_access) entry = pte_mkwrite(pte_mkdirty(entry)); set_pte(page_table, entry); pte_chain = page_add_rmap(new_page, page_table, pte_chain); pte_unmap(page_table); } else { /* One of our sibling threads was faster, back out. */ pte_unmap(page_table); page_cache_release(new_page); spin_unlock(&mm->page_table_lock); ret = VM_FAULT_MINOR; goto out; } /* no need to invalidate: a not-present page shouldn't be cached */ update_mmu_cache(vma, address, entry); spin_unlock(&mm->page_table_lock); ret = VM_FAULT_MAJOR; goto out; oom: ret = VM_FAULT_OOM; out: pte_chain_free(pte_chain); return ret; } /* * Fault of a previously existing named mapping. Repopulate the pte * from the encoded file_pte if possible. This enables swappable * nonlinear vmas. */ static int do_file_page(struct mm_struct * mm, struct vm_area_struct * vma, unsigned long address, int write_access, pte_t *pte, pmd_t *pmd) { unsigned long pgoff; int err; BUG_ON(!vma->vm_ops || !vma->vm_ops->nopage); /* * Fall back to the linear mapping if the fs does not support * ->populate: */ if (!vma->vm_ops || !vma->vm_ops->populate || (write_access && !(vma->vm_flags & VM_SHARED))) { pte_clear(pte); return do_no_page(mm, vma, address, write_access, pte, pmd); } pgoff = pte_to_pgoff(*pte); pte_unmap(pte); spin_unlock(&mm->page_table_lock); err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE, vma->vm_page_prot, pgoff, 0); if (err == -ENOMEM) return VM_FAULT_OOM; if (err) return VM_FAULT_SIGBUS; return VM_FAULT_MAJOR; } /* * These routines also need to handle stuff like marking pages dirty * and/or accessed for architectures that don't do it in hardware (most * RISC architectures). The early dirtying is also good on the i386. * * There is also a hook called "update_mmu_cache()" that architectures * with external mmu caches can use to update those (ie the Sparc or * PowerPC hashed page tables that act as extended TLBs). * * Note the "page_table_lock". It is to protect against kswapd removing * pages from under us. Note that kswapd only ever _removes_ pages, never * adds them. As such, once we have noticed that the page is not present, * we can drop the lock early. * * The adding of pages is protected by the MM semaphore (which we hold), * so we don't need to worry about a page being suddenly been added into * our VM. * * We enter with the pagetable spinlock held, we are supposed to * release it when done. */ static inline int handle_pte_fault(struct mm_struct *mm, struct vm_area_struct * vma, unsigned long address, int write_access, pte_t *pte, pmd_t *pmd) { pte_t entry; entry = *pte; if (!pte_present(entry)) { /* * If it truly wasn't present, we know that kswapd * and the PTE updates will not touch it later. So * drop the lock. */ if (pte_none(entry)) return do_no_page(mm, vma, address, write_access, pte, pmd); if (pte_file(entry)) return do_file_page(mm, vma, address, write_access, pte, pmd); return do_swap_page(mm, vma, address, pte, pmd, entry, write_access); } if (write_access) { if (!pte_write(entry)) return do_wp_page(mm, vma, address, pte, pmd, entry); entry = pte_mkdirty(entry); } entry = pte_mkyoung(entry); establish_pte(vma, address, pte, entry); pte_unmap(pte); spin_unlock(&mm->page_table_lock); return VM_FAULT_MINOR; } /* * By the time we get here, we already hold the mm semaphore */ int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct * vma, unsigned long address, int write_access) { pgd_t *pgd; pmd_t *pmd; __set_current_state(TASK_RUNNING); pgd = pgd_offset(mm, address); inc_page_state(pgfault); if (is_vm_hugetlb_page(vma)) return VM_FAULT_SIGBUS; /* mapping truncation does this. */ /* * We need the page table lock to synchronize with kswapd * and the SMP-safe atomic PTE updates. */ spin_lock(&mm->page_table_lock); pmd = pmd_alloc(mm, pgd, address); if (pmd) { pte_t * pte = pte_alloc_map(mm, pmd, address); if (pte) return handle_pte_fault(mm, vma, address, write_access, pte, pmd); } spin_unlock(&mm->page_table_lock); return VM_FAULT_OOM; } /* * Allocate page middle directory. * * We've already handled the fast-path in-line, and we own the * page table lock. * * On a two-level page table, this ends up actually being entirely * optimized away. */ pmd_t *__pmd_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) { pmd_t *new; spin_unlock(&mm->page_table_lock); new = pmd_alloc_one(mm, address); spin_lock(&mm->page_table_lock); if (!new) return NULL; /* * Because we dropped the lock, we should re-check the * entry, as somebody else could have populated it.. */ if (pgd_present(*pgd)) { pmd_free(new); goto out; } pgd_populate(mm, pgd, new); out: return pmd_offset(pgd, address); } int make_pages_present(unsigned long addr, unsigned long end) { int ret, len, write; struct vm_area_struct * vma; vma = find_vma(current->mm, addr); write = (vma->vm_flags & VM_WRITE) != 0; if (addr >= end) BUG(); if (end > vma->vm_end) BUG(); len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE; ret = get_user_pages(current, current->mm, addr, len, write, 0, NULL, NULL); return ret == len ? 0 : -1; } /* * Map a vmalloc()-space virtual address to the physical page. */ struct page * vmalloc_to_page(void * vmalloc_addr) { unsigned long addr = (unsigned long) vmalloc_addr; struct page *page = NULL; pgd_t *pgd = pgd_offset_k(addr); pmd_t *pmd; pte_t *ptep, pte; if (!pgd_none(*pgd)) { pmd = pmd_offset(pgd, addr); if (!pmd_none(*pmd)) { preempt_disable(); ptep = pte_offset_map(pmd, addr); pte = *ptep; if (pte_present(pte)) page = pte_page(pte); pte_unmap(ptep); preempt_enable(); } } return page; } |