Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
/*
 *  linux/mm/memory.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 */

/*
 * demand-loading started 01.12.91 - seems it is high on the list of
 * things wanted, and it should be easy to implement. - Linus
 */

/*
 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
 * pages started 02.12.91, seems to work. - Linus.
 *
 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
 * would have taken more than the 6M I have free, but it worked well as
 * far as I could see.
 *
 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
 */

/*
 * Real VM (paging to/from disk) started 18.12.91. Much more work and
 * thought has to go into this. Oh, well..
 * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
 *		Found it. Everything seems to work now.
 * 20.12.91  -  Ok, making the swap-device changeable like the root.
 */

/*
 * 05.04.94  -  Multi-page memory management added for v1.1.
 * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
 *
 * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
 *		(Gerhard.Wichert@pdb.siemens.de)
 */

#include <linux/kernel_stat.h>
#include <linux/mm.h>
#include <linux/hugetlb.h>
#include <linux/mman.h>
#include <linux/swap.h>
#include <linux/highmem.h>
#include <linux/pagemap.h>
#include <linux/vcache.h>
#include <linux/rmap-locking.h>

#include <asm/pgalloc.h>
#include <asm/rmap.h>
#include <asm/uaccess.h>
#include <asm/tlb.h>
#include <asm/tlbflush.h>
#include <asm/pgtable.h>

#include <linux/swapops.h>

#ifndef CONFIG_DISCONTIGMEM
/* use the per-pgdat data instead for discontigmem - mbligh */
unsigned long max_mapnr;
struct page *mem_map;
#endif

unsigned long num_physpages;
void * high_memory;
struct page *highmem_start_page;

/*
 * We special-case the C-O-W ZERO_PAGE, because it's such
 * a common occurrence (no need to read the page to know
 * that it's zero - better for the cache and memory subsystem).
 */
static inline void copy_cow_page(struct page * from, struct page * to, unsigned long address)
{
	if (from == ZERO_PAGE(address)) {
		clear_user_highpage(to, address);
		return;
	}
	copy_user_highpage(to, from, address);
}

/*
 * Note: this doesn't free the actual pages themselves. That
 * has been handled earlier when unmapping all the memory regions.
 */
static inline void free_one_pmd(struct mmu_gather *tlb, pmd_t * dir)
{
	struct page *page;

	if (pmd_none(*dir))
		return;
	if (pmd_bad(*dir)) {
		pmd_ERROR(*dir);
		pmd_clear(dir);
		return;
	}
	page = pmd_page(*dir);
	pmd_clear(dir);
	pgtable_remove_rmap(page);
	pte_free_tlb(tlb, page);
}

static inline void free_one_pgd(struct mmu_gather *tlb, pgd_t * dir)
{
	int j;
	pmd_t * pmd;

	if (pgd_none(*dir))
		return;
	if (pgd_bad(*dir)) {
		pgd_ERROR(*dir);
		pgd_clear(dir);
		return;
	}
	pmd = pmd_offset(dir, 0);
	pgd_clear(dir);
	for (j = 0; j < PTRS_PER_PMD ; j++)
		free_one_pmd(tlb, pmd+j);
	pmd_free_tlb(tlb, pmd);
}

/*
 * This function clears all user-level page tables of a process - this
 * is needed by execve(), so that old pages aren't in the way.
 *
 * Must be called with pagetable lock held.
 */
void clear_page_tables(struct mmu_gather *tlb, unsigned long first, int nr)
{
	pgd_t * page_dir = tlb->mm->pgd;

	page_dir += first;
	do {
		free_one_pgd(tlb, page_dir);
		page_dir++;
	} while (--nr);
}

pte_t * pte_alloc_map(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
{
	if (!pmd_present(*pmd)) {
		struct page *new;

		spin_unlock(&mm->page_table_lock);
		new = pte_alloc_one(mm, address);
		spin_lock(&mm->page_table_lock);
		if (!new)
			return NULL;

		/*
		 * Because we dropped the lock, we should re-check the
		 * entry, as somebody else could have populated it..
		 */
		if (pmd_present(*pmd)) {
			pte_free(new);
			goto out;
		}
		pgtable_add_rmap(new, mm, address);
		pmd_populate(mm, pmd, new);
	}
out:
	return pte_offset_map(pmd, address);
}

pte_t * pte_alloc_kernel(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
{
	if (!pmd_present(*pmd)) {
		pte_t *new;

		spin_unlock(&mm->page_table_lock);
		new = pte_alloc_one_kernel(mm, address);
		spin_lock(&mm->page_table_lock);
		if (!new)
			return NULL;

		/*
		 * Because we dropped the lock, we should re-check the
		 * entry, as somebody else could have populated it..
		 */
		if (pmd_present(*pmd)) {
			pte_free_kernel(new);
			goto out;
		}
		pgtable_add_rmap(virt_to_page(new), mm, address);
		pmd_populate_kernel(mm, pmd, new);
	}
out:
	return pte_offset_kernel(pmd, address);
}
#define PTE_TABLE_MASK	((PTRS_PER_PTE-1) * sizeof(pte_t))
#define PMD_TABLE_MASK	((PTRS_PER_PMD-1) * sizeof(pmd_t))

/*
 * copy one vm_area from one task to the other. Assumes the page tables
 * already present in the new task to be cleared in the whole range
 * covered by this vma.
 *
 * 08Jan98 Merged into one routine from several inline routines to reduce
 *         variable count and make things faster. -jj
 *
 * dst->page_table_lock is held on entry and exit,
 * but may be dropped within pmd_alloc() and pte_alloc_map().
 */
int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
			struct vm_area_struct *vma)
{
	pgd_t * src_pgd, * dst_pgd;
	unsigned long address = vma->vm_start;
	unsigned long end = vma->vm_end;
	unsigned long cow;
	struct pte_chain *pte_chain = NULL;

	if (is_vm_hugetlb_page(vma))
		return copy_hugetlb_page_range(dst, src, vma);

	pte_chain = pte_chain_alloc(GFP_ATOMIC);
	if (!pte_chain) {
		spin_unlock(&dst->page_table_lock);
		pte_chain = pte_chain_alloc(GFP_KERNEL);
		spin_lock(&dst->page_table_lock);
		if (!pte_chain)
			goto nomem;
	}
	
	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
	src_pgd = pgd_offset(src, address)-1;
	dst_pgd = pgd_offset(dst, address)-1;

	for (;;) {
		pmd_t * src_pmd, * dst_pmd;

		src_pgd++; dst_pgd++;
		
		/* copy_pmd_range */
		
		if (pgd_none(*src_pgd))
			goto skip_copy_pmd_range;
		if (pgd_bad(*src_pgd)) {
			pgd_ERROR(*src_pgd);
			pgd_clear(src_pgd);
skip_copy_pmd_range:	address = (address + PGDIR_SIZE) & PGDIR_MASK;
			if (!address || (address >= end))
				goto out;
			continue;
		}

		src_pmd = pmd_offset(src_pgd, address);
		dst_pmd = pmd_alloc(dst, dst_pgd, address);
		if (!dst_pmd)
			goto nomem;

		do {
			pte_t * src_pte, * dst_pte;
		
			/* copy_pte_range */
		
			if (pmd_none(*src_pmd))
				goto skip_copy_pte_range;
			if (pmd_bad(*src_pmd)) {
				pmd_ERROR(*src_pmd);
				pmd_clear(src_pmd);
skip_copy_pte_range:
				address = (address + PMD_SIZE) & PMD_MASK;
				if (address >= end)
					goto out;
				goto cont_copy_pmd_range;
			}

			dst_pte = pte_alloc_map(dst, dst_pmd, address);
			if (!dst_pte)
				goto nomem;
			spin_lock(&src->page_table_lock);	
			src_pte = pte_offset_map_nested(src_pmd, address);
			do {
				pte_t pte = *src_pte;
				struct page *page;
				unsigned long pfn;

				/* copy_one_pte */

				if (pte_none(pte))
					goto cont_copy_pte_range_noset;
				/* pte contains position in swap, so copy. */
				if (!pte_present(pte)) {
					if (!pte_file(pte))
						swap_duplicate(pte_to_swp_entry(pte));
					set_pte(dst_pte, pte);
					goto cont_copy_pte_range_noset;
				}
				pfn = pte_pfn(pte);
				/* the pte points outside of valid memory, the
				 * mapping is assumed to be good, meaningful
				 * and not mapped via rmap - duplicate the
				 * mapping as is.
				 */
				page = NULL;
				if (pfn_valid(pfn)) 
					page = pfn_to_page(pfn); 

				if (!page || PageReserved(page)) {
					set_pte(dst_pte, pte);
					goto cont_copy_pte_range_noset;
				}

				/*
				 * If it's a COW mapping, write protect it both
				 * in the parent and the child
				 */
				if (cow) {
					ptep_set_wrprotect(src_pte);
					pte = *src_pte;
				}

				/*
				 * If it's a shared mapping, mark it clean in
				 * the child
				 */
				if (vma->vm_flags & VM_SHARED)
					pte = pte_mkclean(pte);
				pte = pte_mkold(pte);
				get_page(page);
				dst->rss++;

				set_pte(dst_pte, pte);
				pte_chain = page_add_rmap(page, dst_pte,
							pte_chain);
				if (pte_chain)
					goto cont_copy_pte_range_noset;
				pte_chain = pte_chain_alloc(GFP_ATOMIC);
				if (pte_chain)
					goto cont_copy_pte_range_noset;

				/*
				 * pte_chain allocation failed, and we need to
				 * run page reclaim.
				 */
				pte_unmap_nested(src_pte);
				pte_unmap(dst_pte);
				spin_unlock(&src->page_table_lock);	
				spin_unlock(&dst->page_table_lock);	
				pte_chain = pte_chain_alloc(GFP_KERNEL);
				spin_lock(&dst->page_table_lock);	
				if (!pte_chain)
					goto nomem;
				spin_lock(&src->page_table_lock);
				dst_pte = pte_offset_map(dst_pmd, address);
				src_pte = pte_offset_map_nested(src_pmd,
								address);
cont_copy_pte_range_noset:
				address += PAGE_SIZE;
				if (address >= end) {
					pte_unmap_nested(src_pte);
					pte_unmap(dst_pte);
					goto out_unlock;
				}
				src_pte++;
				dst_pte++;
			} while ((unsigned long)src_pte & PTE_TABLE_MASK);
			pte_unmap_nested(src_pte-1);
			pte_unmap(dst_pte-1);
			spin_unlock(&src->page_table_lock);
		
cont_copy_pmd_range:
			src_pmd++;
			dst_pmd++;
		} while ((unsigned long)src_pmd & PMD_TABLE_MASK);
	}
out_unlock:
	spin_unlock(&src->page_table_lock);
out:
	pte_chain_free(pte_chain);
	return 0;
nomem:
	pte_chain_free(pte_chain);
	return -ENOMEM;
}

static void
zap_pte_range(struct mmu_gather *tlb, pmd_t * pmd,
		unsigned long address, unsigned long size)
{
	unsigned long offset;
	pte_t *ptep;

	if (pmd_none(*pmd))
		return;
	if (pmd_bad(*pmd)) {
		pmd_ERROR(*pmd);
		pmd_clear(pmd);
		return;
	}
	ptep = pte_offset_map(pmd, address);
	offset = address & ~PMD_MASK;
	if (offset + size > PMD_SIZE)
		size = PMD_SIZE - offset;
	size &= PAGE_MASK;
	for (offset=0; offset < size; ptep++, offset += PAGE_SIZE) {
		pte_t pte = *ptep;
		if (pte_none(pte))
			continue;
		if (pte_present(pte)) {
			unsigned long pfn = pte_pfn(pte);

			pte = ptep_get_and_clear(ptep);
			tlb_remove_tlb_entry(tlb, ptep, address+offset);
			if (pfn_valid(pfn)) {
				struct page *page = pfn_to_page(pfn);
				if (!PageReserved(page)) {
					if (pte_dirty(pte))
						set_page_dirty(page);
					if (page->mapping && pte_young(pte) &&
							!PageSwapCache(page))
						mark_page_accessed(page);
					tlb->freed++;
					page_remove_rmap(page, ptep);
					tlb_remove_page(tlb, page);
				}
			}
		} else {
			if (!pte_file(pte))
				free_swap_and_cache(pte_to_swp_entry(pte));
			pte_clear(ptep);
		}
	}
	pte_unmap(ptep-1);
}

static void
zap_pmd_range(struct mmu_gather *tlb, pgd_t * dir,
		unsigned long address, unsigned long size)
{
	pmd_t * pmd;
	unsigned long end;

	if (pgd_none(*dir))
		return;
	if (pgd_bad(*dir)) {
		pgd_ERROR(*dir);
		pgd_clear(dir);
		return;
	}
	pmd = pmd_offset(dir, address);
	end = address + size;
	if (end > ((address + PGDIR_SIZE) & PGDIR_MASK))
		end = ((address + PGDIR_SIZE) & PGDIR_MASK);
	do {
		zap_pte_range(tlb, pmd, address, end - address);
		address = (address + PMD_SIZE) & PMD_MASK; 
		pmd++;
	} while (address < end);
}

void unmap_page_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
			unsigned long address, unsigned long end)
{
	pgd_t * dir;

	if (is_vm_hugetlb_page(vma)) {
		unmap_hugepage_range(vma, address, end);
		return;
	}

	BUG_ON(address >= end);

	dir = pgd_offset(vma->vm_mm, address);
	tlb_start_vma(tlb, vma);
	do {
		zap_pmd_range(tlb, dir, address, end - address);
		address = (address + PGDIR_SIZE) & PGDIR_MASK;
		dir++;
	} while (address && (address < end));
	tlb_end_vma(tlb, vma);
}

/* Dispose of an entire struct mmu_gather per rescheduling point */
#if defined(CONFIG_SMP) && defined(CONFIG_PREEMPT)
#define ZAP_BLOCK_SIZE	(FREE_PTE_NR * PAGE_SIZE)
#endif

/* For UP, 256 pages at a time gives nice low latency */
#if !defined(CONFIG_SMP) && defined(CONFIG_PREEMPT)
#define ZAP_BLOCK_SIZE	(256 * PAGE_SIZE)
#endif

/* No preempt: go for the best straight-line efficiency */
#if !defined(CONFIG_PREEMPT)
#define ZAP_BLOCK_SIZE	(~(0UL))
#endif

/**
 * unmap_vmas - unmap a range of memory covered by a list of vma's
 * @tlbp: address of the caller's struct mmu_gather
 * @mm: the controlling mm_struct
 * @vma: the starting vma
 * @start_addr: virtual address at which to start unmapping
 * @end_addr: virtual address at which to end unmapping
 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
 *
 * Returns the number of vma's which were covered by the unmapping.
 *
 * Unmap all pages in the vma list.  Called under page_table_lock.
 *
 * We aim to not hold page_table_lock for too long (for scheduling latency
 * reasons).  So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
 * return the ending mmu_gather to the caller.
 *
 * Only addresses between `start' and `end' will be unmapped.
 *
 * The VMA list must be sorted in ascending virtual address order.
 *
 * unmap_vmas() assumes that the caller will flush the whole unmapped address
 * range after unmap_vmas() returns.  So the only responsibility here is to
 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
 * drops the lock and schedules.
 */
int unmap_vmas(struct mmu_gather **tlbp, struct mm_struct *mm,
		struct vm_area_struct *vma, unsigned long start_addr,
		unsigned long end_addr, unsigned long *nr_accounted)
{
	unsigned long zap_bytes = ZAP_BLOCK_SIZE;
	unsigned long tlb_start;	/* For tlb_finish_mmu */
	int tlb_start_valid = 0;
	int ret = 0;

	if (vma) {	/* debug.  killme. */
		if (end_addr <= vma->vm_start)
			printk("%s: end_addr(0x%08lx) <= vm_start(0x%08lx)\n",
				__FUNCTION__, end_addr, vma->vm_start);
		if (start_addr >= vma->vm_end)
			printk("%s: start_addr(0x%08lx) <= vm_end(0x%08lx)\n",
				__FUNCTION__, start_addr, vma->vm_end);
	}

	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
		unsigned long start;
		unsigned long end;

		start = max(vma->vm_start, start_addr);
		if (start >= vma->vm_end)
			continue;
		end = min(vma->vm_end, end_addr);
		if (end <= vma->vm_start)
			continue;

		if (vma->vm_flags & VM_ACCOUNT)
			*nr_accounted += (end - start) >> PAGE_SHIFT;

		ret++;
		while (start != end) {
			unsigned long block;

			if (is_vm_hugetlb_page(vma))
				block = end - start;
			else
				block = min(zap_bytes, end - start);

			if (!tlb_start_valid) {
				tlb_start = start;
				tlb_start_valid = 1;
			}

			unmap_page_range(*tlbp, vma, start, start + block);
			start += block;
			zap_bytes -= block;
			if ((long)zap_bytes > 0)
				continue;
			if (need_resched()) {
				tlb_finish_mmu(*tlbp, tlb_start, start);
				cond_resched_lock(&mm->page_table_lock);
				*tlbp = tlb_gather_mmu(mm, 0);
				tlb_start_valid = 0;
			}
			zap_bytes = ZAP_BLOCK_SIZE;
		}
		if (vma->vm_next && vma->vm_next->vm_start < vma->vm_end)
			printk("%s: VMA list is not sorted correctly!\n",
				__FUNCTION__);		
	}
	return ret;
}

/**
 * zap_page_range - remove user pages in a given range
 * @vma: vm_area_struct holding the applicable pages
 * @address: starting address of pages to zap
 * @size: number of bytes to zap
 */
void zap_page_range(struct vm_area_struct *vma,
			unsigned long address, unsigned long size)
{
	struct mm_struct *mm = vma->vm_mm;
	struct mmu_gather *tlb;
	unsigned long end = address + size;
	unsigned long nr_accounted = 0;

	might_sleep();

	if (is_vm_hugetlb_page(vma)) {
		zap_hugepage_range(vma, address, size);
		return;
	}

	lru_add_drain();
	spin_lock(&mm->page_table_lock);
	tlb = tlb_gather_mmu(mm, 0);
	unmap_vmas(&tlb, mm, vma, address, end, &nr_accounted);
	tlb_finish_mmu(tlb, address, end);
	spin_unlock(&mm->page_table_lock);
}

/*
 * Do a quick page-table lookup for a single page.
 * mm->page_table_lock must be held.
 */
struct page *
follow_page(struct mm_struct *mm, unsigned long address, int write) 
{
	pgd_t *pgd;
	pmd_t *pmd;
	pte_t *ptep, pte;
	unsigned long pfn;
	struct vm_area_struct *vma;

	vma = hugepage_vma(mm, address);
	if (vma)
		return follow_huge_addr(mm, vma, address, write);

	pgd = pgd_offset(mm, address);
	if (pgd_none(*pgd) || pgd_bad(*pgd))
		goto out;

	pmd = pmd_offset(pgd, address);
	if (pmd_none(*pmd))
		goto out;
	if (pmd_huge(*pmd))
		return follow_huge_pmd(mm, address, pmd, write);
	if (pmd_bad(*pmd))
		goto out;

	ptep = pte_offset_map(pmd, address);
	if (!ptep)
		goto out;

	pte = *ptep;
	pte_unmap(ptep);
	if (pte_present(pte)) {
		if (!write || (pte_write(pte) && pte_dirty(pte))) {
			pfn = pte_pfn(pte);
			if (pfn_valid(pfn)) {
				struct page *page = pfn_to_page(pfn);

				mark_page_accessed(page);
				return page;
			}
		}
	}

out:
	return NULL;
}

/* 
 * Given a physical address, is there a useful struct page pointing to
 * it?  This may become more complex in the future if we start dealing
 * with IO-aperture pages for direct-IO.
 */

static inline struct page *get_page_map(struct page *page)
{
	if (!pfn_valid(page_to_pfn(page)))
		return 0;
	return page;
}


int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
		unsigned long start, int len, int write, int force,
		struct page **pages, struct vm_area_struct **vmas)
{
	int i;
	unsigned int flags;

	/* 
	 * Require read or write permissions.
	 * If 'force' is set, we only require the "MAY" flags.
	 */
	flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
	flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
	i = 0;

	do {
		struct vm_area_struct *	vma;

		vma = find_extend_vma(mm, start);

#ifdef FIXADDR_USER_START
		if (!vma &&
		    start >= FIXADDR_USER_START && start < FIXADDR_USER_END) {
			static struct vm_area_struct fixmap_vma = {
				/* Catch users - if there are any valid
				   ones, we can make this be "&init_mm" or
				   something.  */
				.vm_mm = NULL,
				.vm_start = FIXADDR_USER_START,
				.vm_end = FIXADDR_USER_END,
				.vm_page_prot = PAGE_READONLY,
				.vm_flags = VM_READ | VM_EXEC,
			};
			unsigned long pg = start & PAGE_MASK;
			pgd_t *pgd;
			pmd_t *pmd;
			pte_t *pte;
			if (write) /* user fixmap pages are read-only */
				return i ? : -EFAULT;
			pgd = pgd_offset_k(pg);
			if (!pgd)
				return i ? : -EFAULT;
			pmd = pmd_offset(pgd, pg);
			if (!pmd)
				return i ? : -EFAULT;
			pte = pte_offset_kernel(pmd, pg);
			if (!pte || !pte_present(*pte))
				return i ? : -EFAULT;
			if (pages) {
				pages[i] = pte_page(*pte);
				get_page(pages[i]);
			}
			if (vmas)
				vmas[i] = &fixmap_vma;
			i++;
			start += PAGE_SIZE;
			len--;
			continue;
		}
#endif

		if (!vma || (pages && (vma->vm_flags & VM_IO))
				|| !(flags & vma->vm_flags))
			return i ? : -EFAULT;

		if (is_vm_hugetlb_page(vma)) {
			i = follow_hugetlb_page(mm, vma, pages, vmas,
						&start, &len, i);
			continue;
		}
		spin_lock(&mm->page_table_lock);
		do {
			struct page *map;
			while (!(map = follow_page(mm, start, write))) {
				spin_unlock(&mm->page_table_lock);
				switch (handle_mm_fault(mm,vma,start,write)) {
				case VM_FAULT_MINOR:
					tsk->min_flt++;
					break;
				case VM_FAULT_MAJOR:
					tsk->maj_flt++;
					break;
				case VM_FAULT_SIGBUS:
					return i ? i : -EFAULT;
				case VM_FAULT_OOM:
					return i ? i : -ENOMEM;
				default:
					BUG();
				}
				spin_lock(&mm->page_table_lock);
			}
			if (pages) {
				pages[i] = get_page_map(map);
				if (!pages[i]) {
					spin_unlock(&mm->page_table_lock);
					while (i--)
						page_cache_release(pages[i]);
					i = -EFAULT;
					goto out;
				}
				flush_dcache_page(pages[i]);
				if (!PageReserved(pages[i]))
					page_cache_get(pages[i]);
			}
			if (vmas)
				vmas[i] = vma;
			i++;
			start += PAGE_SIZE;
			len--;
		} while(len && start < vma->vm_end);
		spin_unlock(&mm->page_table_lock);
	} while(len);
out:
	return i;
}

static void zeromap_pte_range(pte_t * pte, unsigned long address,
                                     unsigned long size, pgprot_t prot)
{
	unsigned long end;

	address &= ~PMD_MASK;
	end = address + size;
	if (end > PMD_SIZE)
		end = PMD_SIZE;
	do {
		pte_t zero_pte = pte_wrprotect(mk_pte(ZERO_PAGE(address), prot));
		BUG_ON(!pte_none(*pte));
		set_pte(pte, zero_pte);
		address += PAGE_SIZE;
		pte++;
	} while (address && (address < end));
}

static inline int zeromap_pmd_range(struct mm_struct *mm, pmd_t * pmd, unsigned long address,
                                    unsigned long size, pgprot_t prot)
{
	unsigned long end;

	address &= ~PGDIR_MASK;
	end = address + size;
	if (end > PGDIR_SIZE)
		end = PGDIR_SIZE;
	do {
		pte_t * pte = pte_alloc_map(mm, pmd, address);
		if (!pte)
			return -ENOMEM;
		zeromap_pte_range(pte, address, end - address, prot);
		pte_unmap(pte);
		address = (address + PMD_SIZE) & PMD_MASK;
		pmd++;
	} while (address && (address < end));
	return 0;
}

int zeromap_page_range(struct vm_area_struct *vma, unsigned long address, unsigned long size, pgprot_t prot)
{
	int error = 0;
	pgd_t * dir;
	unsigned long beg = address;
	unsigned long end = address + size;
	struct mm_struct *mm = vma->vm_mm;

	dir = pgd_offset(mm, address);
	flush_cache_range(vma, beg, end);
	if (address >= end)
		BUG();

	spin_lock(&mm->page_table_lock);
	do {
		pmd_t *pmd = pmd_alloc(mm, dir, address);
		error = -ENOMEM;
		if (!pmd)
			break;
		error = zeromap_pmd_range(mm, pmd, address, end - address, prot);
		if (error)
			break;
		address = (address + PGDIR_SIZE) & PGDIR_MASK;
		dir++;
	} while (address && (address < end));
	flush_tlb_range(vma, beg, end);
	spin_unlock(&mm->page_table_lock);
	return error;
}

/*
 * maps a range of physical memory into the requested pages. the old
 * mappings are removed. any references to nonexistent pages results
 * in null mappings (currently treated as "copy-on-access")
 */
static inline void remap_pte_range(pte_t * pte, unsigned long address, unsigned long size,
	unsigned long phys_addr, pgprot_t prot)
{
	unsigned long end;
	unsigned long pfn;

	address &= ~PMD_MASK;
	end = address + size;
	if (end > PMD_SIZE)
		end = PMD_SIZE;
	pfn = phys_addr >> PAGE_SHIFT;
	do {
		BUG_ON(!pte_none(*pte));
		if (!pfn_valid(pfn) || PageReserved(pfn_to_page(pfn)))
 			set_pte(pte, pfn_pte(pfn, prot));
		address += PAGE_SIZE;
		pfn++;
		pte++;
	} while (address && (address < end));
}

static inline int remap_pmd_range(struct mm_struct *mm, pmd_t * pmd, unsigned long address, unsigned long size,
	unsigned long phys_addr, pgprot_t prot)
{
	unsigned long base, end;

	base = address & PGDIR_MASK;
	address &= ~PGDIR_MASK;
	end = address + size;
	if (end > PGDIR_SIZE)
		end = PGDIR_SIZE;
	phys_addr -= address;
	do {
		pte_t * pte = pte_alloc_map(mm, pmd, base + address);
		if (!pte)
			return -ENOMEM;
		remap_pte_range(pte, base + address, end - address, address + phys_addr, prot);
		pte_unmap(pte);
		address = (address + PMD_SIZE) & PMD_MASK;
		pmd++;
	} while (address && (address < end));
	return 0;
}

/*  Note: this is only safe if the mm semaphore is held when called. */
int remap_page_range(struct vm_area_struct *vma, unsigned long from, unsigned long phys_addr, unsigned long size, pgprot_t prot)
{
	int error = 0;
	pgd_t * dir;
	unsigned long beg = from;
	unsigned long end = from + size;
	struct mm_struct *mm = vma->vm_mm;

	phys_addr -= from;
	dir = pgd_offset(mm, from);
	flush_cache_range(vma, beg, end);
	if (from >= end)
		BUG();

	spin_lock(&mm->page_table_lock);
	do {
		pmd_t *pmd = pmd_alloc(mm, dir, from);
		error = -ENOMEM;
		if (!pmd)
			break;
		error = remap_pmd_range(mm, pmd, from, end - from, phys_addr + from, prot);
		if (error)
			break;
		from = (from + PGDIR_SIZE) & PGDIR_MASK;
		dir++;
	} while (from && (from < end));
	flush_tlb_range(vma, beg, end);
	spin_unlock(&mm->page_table_lock);
	return error;
}

/*
 * Establish a new mapping:
 *  - flush the old one
 *  - update the page tables
 *  - inform the TLB about the new one
 *
 * We hold the mm semaphore for reading and vma->vm_mm->page_table_lock
 */
static inline void establish_pte(struct vm_area_struct * vma, unsigned long address, pte_t *page_table, pte_t entry)
{
	set_pte(page_table, entry);
	flush_tlb_page(vma, address);
	update_mmu_cache(vma, address, entry);
}

/*
 * We hold the mm semaphore for reading and vma->vm_mm->page_table_lock
 */
static inline void break_cow(struct vm_area_struct * vma, struct page * new_page, unsigned long address, 
		pte_t *page_table)
{
	invalidate_vcache(address, vma->vm_mm, new_page);
	flush_cache_page(vma, address);
	establish_pte(vma, address, page_table, pte_mkwrite(pte_mkdirty(mk_pte(new_page, vma->vm_page_prot))));
}

/*
 * This routine handles present pages, when users try to write
 * to a shared page. It is done by copying the page to a new address
 * and decrementing the shared-page counter for the old page.
 *
 * Goto-purists beware: the only reason for goto's here is that it results
 * in better assembly code.. The "default" path will see no jumps at all.
 *
 * Note that this routine assumes that the protection checks have been
 * done by the caller (the low-level page fault routine in most cases).
 * Thus we can safely just mark it writable once we've done any necessary
 * COW.
 *
 * We also mark the page dirty at this point even though the page will
 * change only once the write actually happens. This avoids a few races,
 * and potentially makes it more efficient.
 *
 * We hold the mm semaphore and the page_table_lock on entry and exit
 * with the page_table_lock released.
 */
static int do_wp_page(struct mm_struct *mm, struct vm_area_struct * vma,
	unsigned long address, pte_t *page_table, pmd_t *pmd, pte_t pte)
{
	struct page *old_page, *new_page;
	unsigned long pfn = pte_pfn(pte);
	struct pte_chain *pte_chain = NULL;
	int ret;

	if (unlikely(!pfn_valid(pfn))) {
		/*
		 * This should really halt the system so it can be debugged or
		 * at least the kernel stops what it's doing before it corrupts
		 * data, but for the moment just pretend this is OOM.
		 */
		pte_unmap(page_table);
		printk(KERN_ERR "do_wp_page: bogus page at address %08lx\n",
				address);
		goto oom;
	}
	old_page = pfn_to_page(pfn);

	if (!TestSetPageLocked(old_page)) {
		int reuse = can_share_swap_page(old_page);
		unlock_page(old_page);
		if (reuse) {
			flush_cache_page(vma, address);
			establish_pte(vma, address, page_table,
				pte_mkyoung(pte_mkdirty(pte_mkwrite(pte))));
			pte_unmap(page_table);
			ret = VM_FAULT_MINOR;
			goto out;
		}
	}
	pte_unmap(page_table);

	/*
	 * Ok, we need to copy. Oh, well..
	 */
	page_cache_get(old_page);
	spin_unlock(&mm->page_table_lock);

	pte_chain = pte_chain_alloc(GFP_KERNEL);
	if (!pte_chain)
		goto no_mem;
	new_page = alloc_page(GFP_HIGHUSER);
	if (!new_page)
		goto no_mem;
	copy_cow_page(old_page,new_page,address);

	/*
	 * Re-check the pte - we dropped the lock
	 */
	spin_lock(&mm->page_table_lock);
	page_table = pte_offset_map(pmd, address);
	if (pte_same(*page_table, pte)) {
		if (PageReserved(old_page))
			++mm->rss;
		page_remove_rmap(old_page, page_table);
		break_cow(vma, new_page, address, page_table);
		pte_chain = page_add_rmap(new_page, page_table, pte_chain);
		lru_cache_add_active(new_page);

		/* Free the old page.. */
		new_page = old_page;
	}
	pte_unmap(page_table);
	page_cache_release(new_page);
	page_cache_release(old_page);
	ret = VM_FAULT_MINOR;
	goto out;

no_mem:
	page_cache_release(old_page);
oom:
	ret = VM_FAULT_OOM;
out:
	spin_unlock(&mm->page_table_lock);
	pte_chain_free(pte_chain);
	return ret;
}

/*
 * Helper function for invalidate_mmap_range().
 * Both hba and hlen are page numbers in PAGE_SIZE units.
 * An hlen of zero blows away the entire portion file after hba.
 */
static void
invalidate_mmap_range_list(struct list_head *head,
			   unsigned long const hba,
			   unsigned long const hlen)
{
	struct list_head *curr;
	unsigned long hea;	/* last page of hole. */
	unsigned long vba;
	unsigned long vea;	/* last page of corresponding uva hole. */
	struct vm_area_struct *vp;
	unsigned long zba;
	unsigned long zea;

	hea = hba + hlen - 1;	/* avoid overflow. */
	if (hea < hba)
		hea = ULONG_MAX;
	list_for_each(curr, head) {
		vp = list_entry(curr, struct vm_area_struct, shared);
		vba = vp->vm_pgoff;
		vea = vba + ((vp->vm_end - vp->vm_start) >> PAGE_SHIFT) - 1;
		if (hea < vba || vea < hba)
		    	continue;	/* Mapping disjoint from hole. */
		zba = (hba <= vba) ? vba : hba;
		zea = (vea <= hea) ? vea : hea;
		zap_page_range(vp,
			       ((zba - vba) << PAGE_SHIFT) + vp->vm_start,
			       (zea - zba + 1) << PAGE_SHIFT);
	}
}

/**
 * invalidate_mmap_range - invalidate the portion of all mmaps
 * in the specified address_space corresponding to the specified
 * page range in the underlying file.
 * @address_space: the address space containing mmaps to be invalidated.
 * @holebegin: byte in first page to invalidate, relative to the start of
 * the underlying file.  This will be rounded down to a PAGE_SIZE
 * boundary.  Note that this is different from vmtruncate(), which
 * must keep the partial page.  In contrast, we must get rid of
 * partial pages.
 * @holelen: size of prospective hole in bytes.  This will be rounded
 * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
 * end of the file.
 */
void invalidate_mmap_range(struct address_space *mapping,
		      loff_t const holebegin, loff_t const holelen)
{
	unsigned long hba = holebegin >> PAGE_SHIFT;
	unsigned long hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;

	/* Check for overflow. */
	if (sizeof(holelen) > sizeof(hlen)) {
		long long holeend =
			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;

		if (holeend & ~(long long)ULONG_MAX)
			hlen = ULONG_MAX - hba + 1;
	}
	down(&mapping->i_shared_sem);
	/* Protect against page fault */
	atomic_inc(&mapping->truncate_count);
	if (unlikely(!list_empty(&mapping->i_mmap)))
		invalidate_mmap_range_list(&mapping->i_mmap, hba, hlen);
	if (unlikely(!list_empty(&mapping->i_mmap_shared)))
		invalidate_mmap_range_list(&mapping->i_mmap_shared, hba, hlen);
	up(&mapping->i_shared_sem);
}

/*
 * Handle all mappings that got truncated by a "truncate()"
 * system call.
 *
 * NOTE! We have to be ready to update the memory sharing
 * between the file and the memory map for a potential last
 * incomplete page.  Ugly, but necessary.
 */
int vmtruncate(struct inode * inode, loff_t offset)
{
	struct address_space *mapping = inode->i_mapping;
	unsigned long limit;

	if (inode->i_size < offset)
		goto do_expand;
	i_size_write(inode, offset);
	invalidate_mmap_range(mapping, offset + PAGE_SIZE - 1, 0);
	truncate_inode_pages(mapping, offset);
	goto out_truncate;

do_expand:
	limit = current->rlim[RLIMIT_FSIZE].rlim_cur;
	if (limit != RLIM_INFINITY && offset > limit)
		goto out_sig;
	if (offset > inode->i_sb->s_maxbytes)
		goto out;
	i_size_write(inode, offset);

out_truncate:
	if (inode->i_op && inode->i_op->truncate)
		inode->i_op->truncate(inode);
	return 0;
out_sig:
	send_sig(SIGXFSZ, current, 0);
out:
	return -EFBIG;
}

/* 
 * Primitive swap readahead code. We simply read an aligned block of
 * (1 << page_cluster) entries in the swap area. This method is chosen
 * because it doesn't cost us any seek time.  We also make sure to queue
 * the 'original' request together with the readahead ones...  
 */
void swapin_readahead(swp_entry_t entry)
{
	int i, num;
	struct page *new_page;
	unsigned long offset;

	/*
	 * Get the number of handles we should do readahead io to.
	 */
	num = valid_swaphandles(entry, &offset);
	for (i = 0; i < num; offset++, i++) {
		/* Ok, do the async read-ahead now */
		new_page = read_swap_cache_async(swp_entry(swp_type(entry),
						offset));
		if (!new_page)
			break;
		page_cache_release(new_page);
	}
	lru_add_drain();	/* Push any new pages onto the LRU now */
}

/*
 * We hold the mm semaphore and the page_table_lock on entry and
 * should release the pagetable lock on exit..
 */
static int do_swap_page(struct mm_struct * mm,
	struct vm_area_struct * vma, unsigned long address,
	pte_t *page_table, pmd_t *pmd, pte_t orig_pte, int write_access)
{
	struct page *page;
	swp_entry_t entry = pte_to_swp_entry(orig_pte);
	pte_t pte;
	int ret = VM_FAULT_MINOR;
	struct pte_chain *pte_chain = NULL;

	pte_unmap(page_table);
	spin_unlock(&mm->page_table_lock);
	page = lookup_swap_cache(entry);
	if (!page) {
		swapin_readahead(entry);
		page = read_swap_cache_async(entry);
		if (!page) {
			/*
			 * Back out if somebody else faulted in this pte while
			 * we released the page table lock.
			 */
			spin_lock(&mm->page_table_lock);
			page_table = pte_offset_map(pmd, address);
			if (pte_same(*page_table, orig_pte))
				ret = VM_FAULT_OOM;
			else
				ret = VM_FAULT_MINOR;
			pte_unmap(page_table);
			spin_unlock(&mm->page_table_lock);
			goto out;
		}

		/* Had to read the page from swap area: Major fault */
		ret = VM_FAULT_MAJOR;
		inc_page_state(pgmajfault);
	}

	mark_page_accessed(page);
	pte_chain = pte_chain_alloc(GFP_KERNEL);
	if (!pte_chain) {
		ret = -ENOMEM;
		goto out;
	}
	lock_page(page);

	/*
	 * Back out if somebody else faulted in this pte while we
	 * released the page table lock.
	 */
	spin_lock(&mm->page_table_lock);
	page_table = pte_offset_map(pmd, address);
	if (!pte_same(*page_table, orig_pte)) {
		pte_unmap(page_table);
		spin_unlock(&mm->page_table_lock);
		unlock_page(page);
		page_cache_release(page);
		ret = VM_FAULT_MINOR;
		goto out;
	}

	/* The page isn't present yet, go ahead with the fault. */
		
	swap_free(entry);
	if (vm_swap_full())
		remove_exclusive_swap_page(page);

	mm->rss++;
	pte = mk_pte(page, vma->vm_page_prot);
	if (write_access && can_share_swap_page(page))
		pte = pte_mkdirty(pte_mkwrite(pte));
	unlock_page(page);

	flush_icache_page(vma, page);
	set_pte(page_table, pte);
	pte_chain = page_add_rmap(page, page_table, pte_chain);

	/* No need to invalidate - it was non-present before */
	update_mmu_cache(vma, address, pte);
	pte_unmap(page_table);
	spin_unlock(&mm->page_table_lock);
out:
	pte_chain_free(pte_chain);
	return ret;
}

/*
 * We are called with the MM semaphore and page_table_lock
 * spinlock held to protect against concurrent faults in
 * multithreaded programs. 
 */
static int
do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
		pte_t *page_table, pmd_t *pmd, int write_access,
		unsigned long addr)
{
	pte_t entry;
	struct page * page = ZERO_PAGE(addr);
	struct pte_chain *pte_chain;
	int ret;

	pte_chain = pte_chain_alloc(GFP_ATOMIC);
	if (!pte_chain) {
		pte_unmap(page_table);
		spin_unlock(&mm->page_table_lock);
		pte_chain = pte_chain_alloc(GFP_KERNEL);
		if (!pte_chain)
			goto no_mem;
		spin_lock(&mm->page_table_lock);
		page_table = pte_offset_map(pmd, addr);
	}
		
	/* Read-only mapping of ZERO_PAGE. */
	entry = pte_wrprotect(mk_pte(ZERO_PAGE(addr), vma->vm_page_prot));

	/* ..except if it's a write access */
	if (write_access) {
		/* Allocate our own private page. */
		pte_unmap(page_table);
		spin_unlock(&mm->page_table_lock);

		page = alloc_page(GFP_HIGHUSER);
		if (!page)
			goto no_mem;
		clear_user_highpage(page, addr);

		spin_lock(&mm->page_table_lock);
		page_table = pte_offset_map(pmd, addr);

		if (!pte_none(*page_table)) {
			pte_unmap(page_table);
			page_cache_release(page);
			spin_unlock(&mm->page_table_lock);
			ret = VM_FAULT_MINOR;
			goto out;
		}
		mm->rss++;
		entry = pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
		lru_cache_add_active(page);
		mark_page_accessed(page);
	}

	set_pte(page_table, entry);
	/* ignores ZERO_PAGE */
	pte_chain = page_add_rmap(page, page_table, pte_chain);
	pte_unmap(page_table);

	/* No need to invalidate - it was non-present before */
	update_mmu_cache(vma, addr, entry);
	spin_unlock(&mm->page_table_lock);
	ret = VM_FAULT_MINOR;
	goto out;

no_mem:
	ret = VM_FAULT_OOM;
out:
	pte_chain_free(pte_chain);
	return ret;
}

/*
 * do_no_page() tries to create a new page mapping. It aggressively
 * tries to share with existing pages, but makes a separate copy if
 * the "write_access" parameter is true in order to avoid the next
 * page fault.
 *
 * As this is called only for pages that do not currently exist, we
 * do not need to flush old virtual caches or the TLB.
 *
 * This is called with the MM semaphore held and the page table
 * spinlock held. Exit with the spinlock released.
 */
static int
do_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
	unsigned long address, int write_access, pte_t *page_table, pmd_t *pmd)
{
	struct page * new_page;
	struct address_space *mapping;
	pte_t entry;
	struct pte_chain *pte_chain;
	int sequence;
	int ret;

	if (!vma->vm_ops || !vma->vm_ops->nopage)
		return do_anonymous_page(mm, vma, page_table,
					pmd, write_access, address);
	pte_unmap(page_table);
	spin_unlock(&mm->page_table_lock);

	mapping = vma->vm_file->f_dentry->d_inode->i_mapping;
	sequence = atomic_read(&mapping->truncate_count);
	smp_rmb();  /* Prevent CPU from reordering lock-free ->nopage() */
retry:
	new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, 0);

	/* no page was available -- either SIGBUS or OOM */
	if (new_page == NOPAGE_SIGBUS)
		return VM_FAULT_SIGBUS;
	if (new_page == NOPAGE_OOM)
		return VM_FAULT_OOM;

	pte_chain = pte_chain_alloc(GFP_KERNEL);
	if (!pte_chain)
		goto oom;

	/*
	 * Should we do an early C-O-W break?
	 */
	if (write_access && !(vma->vm_flags & VM_SHARED)) {
		struct page * page = alloc_page(GFP_HIGHUSER);
		if (!page) {
			page_cache_release(new_page);
			goto oom;
		}
		copy_user_highpage(page, new_page, address);
		page_cache_release(new_page);
		lru_cache_add_active(page);
		new_page = page;
	}

	spin_lock(&mm->page_table_lock);
	/*
	 * For a file-backed vma, someone could have truncated or otherwise
	 * invalidated this page.  If invalidate_mmap_range got called,
	 * retry getting the page.
	 */
	if (unlikely(sequence != atomic_read(&mapping->truncate_count))) {
		sequence = atomic_read(&mapping->truncate_count);
		spin_unlock(&mm->page_table_lock);
		page_cache_release(new_page);
		goto retry;
	}
	page_table = pte_offset_map(pmd, address);

	/*
	 * This silly early PAGE_DIRTY setting removes a race
	 * due to the bad i386 page protection. But it's valid
	 * for other architectures too.
	 *
	 * Note that if write_access is true, we either now have
	 * an exclusive copy of the page, or this is a shared mapping,
	 * so we can make it writable and dirty to avoid having to
	 * handle that later.
	 */
	/* Only go through if we didn't race with anybody else... */
	if (pte_none(*page_table)) {
		++mm->rss;
		flush_icache_page(vma, new_page);
		entry = mk_pte(new_page, vma->vm_page_prot);
		if (write_access)
			entry = pte_mkwrite(pte_mkdirty(entry));
		set_pte(page_table, entry);
		pte_chain = page_add_rmap(new_page, page_table, pte_chain);
		pte_unmap(page_table);
	} else {
		/* One of our sibling threads was faster, back out. */
		pte_unmap(page_table);
		page_cache_release(new_page);
		spin_unlock(&mm->page_table_lock);
		ret = VM_FAULT_MINOR;
		goto out;
	}

	/* no need to invalidate: a not-present page shouldn't be cached */
	update_mmu_cache(vma, address, entry);
	spin_unlock(&mm->page_table_lock);
	ret = VM_FAULT_MAJOR;
	goto out;
oom:
	ret = VM_FAULT_OOM;
out:
	pte_chain_free(pte_chain);
	return ret;
}

/*
 * Fault of a previously existing named mapping. Repopulate the pte
 * from the encoded file_pte if possible. This enables swappable
 * nonlinear vmas.
 */
static int do_file_page(struct mm_struct * mm, struct vm_area_struct * vma,
	unsigned long address, int write_access, pte_t *pte, pmd_t *pmd)
{
	unsigned long pgoff;
	int err;

	BUG_ON(!vma->vm_ops || !vma->vm_ops->nopage);
	/*
	 * Fall back to the linear mapping if the fs does not support
	 * ->populate:
	 */
	if (!vma->vm_ops || !vma->vm_ops->populate || 
			(write_access && !(vma->vm_flags & VM_SHARED))) {
		pte_clear(pte);
		return do_no_page(mm, vma, address, write_access, pte, pmd);
	}

	pgoff = pte_to_pgoff(*pte);

	pte_unmap(pte);
	spin_unlock(&mm->page_table_lock);

	err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE, vma->vm_page_prot, pgoff, 0);
	if (err == -ENOMEM)
		return VM_FAULT_OOM;
	if (err)
		return VM_FAULT_SIGBUS;
	return VM_FAULT_MAJOR;
}

/*
 * These routines also need to handle stuff like marking pages dirty
 * and/or accessed for architectures that don't do it in hardware (most
 * RISC architectures).  The early dirtying is also good on the i386.
 *
 * There is also a hook called "update_mmu_cache()" that architectures
 * with external mmu caches can use to update those (ie the Sparc or
 * PowerPC hashed page tables that act as extended TLBs).
 *
 * Note the "page_table_lock". It is to protect against kswapd removing
 * pages from under us. Note that kswapd only ever _removes_ pages, never
 * adds them. As such, once we have noticed that the page is not present,
 * we can drop the lock early.
 *
 * The adding of pages is protected by the MM semaphore (which we hold),
 * so we don't need to worry about a page being suddenly been added into
 * our VM.
 *
 * We enter with the pagetable spinlock held, we are supposed to
 * release it when done.
 */
static inline int handle_pte_fault(struct mm_struct *mm,
	struct vm_area_struct * vma, unsigned long address,
	int write_access, pte_t *pte, pmd_t *pmd)
{
	pte_t entry;

	entry = *pte;
	if (!pte_present(entry)) {
		/*
		 * If it truly wasn't present, we know that kswapd
		 * and the PTE updates will not touch it later. So
		 * drop the lock.
		 */
		if (pte_none(entry))
			return do_no_page(mm, vma, address, write_access, pte, pmd);
		if (pte_file(entry))
			return do_file_page(mm, vma, address, write_access, pte, pmd);
		return do_swap_page(mm, vma, address, pte, pmd, entry, write_access);
	}

	if (write_access) {
		if (!pte_write(entry))
			return do_wp_page(mm, vma, address, pte, pmd, entry);

		entry = pte_mkdirty(entry);
	}
	entry = pte_mkyoung(entry);
	establish_pte(vma, address, pte, entry);
	pte_unmap(pte);
	spin_unlock(&mm->page_table_lock);
	return VM_FAULT_MINOR;
}

/*
 * By the time we get here, we already hold the mm semaphore
 */
int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct * vma,
	unsigned long address, int write_access)
{
	pgd_t *pgd;
	pmd_t *pmd;

	__set_current_state(TASK_RUNNING);
	pgd = pgd_offset(mm, address);

	inc_page_state(pgfault);

	if (is_vm_hugetlb_page(vma))
		return VM_FAULT_SIGBUS;	/* mapping truncation does this. */

	/*
	 * We need the page table lock to synchronize with kswapd
	 * and the SMP-safe atomic PTE updates.
	 */
	spin_lock(&mm->page_table_lock);
	pmd = pmd_alloc(mm, pgd, address);

	if (pmd) {
		pte_t * pte = pte_alloc_map(mm, pmd, address);
		if (pte)
			return handle_pte_fault(mm, vma, address, write_access, pte, pmd);
	}
	spin_unlock(&mm->page_table_lock);
	return VM_FAULT_OOM;
}

/*
 * Allocate page middle directory.
 *
 * We've already handled the fast-path in-line, and we own the
 * page table lock.
 *
 * On a two-level page table, this ends up actually being entirely
 * optimized away.
 */
pmd_t *__pmd_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
{
	pmd_t *new;

	spin_unlock(&mm->page_table_lock);
	new = pmd_alloc_one(mm, address);
	spin_lock(&mm->page_table_lock);
	if (!new)
		return NULL;

	/*
	 * Because we dropped the lock, we should re-check the
	 * entry, as somebody else could have populated it..
	 */
	if (pgd_present(*pgd)) {
		pmd_free(new);
		goto out;
	}
	pgd_populate(mm, pgd, new);
out:
	return pmd_offset(pgd, address);
}

int make_pages_present(unsigned long addr, unsigned long end)
{
	int ret, len, write;
	struct vm_area_struct * vma;

	vma = find_vma(current->mm, addr);
	write = (vma->vm_flags & VM_WRITE) != 0;
	if (addr >= end)
		BUG();
	if (end > vma->vm_end)
		BUG();
	len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE;
	ret = get_user_pages(current, current->mm, addr,
			len, write, 0, NULL, NULL);
	return ret == len ? 0 : -1;
}

/* 
 * Map a vmalloc()-space virtual address to the physical page.
 */
struct page * vmalloc_to_page(void * vmalloc_addr)
{
	unsigned long addr = (unsigned long) vmalloc_addr;
	struct page *page = NULL;
	pgd_t *pgd = pgd_offset_k(addr);
	pmd_t *pmd;
	pte_t *ptep, pte;
  
	if (!pgd_none(*pgd)) {
		pmd = pmd_offset(pgd, addr);
		if (!pmd_none(*pmd)) {
			preempt_disable();
			ptep = pte_offset_map(pmd, addr);
			pte = *ptep;
			if (pte_present(pte))
				page = pte_page(pte);
			pte_unmap(ptep);
			preempt_enable();
		}
	}
	return page;
}