Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
/*
 *  linux/mm/memory.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 */

/*
 * demand-loading started 01.12.91 - seems it is high on the list of
 * things wanted, and it should be easy to implement. - Linus
 */

/*
 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
 * pages started 02.12.91, seems to work. - Linus.
 *
 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
 * would have taken more than the 6M I have free, but it worked well as
 * far as I could see.
 *
 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
 */

/*
 * Real VM (paging to/from disk) started 18.12.91. Much more work and
 * thought has to go into this. Oh, well..
 * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
 *		Found it. Everything seems to work now.
 * 20.12.91  -  Ok, making the swap-device changeable like the root.
 */

/*
 * 05.04.94  -  Multi-page memory management added for v1.1.
 * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
 */

#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/head.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/ptrace.h>
#include <linux/mman.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/smp.h>
#include <linux/smp_lock.h>

#include <asm/system.h>
#include <asm/uaccess.h>
#include <asm/pgtable.h>
#include <asm/string.h>

unsigned long max_mapnr = 0;
unsigned long num_physpages = 0;
void * high_memory = NULL;

/*
 * We special-case the C-O-W ZERO_PAGE, because it's such
 * a common occurrence (no need to read the page to know
 * that it's zero - better for the cache and memory subsystem).
 */
static inline void copy_cow_page(unsigned long from, unsigned long to)
{
	if (from == ZERO_PAGE) {
		clear_page(to);
		return;
	}
	copy_page(to, from);
}

mem_map_t * mem_map = NULL;

/*
 * oom() prints a message (so that the user knows why the process died),
 * and gives the process an untrappable SIGKILL.
 */
void oom(struct task_struct * task)
{
	printk("\nOut of memory for %s.\n", task->comm);
	force_sig(SIGKILL, task);
}

/*
 * Note: this doesn't free the actual pages themselves. That
 * has been handled earlier when unmapping all the memory regions.
 */
static inline void free_one_pmd(pmd_t * dir)
{
	pte_t * pte;

	if (pmd_none(*dir))
		return;
	if (pmd_bad(*dir)) {
		printk("free_one_pmd: bad directory entry %08lx\n", pmd_val(*dir));
		pmd_clear(dir);
		return;
	}
	pte = pte_offset(dir, 0);
	pmd_clear(dir);
	pte_free(pte);
}

static inline void free_one_pgd(pgd_t * dir)
{
	int j;
	pmd_t * pmd;

	if (pgd_none(*dir))
		return;
	if (pgd_bad(*dir)) {
		printk("free_one_pgd: bad directory entry %08lx\n", pgd_val(*dir));
		pgd_clear(dir);
		return;
	}
	pmd = pmd_offset(dir, 0);
	pgd_clear(dir);
	for (j = 0; j < PTRS_PER_PMD ; j++)
		free_one_pmd(pmd+j);
	pmd_free(pmd);
}

/* Low and high watermarks for page table cache.
   The system should try to have pgt_water[0] <= cache elements <= pgt_water[1]
 */
int pgt_cache_water[2] = { 25, 50 };

/* Returns the number of pages freed */
int check_pgt_cache(void)
{
	return do_check_pgt_cache(pgt_cache_water[0], pgt_cache_water[1]);
}


/*
 * This function clears all user-level page tables of a process - this
 * is needed by execve(), so that old pages aren't in the way.
 */
void clear_page_tables(struct task_struct * tsk)
{
	pgd_t * page_dir = tsk->mm->pgd;
	int i;

	if (!page_dir || page_dir == swapper_pg_dir)
		goto out_bad;
	for (i = 0 ; i < USER_PTRS_PER_PGD ; i++)
		free_one_pgd(page_dir + i);

	/* keep the page table cache within bounds */
	check_pgt_cache();
	return;

out_bad:
	printk(KERN_ERR 
		"clear_page_tables: %s trying to clear kernel pgd\n",
		tsk->comm);
	return;
}

/*
 * This function frees up all page tables of a process when it exits. It
 * is the same as "clear_page_tables()", except it also frees the old
 * page table directory.
 */
void free_page_tables(struct mm_struct * mm)
{
	pgd_t * page_dir = mm->pgd;
	int i;

	if (!page_dir)
		goto out;
	if (page_dir == swapper_pg_dir)
		goto out_bad;
	for (i = 0 ; i < USER_PTRS_PER_PGD ; i++)
		free_one_pgd(page_dir + i);
	pgd_free(page_dir);

	/* keep the page table cache within bounds */
	check_pgt_cache();
out:
	return;

out_bad:
	printk(KERN_ERR
		"free_page_tables: Trying to free kernel pgd\n");
	return;
}

int new_page_tables(struct task_struct * tsk)
{
	pgd_t * new_pg;

	if (!(new_pg = pgd_alloc()))
		return -ENOMEM;
	SET_PAGE_DIR(tsk, new_pg);
	tsk->mm->pgd = new_pg;
	return 0;
}

#define PTE_TABLE_MASK	((PTRS_PER_PTE-1) * sizeof(pte_t))
#define PMD_TABLE_MASK	((PTRS_PER_PMD-1) * sizeof(pmd_t))

/*
 * copy one vm_area from one task to the other. Assumes the page tables
 * already present in the new task to be cleared in the whole range
 * covered by this vma.
 *
 * 08Jan98 Merged into one routine from several inline routines to reduce
 *         variable count and make things faster. -jj
 */
int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
			struct vm_area_struct *vma)
{
	pgd_t * src_pgd, * dst_pgd;
	unsigned long address = vma->vm_start;
	unsigned long end = vma->vm_end;
	unsigned long cow = (vma->vm_flags & (VM_SHARED | VM_WRITE)) == VM_WRITE;
	
	src_pgd = pgd_offset(src, address)-1;
	dst_pgd = pgd_offset(dst, address)-1;
	
	for (;;) {
		pmd_t * src_pmd, * dst_pmd;

		src_pgd++; dst_pgd++;
		
		/* copy_pmd_range */
		
		if (pgd_none(*src_pgd))
			goto skip_copy_pmd_range;
		if (pgd_bad(*src_pgd)) {
			printk("copy_pmd_range: bad pgd (%08lx)\n", 
				pgd_val(*src_pgd));
			pgd_clear(src_pgd);
skip_copy_pmd_range:	address = (address + PGDIR_SIZE) & PGDIR_MASK;
			if (address >= end)
				goto out;
			continue;
		}
		if (pgd_none(*dst_pgd)) {
			if (!pmd_alloc(dst_pgd, 0))
				goto nomem;
		}
		
		src_pmd = pmd_offset(src_pgd, address);
		dst_pmd = pmd_offset(dst_pgd, address);

		do {
			pte_t * src_pte, * dst_pte;
		
			/* copy_pte_range */
		
			if (pmd_none(*src_pmd))
				goto skip_copy_pte_range;
			if (pmd_bad(*src_pmd)) {
				printk("copy_pte_range: bad pmd (%08lx)\n", pmd_val(*src_pmd));
				pmd_clear(src_pmd);
skip_copy_pte_range:		address = (address + PMD_SIZE) & PMD_MASK;
				if (address >= end)
					goto out;
				goto cont_copy_pmd_range;
			}
			if (pmd_none(*dst_pmd)) {
				if (!pte_alloc(dst_pmd, 0))
					goto nomem;
			}
			
			src_pte = pte_offset(src_pmd, address);
			dst_pte = pte_offset(dst_pmd, address);
			
			do {
				pte_t pte = *src_pte;
				unsigned long page_nr;
				
				/* copy_one_pte */

				if (pte_none(pte))
					goto cont_copy_pte_range;
				if (!pte_present(pte)) {
					swap_duplicate(pte_val(pte));
					set_pte(dst_pte, pte);
					goto cont_copy_pte_range;
				}
				page_nr = MAP_NR(pte_page(pte));
				if (page_nr >= max_mapnr || 
				    PageReserved(mem_map+page_nr)) {
					set_pte(dst_pte, pte);
					goto cont_copy_pte_range;
				}
				if (cow)
					pte = pte_wrprotect(pte);
#if 0	/* No longer needed with the new swap cache code */
				if (delete_from_swap_cache(&mem_map[page_nr]))
					pte = pte_mkdirty(pte);
#endif
				set_pte(dst_pte, pte_mkold(pte));
				set_pte(src_pte, pte);
				atomic_inc(&mem_map[page_nr].count);
			
cont_copy_pte_range:		address += PAGE_SIZE;
				if (address >= end)
					goto out;
				src_pte++;
				dst_pte++;
			} while ((unsigned long)src_pte & PTE_TABLE_MASK);
		
cont_copy_pmd_range:	src_pmd++;
			dst_pmd++;
		} while ((unsigned long)src_pmd & PMD_TABLE_MASK);
	}
out:
	return 0;

nomem:
	return -ENOMEM;
}

/*
 * Return indicates whether a page was freed so caller can adjust rss
 */
static inline int free_pte(pte_t page)
{
	if (pte_present(page)) {
		unsigned long addr = pte_page(page);
		if (MAP_NR(addr) >= max_mapnr || PageReserved(mem_map+MAP_NR(addr)))
			return 0;
		/* 
		 * free_page() used to be able to clear swap cache
		 * entries.  We may now have to do it manually.  
		 */
		free_page_and_swap_cache(addr);
		return 1;
	}
	swap_free(pte_val(page));
	return 0;
}

static inline void forget_pte(pte_t page)
{
	if (!pte_none(page)) {
		printk("forget_pte: old mapping existed!\n");
		free_pte(page);
	}
}

static inline int zap_pte_range(pmd_t * pmd, unsigned long address, unsigned long size)
{
	pte_t * pte;
	int freed;

	if (pmd_none(*pmd))
		return 0;
	if (pmd_bad(*pmd)) {
		printk("zap_pte_range: bad pmd (%08lx)\n", pmd_val(*pmd));
		pmd_clear(pmd);
		return 0;
	}
	pte = pte_offset(pmd, address);
	address &= ~PMD_MASK;
	if (address + size > PMD_SIZE)
		size = PMD_SIZE - address;
	size >>= PAGE_SHIFT;
	freed = 0;
	for (;;) {
		pte_t page;
		if (!size)
			break;
		page = *pte;
		pte++;
		size--;
		if (pte_none(page))
			continue;
		pte_clear(pte-1);
		freed += free_pte(page);
	}
	return freed;
}

static inline int zap_pmd_range(pgd_t * dir, unsigned long address, unsigned long size)
{
	pmd_t * pmd;
	unsigned long end;
	int freed;

	if (pgd_none(*dir))
		return 0;
	if (pgd_bad(*dir)) {
		printk("zap_pmd_range: bad pgd (%08lx)\n", pgd_val(*dir));
		pgd_clear(dir);
		return 0;
	}
	pmd = pmd_offset(dir, address);
	address &= ~PGDIR_MASK;
	end = address + size;
	if (end > PGDIR_SIZE)
		end = PGDIR_SIZE;
	freed = 0;
	do {
		freed += zap_pte_range(pmd, address, end - address);
		address = (address + PMD_SIZE) & PMD_MASK; 
		pmd++;
	} while (address < end);
	return freed;
}

/*
 * remove user pages in a given range.
 */
void zap_page_range(struct mm_struct *mm, unsigned long address, unsigned long size)
{
	pgd_t * dir;
	unsigned long end = address + size;
	int freed = 0;

	dir = pgd_offset(mm, address);
	while (address < end) {
		freed += zap_pmd_range(dir, address, end - address);
		address = (address + PGDIR_SIZE) & PGDIR_MASK;
		dir++;
	}
	/*
	 * Update rss for the mm_struct (not necessarily current->mm)
	 */
	if (mm->rss > 0) {
		mm->rss -= freed;
		if (mm->rss < 0)
			mm->rss = 0;
	}
}

static inline void zeromap_pte_range(pte_t * pte, unsigned long address, unsigned long size, pte_t zero_pte)
{
	unsigned long end;

	address &= ~PMD_MASK;
	end = address + size;
	if (end > PMD_SIZE)
		end = PMD_SIZE;
	do {
		pte_t oldpage = *pte;
		set_pte(pte, zero_pte);
		forget_pte(oldpage);
		address += PAGE_SIZE;
		pte++;
	} while (address < end);
}

static inline int zeromap_pmd_range(pmd_t * pmd, unsigned long address, unsigned long size, pte_t zero_pte)
{
	unsigned long end;

	address &= ~PGDIR_MASK;
	end = address + size;
	if (end > PGDIR_SIZE)
		end = PGDIR_SIZE;
	do {
		pte_t * pte = pte_alloc(pmd, address);
		if (!pte)
			return -ENOMEM;
		zeromap_pte_range(pte, address, end - address, zero_pte);
		address = (address + PMD_SIZE) & PMD_MASK;
		pmd++;
	} while (address < end);
	return 0;
}

int zeromap_page_range(unsigned long address, unsigned long size, pgprot_t prot)
{
	int error = 0;
	pgd_t * dir;
	unsigned long beg = address;
	unsigned long end = address + size;
	pte_t zero_pte;

	zero_pte = pte_wrprotect(mk_pte(ZERO_PAGE, prot));
	dir = pgd_offset(current->mm, address);
	flush_cache_range(current->mm, beg, end);
	while (address < end) {
		pmd_t *pmd = pmd_alloc(dir, address);
		error = -ENOMEM;
		if (!pmd)
			break;
		error = zeromap_pmd_range(pmd, address, end - address, zero_pte);
		if (error)
			break;
		address = (address + PGDIR_SIZE) & PGDIR_MASK;
		dir++;
	}
	flush_tlb_range(current->mm, beg, end);
	return error;
}

/*
 * maps a range of physical memory into the requested pages. the old
 * mappings are removed. any references to nonexistent pages results
 * in null mappings (currently treated as "copy-on-access")
 */
static inline void remap_pte_range(pte_t * pte, unsigned long address, unsigned long size,
	unsigned long phys_addr, pgprot_t prot)
{
	unsigned long end;

	address &= ~PMD_MASK;
	end = address + size;
	if (end > PMD_SIZE)
		end = PMD_SIZE;
	do {
		unsigned long mapnr;
		pte_t oldpage = *pte;
		pte_clear(pte);

		mapnr = MAP_NR(__va(phys_addr));
		if (mapnr >= max_mapnr || PageReserved(mem_map+mapnr))
 			set_pte(pte, mk_pte_phys(phys_addr, prot));
		forget_pte(oldpage);
		address += PAGE_SIZE;
		phys_addr += PAGE_SIZE;
		pte++;
	} while (address < end);
}

static inline int remap_pmd_range(pmd_t * pmd, unsigned long address, unsigned long size,
	unsigned long phys_addr, pgprot_t prot)
{
	unsigned long end;

	address &= ~PGDIR_MASK;
	end = address + size;
	if (end > PGDIR_SIZE)
		end = PGDIR_SIZE;
	phys_addr -= address;
	do {
		pte_t * pte = pte_alloc(pmd, address);
		if (!pte)
			return -ENOMEM;
		remap_pte_range(pte, address, end - address, address + phys_addr, prot);
		address = (address + PMD_SIZE) & PMD_MASK;
		pmd++;
	} while (address < end);
	return 0;
}

int remap_page_range(unsigned long from, unsigned long phys_addr, unsigned long size, pgprot_t prot)
{
	int error = 0;
	pgd_t * dir;
	unsigned long beg = from;
	unsigned long end = from + size;

	phys_addr -= from;
	dir = pgd_offset(current->mm, from);
	flush_cache_range(current->mm, beg, end);
	while (from < end) {
		pmd_t *pmd = pmd_alloc(dir, from);
		error = -ENOMEM;
		if (!pmd)
			break;
		error = remap_pmd_range(pmd, from, end - from, phys_addr + from, prot);
		if (error)
			break;
		from = (from + PGDIR_SIZE) & PGDIR_MASK;
		dir++;
	}
	flush_tlb_range(current->mm, beg, end);
	return error;
}

/*
 * sanity-check function..
 */
static void put_page(pte_t * page_table, pte_t pte)
{
	if (!pte_none(*page_table)) {
		free_page_and_swap_cache(pte_page(pte));
		return;
	}
/* no need for flush_tlb */
	set_pte(page_table, pte);
}

/*
 * This routine is used to map in a page into an address space: needed by
 * execve() for the initial stack and environment pages.
 */
unsigned long put_dirty_page(struct task_struct * tsk, unsigned long page, unsigned long address)
{
	pgd_t * pgd;
	pmd_t * pmd;
	pte_t * pte;

	if (MAP_NR(page) >= max_mapnr)
		printk("put_dirty_page: trying to put page %08lx at %08lx\n",page,address);
	if (atomic_read(&mem_map[MAP_NR(page)].count) != 1)
		printk("mem_map disagrees with %08lx at %08lx\n",page,address);
	pgd = pgd_offset(tsk->mm,address);
	pmd = pmd_alloc(pgd, address);
	if (!pmd) {
		free_page(page);
		oom(tsk);
		return 0;
	}
	pte = pte_alloc(pmd, address);
	if (!pte) {
		free_page(page);
		oom(tsk);
		return 0;
	}
	if (!pte_none(*pte)) {
		printk("put_dirty_page: page already exists\n");
		free_page(page);
		return 0;
	}
	flush_page_to_ram(page);
	set_pte(pte, pte_mkwrite(pte_mkdirty(mk_pte(page, PAGE_COPY))));
/* no need for flush_tlb */
	return page;
}

/*
 * This routine handles present pages, when users try to write
 * to a shared page. It is done by copying the page to a new address
 * and decrementing the shared-page counter for the old page.
 *
 * Goto-purists beware: the only reason for goto's here is that it results
 * in better assembly code.. The "default" path will see no jumps at all.
 *
 * Note that this routine assumes that the protection checks have been
 * done by the caller (the low-level page fault routine in most cases).
 * Thus we can safely just mark it writable once we've done any necessary
 * COW.
 *
 * We also mark the page dirty at this point even though the page will
 * change only once the write actually happens. This avoids a few races,
 * and potentially makes it more efficient.
 */
static void do_wp_page(struct task_struct * tsk, struct vm_area_struct * vma,
	unsigned long address, int write_access, pte_t *page_table)
{
	pte_t pte;
	unsigned long old_page, new_page;
	struct page * page_map;
	
	pte = *page_table;
	new_page = __get_free_page(GFP_KERNEL);
	/* Did someone else copy this page for us while we slept? */
	if (pte_val(*page_table) != pte_val(pte))
		goto end_wp_page;
	if (!pte_present(pte))
		goto end_wp_page;
	if (pte_write(pte))
		goto end_wp_page;
	old_page = pte_page(pte);
	if (MAP_NR(old_page) >= max_mapnr)
		goto bad_wp_page;
	tsk->min_flt++;
	page_map = mem_map + MAP_NR(old_page);
	
	/*
	 * Do we need to copy?
	 */
	if (is_page_shared(page_map)) {
		if (new_page) {
			if (PageReserved(mem_map + MAP_NR(old_page)))
				++vma->vm_mm->rss;
			copy_cow_page(old_page,new_page);
			flush_page_to_ram(old_page);
			flush_page_to_ram(new_page);
			flush_cache_page(vma, address);
			set_pte(page_table, pte_mkwrite(pte_mkdirty(mk_pte(new_page, vma->vm_page_prot))));
			free_page(old_page);
			flush_tlb_page(vma, address);
			return;
		}
		flush_cache_page(vma, address);
		set_pte(page_table, BAD_PAGE);
		flush_tlb_page(vma, address);
		free_page(old_page);
		oom(tsk);
		return;
	}
	if (PageSwapCache(page_map))
		delete_from_swap_cache(page_map);
	flush_cache_page(vma, address);
	set_pte(page_table, pte_mkdirty(pte_mkwrite(pte)));
	flush_tlb_page(vma, address);
	if (new_page)
		free_page(new_page);
	return;
bad_wp_page:
	printk("do_wp_page: bogus page at address %08lx (%08lx)\n",address,old_page);
	send_sig(SIGKILL, tsk, 1);
end_wp_page:
	if (new_page)
		free_page(new_page);
	return;
}

/*
 * This function zeroes out partial mmap'ed pages at truncation time..
 */
static void partial_clear(struct vm_area_struct *vma, unsigned long address)
{
	pgd_t *page_dir;
	pmd_t *page_middle;
	pte_t *page_table, pte;

	page_dir = pgd_offset(vma->vm_mm, address);
	if (pgd_none(*page_dir))
		return;
	if (pgd_bad(*page_dir)) {
		printk("bad page table directory entry %p:[%lx]\n", page_dir, pgd_val(*page_dir));
		pgd_clear(page_dir);
		return;
	}
	page_middle = pmd_offset(page_dir, address);
	if (pmd_none(*page_middle))
		return;
	if (pmd_bad(*page_middle)) {
		printk("bad page table directory entry %p:[%lx]\n", page_dir, pgd_val(*page_dir));
		pmd_clear(page_middle);
		return;
	}
	page_table = pte_offset(page_middle, address);
	pte = *page_table;
	if (!pte_present(pte))
		return;
	flush_cache_page(vma, address);
	address &= ~PAGE_MASK;
	address += pte_page(pte);
	if (MAP_NR(address) >= max_mapnr)
		return;
	memset((void *) address, 0, PAGE_SIZE - (address & ~PAGE_MASK));
	flush_page_to_ram(pte_page(pte));
}

/*
 * Handle all mappings that got truncated by a "truncate()"
 * system call.
 *
 * NOTE! We have to be ready to update the memory sharing
 * between the file and the memory map for a potential last
 * incomplete page.  Ugly, but necessary.
 */
void vmtruncate(struct inode * inode, unsigned long offset)
{
	struct vm_area_struct * mpnt;

	truncate_inode_pages(inode, offset);
	if (!inode->i_mmap)
		return;
	mpnt = inode->i_mmap;
	do {
		struct mm_struct *mm = mpnt->vm_mm;
		unsigned long start = mpnt->vm_start;
		unsigned long end = mpnt->vm_end;
		unsigned long len = end - start;
		unsigned long diff;

		/* mapping wholly truncated? */
		if (mpnt->vm_offset >= offset) {
			flush_cache_range(mm, start, end);
			zap_page_range(mm, start, len);
			flush_tlb_range(mm, start, end);
			continue;
		}
		/* mapping wholly unaffected? */
		diff = offset - mpnt->vm_offset;
		if (diff >= len)
			continue;
		/* Ok, partially affected.. */
		start += diff;
		len = (len - diff) & PAGE_MASK;
		if (start & ~PAGE_MASK) {
			partial_clear(mpnt, start);
			start = (start + ~PAGE_MASK) & PAGE_MASK;
		}
		flush_cache_range(mm, start, end);
		zap_page_range(mm, start, len);
		flush_tlb_range(mm, start, end);
	} while ((mpnt = mpnt->vm_next_share) != NULL);
}


static inline void do_swap_page(struct task_struct * tsk, 
	struct vm_area_struct * vma, unsigned long address,
	pte_t * page_table, pte_t entry, int write_access)
{
	pte_t page;

	if (!vma->vm_ops || !vma->vm_ops->swapin) {
		swap_in(tsk, vma, page_table, pte_val(entry), write_access);
		flush_page_to_ram(pte_page(*page_table));
		return;
	}
	page = vma->vm_ops->swapin(vma, address - vma->vm_start + vma->vm_offset, pte_val(entry));
	if (pte_val(*page_table) != pte_val(entry)) {
		free_page(pte_page(page));
		return;
	}
	if (atomic_read(&mem_map[MAP_NR(pte_page(page))].count) > 1 &&
	    !(vma->vm_flags & VM_SHARED))
		page = pte_wrprotect(page);
	++vma->vm_mm->rss;
	++tsk->maj_flt;
	flush_page_to_ram(pte_page(page));
	set_pte(page_table, page);
	return;
}

/*
 * do_no_page() tries to create a new page mapping. It aggressively
 * tries to share with existing pages, but makes a separate copy if
 * the "write_access" parameter is true in order to avoid the next
 * page fault.
 *
 * As this is called only for pages that do not currently exist, we
 * do not need to flush old virtual caches or the TLB.
 */
static void do_no_page(struct task_struct * tsk, struct vm_area_struct * vma,
	unsigned long address, int write_access, pte_t *page_table, pte_t entry)
{
	unsigned long page;

	if (!pte_none(entry))
		goto swap_page;
	address &= PAGE_MASK;
	if (!vma->vm_ops || !vma->vm_ops->nopage)
		goto anonymous_page;
	/*
	 * The third argument is "no_share", which tells the low-level code
	 * to copy, not share the page even if sharing is possible.  It's
	 * essentially an early COW detection 
	 */
	page = vma->vm_ops->nopage(vma, address, 
		(vma->vm_flags & VM_SHARED)?0:write_access);
	if (!page)
		goto sigbus;
	++tsk->maj_flt;
	++vma->vm_mm->rss;
	/*
	 * This silly early PAGE_DIRTY setting removes a race
	 * due to the bad i386 page protection. But it's valid
	 * for other architectures too.
	 *
	 * Note that if write_access is true, we either now have
	 * an exclusive copy of the page, or this is a shared mapping,
	 * so we can make it writable and dirty to avoid having to
	 * handle that later.
	 */
	flush_page_to_ram(page);
	entry = mk_pte(page, vma->vm_page_prot);
	if (write_access) {
		entry = pte_mkwrite(pte_mkdirty(entry));
	} else if (atomic_read(&mem_map[MAP_NR(page)].count) > 1 &&
		   !(vma->vm_flags & VM_SHARED))
		entry = pte_wrprotect(entry);
	put_page(page_table, entry);
	/* no need to invalidate: a not-present page shouldn't be cached */
	return;

anonymous_page:
	entry = pte_wrprotect(mk_pte(ZERO_PAGE, vma->vm_page_prot));
	if (write_access) {
		unsigned long page = __get_free_page(GFP_KERNEL);
		if (!page)
			goto sigbus;
		clear_page(page);
		entry = pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
		vma->vm_mm->rss++;
		tsk->min_flt++;
		flush_page_to_ram(page);
	}
	put_page(page_table, entry);
	return;

sigbus:
	force_sig(SIGBUS, current);
	put_page(page_table, BAD_PAGE);
	/* no need to invalidate, wasn't present */
	return;

swap_page:
	do_swap_page(tsk, vma, address, page_table, entry, write_access);
	return;
}

/*
 * These routines also need to handle stuff like marking pages dirty
 * and/or accessed for architectures that don't do it in hardware (most
 * RISC architectures).  The early dirtying is also good on the i386.
 *
 * There is also a hook called "update_mmu_cache()" that architectures
 * with external mmu caches can use to update those (ie the Sparc or
 * PowerPC hashed page tables that act as extended TLBs).
 */
static inline void handle_pte_fault(struct task_struct *tsk,
	struct vm_area_struct * vma, unsigned long address,
	int write_access, pte_t * pte)
{
	pte_t entry = *pte;

	if (!pte_present(entry)) {
		do_no_page(tsk, vma, address, write_access, pte, entry);
		return;
	}
	entry = pte_mkyoung(entry);
	set_pte(pte, entry);
	flush_tlb_page(vma, address);
	if (!write_access)
		return;
	if (pte_write(entry)) {
		entry = pte_mkdirty(entry);
		set_pte(pte, entry);
		flush_tlb_page(vma, address);
		return;
	}
	do_wp_page(tsk, vma, address, write_access, pte);
}

/*
 * By the time we get here, we already hold the mm semaphore
 */
void handle_mm_fault(struct task_struct *tsk, struct vm_area_struct * vma,
	unsigned long address, int write_access)
{
	pgd_t *pgd;
	pmd_t *pmd;
	pte_t *pte;

	pgd = pgd_offset(vma->vm_mm, address);
	pmd = pmd_alloc(pgd, address);
	if (!pmd)
		goto no_memory;
	pte = pte_alloc(pmd, address);
	if (!pte)
		goto no_memory;
	lock_kernel();
	handle_pte_fault(tsk, vma, address, write_access, pte);
	unlock_kernel();
	update_mmu_cache(vma, address, *pte);
	return;
no_memory:
	oom(tsk);
}

/*
 * Simplistic page force-in..
 */
void make_pages_present(unsigned long addr, unsigned long end)
{
	int write;
	struct vm_area_struct * vma;

	vma = find_vma(current->mm, addr);
	write = (vma->vm_flags & VM_WRITE) != 0;
	while (addr < end) {
		handle_mm_fault(current, vma, addr, write);
		addr += PAGE_SIZE;
	}
}