Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 | /* * linux/mm/memory.c * * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds */ /* * demand-loading started 01.12.91 - seems it is high on the list of * things wanted, and it should be easy to implement. - Linus */ /* * Ok, demand-loading was easy, shared pages a little bit tricker. Shared * pages started 02.12.91, seems to work. - Linus. * * Tested sharing by executing about 30 /bin/sh: under the old kernel it * would have taken more than the 6M I have free, but it worked well as * far as I could see. * * Also corrected some "invalidate()"s - I wasn't doing enough of them. */ /* * Real VM (paging to/from disk) started 18.12.91. Much more work and * thought has to go into this. Oh, well.. * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. * Found it. Everything seems to work now. * 20.12.91 - Ok, making the swap-device changeable like the root. */ /* * 05.04.94 - Multi-page memory management added for v1.1. * Idea by Alex Bligh (alex@cconcepts.co.uk) * * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG * (Gerhard.Wichert@pdb.siemens.de) */ #include <linux/mm.h> #include <linux/mman.h> #include <linux/swap.h> #include <linux/smp_lock.h> #include <linux/swapctl.h> #include <linux/iobuf.h> #include <linux/highmem.h> #include <linux/pagemap.h> #include <asm/pgalloc.h> #include <asm/uaccess.h> unsigned long max_mapnr; unsigned long num_physpages; void * high_memory; struct page *highmem_start_page; /* * We special-case the C-O-W ZERO_PAGE, because it's such * a common occurrence (no need to read the page to know * that it's zero - better for the cache and memory subsystem). */ static inline void copy_cow_page(struct page * from, struct page * to, unsigned long address) { if (from == ZERO_PAGE(address)) { clear_user_highpage(to, address); return; } copy_user_highpage(to, from, address); } mem_map_t * mem_map; /* * Note: this doesn't free the actual pages themselves. That * has been handled earlier when unmapping all the memory regions. */ static inline void free_one_pmd(pmd_t * dir) { pte_t * pte; if (pmd_none(*dir)) return; if (pmd_bad(*dir)) { pmd_ERROR(*dir); pmd_clear(dir); return; } pte = pte_offset(dir, 0); pmd_clear(dir); pte_free(pte); } static inline void free_one_pgd(pgd_t * dir) { int j; pmd_t * pmd; if (pgd_none(*dir)) return; if (pgd_bad(*dir)) { pgd_ERROR(*dir); pgd_clear(dir); return; } pmd = pmd_offset(dir, 0); pgd_clear(dir); for (j = 0; j < PTRS_PER_PMD ; j++) free_one_pmd(pmd+j); pmd_free(pmd); } /* Low and high watermarks for page table cache. The system should try to have pgt_water[0] <= cache elements <= pgt_water[1] */ int pgt_cache_water[2] = { 25, 50 }; /* Returns the number of pages freed */ int check_pgt_cache(void) { return do_check_pgt_cache(pgt_cache_water[0], pgt_cache_water[1]); } /* * This function clears all user-level page tables of a process - this * is needed by execve(), so that old pages aren't in the way. */ void clear_page_tables(struct mm_struct *mm, unsigned long first, int nr) { pgd_t * page_dir = mm->pgd; page_dir += first; do { free_one_pgd(page_dir); page_dir++; } while (--nr); /* keep the page table cache within bounds */ check_pgt_cache(); } #define PTE_TABLE_MASK ((PTRS_PER_PTE-1) * sizeof(pte_t)) #define PMD_TABLE_MASK ((PTRS_PER_PMD-1) * sizeof(pmd_t)) /* * copy one vm_area from one task to the other. Assumes the page tables * already present in the new task to be cleared in the whole range * covered by this vma. * * 08Jan98 Merged into one routine from several inline routines to reduce * variable count and make things faster. -jj */ int copy_page_range(struct mm_struct *dst, struct mm_struct *src, struct vm_area_struct *vma) { pgd_t * src_pgd, * dst_pgd; unsigned long address = vma->vm_start; unsigned long end = vma->vm_end; unsigned long cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; src_pgd = pgd_offset(src, address)-1; dst_pgd = pgd_offset(dst, address)-1; spin_lock(&dst->page_table_lock); for (;;) { pmd_t * src_pmd, * dst_pmd; src_pgd++; dst_pgd++; /* copy_pmd_range */ if (pgd_none(*src_pgd)) goto skip_copy_pmd_range; if (pgd_bad(*src_pgd)) { pgd_ERROR(*src_pgd); pgd_clear(src_pgd); skip_copy_pmd_range: address = (address + PGDIR_SIZE) & PGDIR_MASK; if (!address || (address >= end)) goto out; continue; } src_pmd = pmd_offset(src_pgd, address); dst_pmd = pmd_alloc(dst, dst_pgd, address); if (!dst_pmd) goto nomem; do { pte_t * src_pte, * dst_pte; /* copy_pte_range */ if (pmd_none(*src_pmd)) goto skip_copy_pte_range; if (pmd_bad(*src_pmd)) { pmd_ERROR(*src_pmd); pmd_clear(src_pmd); skip_copy_pte_range: address = (address + PMD_SIZE) & PMD_MASK; if (address >= end) goto out; goto cont_copy_pmd_range; } src_pte = pte_offset(src_pmd, address); dst_pte = pte_alloc(dst, dst_pmd, address); if (!dst_pte) goto nomem; spin_lock(&src->page_table_lock); do { pte_t pte = *src_pte; struct page *ptepage; /* copy_one_pte */ if (pte_none(pte)) goto cont_copy_pte_range_noset; if (!pte_present(pte)) { swap_duplicate(pte_to_swp_entry(pte)); goto cont_copy_pte_range; } ptepage = pte_page(pte); if ((!VALID_PAGE(ptepage)) || PageReserved(ptepage)) goto cont_copy_pte_range; /* If it's a COW mapping, write protect it both in the parent and the child */ if (cow) { ptep_set_wrprotect(src_pte); pte = *src_pte; } /* If it's a shared mapping, mark it clean in the child */ if (vma->vm_flags & VM_SHARED) pte = pte_mkclean(pte); pte = pte_mkold(pte); get_page(ptepage); cont_copy_pte_range: set_pte(dst_pte, pte); cont_copy_pte_range_noset: address += PAGE_SIZE; if (address >= end) goto out_unlock; src_pte++; dst_pte++; } while ((unsigned long)src_pte & PTE_TABLE_MASK); spin_unlock(&src->page_table_lock); cont_copy_pmd_range: src_pmd++; dst_pmd++; } while ((unsigned long)src_pmd & PMD_TABLE_MASK); } out_unlock: spin_unlock(&src->page_table_lock); out: spin_unlock(&dst->page_table_lock); return 0; nomem: spin_unlock(&dst->page_table_lock); return -ENOMEM; } /* * Return indicates whether a page was freed so caller can adjust rss */ static inline int free_pte(pte_t pte) { if (pte_present(pte)) { struct page *page = pte_page(pte); if ((!VALID_PAGE(page)) || PageReserved(page)) return 0; /* * free_page() used to be able to clear swap cache * entries. We may now have to do it manually. */ if (pte_dirty(pte) && page->mapping) set_page_dirty(page); free_page_and_swap_cache(page); return 1; } swap_free(pte_to_swp_entry(pte)); return 0; } static inline void forget_pte(pte_t page) { if (!pte_none(page)) { printk("forget_pte: old mapping existed!\n"); free_pte(page); } } static inline int zap_pte_range(struct mm_struct *mm, pmd_t * pmd, unsigned long address, unsigned long size) { pte_t * pte; int freed; if (pmd_none(*pmd)) return 0; if (pmd_bad(*pmd)) { pmd_ERROR(*pmd); pmd_clear(pmd); return 0; } pte = pte_offset(pmd, address); address &= ~PMD_MASK; if (address + size > PMD_SIZE) size = PMD_SIZE - address; size >>= PAGE_SHIFT; freed = 0; for (;;) { pte_t page; if (!size) break; page = ptep_get_and_clear(pte); pte++; size--; if (pte_none(page)) continue; freed += free_pte(page); } return freed; } static inline int zap_pmd_range(struct mm_struct *mm, pgd_t * dir, unsigned long address, unsigned long size) { pmd_t * pmd; unsigned long end; int freed; if (pgd_none(*dir)) return 0; if (pgd_bad(*dir)) { pgd_ERROR(*dir); pgd_clear(dir); return 0; } pmd = pmd_offset(dir, address); address &= ~PGDIR_MASK; end = address + size; if (end > PGDIR_SIZE) end = PGDIR_SIZE; freed = 0; do { freed += zap_pte_range(mm, pmd, address, end - address); address = (address + PMD_SIZE) & PMD_MASK; pmd++; } while (address < end); return freed; } /* * remove user pages in a given range. */ void zap_page_range(struct mm_struct *mm, unsigned long address, unsigned long size) { pgd_t * dir; unsigned long end = address + size; int freed = 0; dir = pgd_offset(mm, address); /* * This is a long-lived spinlock. That's fine. * There's no contention, because the page table * lock only protects against kswapd anyway, and * even if kswapd happened to be looking at this * process we _want_ it to get stuck. */ if (address >= end) BUG(); spin_lock(&mm->page_table_lock); do { freed += zap_pmd_range(mm, dir, address, end - address); address = (address + PGDIR_SIZE) & PGDIR_MASK; dir++; } while (address && (address < end)); /* * Update rss for the mm_struct (not necessarily current->mm) * Notice that rss is an unsigned long. */ if (mm->rss > freed) mm->rss -= freed; else mm->rss = 0; spin_unlock(&mm->page_table_lock); } /* * Do a quick page-table lookup for a single page. */ static struct page * follow_page(unsigned long address, int write) { pgd_t *pgd; pmd_t *pmd; pte_t *ptep, pte; pgd = pgd_offset(current->mm, address); if (pgd_none(*pgd) || pgd_bad(*pgd)) goto out; pmd = pmd_offset(pgd, address); if (pmd_none(*pmd) || pmd_bad(*pmd)) goto out; ptep = pte_offset(pmd, address); if (!ptep) goto out; pte = *ptep; if (pte_present(pte)) { if (!write || (pte_write(pte) && pte_dirty(pte))) return pte_page(pte); } out: return 0; } /* * Given a physical address, is there a useful struct page pointing to * it? This may become more complex in the future if we start dealing * with IO-aperture pages in kiobufs. */ static inline struct page * get_page_map(struct page *page) { if (!VALID_PAGE(page)) return 0; return page; } /* * Force in an entire range of pages from the current process's user VA, * and pin them in physical memory. */ #define dprintk(x...) int map_user_kiobuf(int rw, struct kiobuf *iobuf, unsigned long va, size_t len) { unsigned long ptr, end; int err; struct mm_struct * mm; struct vm_area_struct * vma = 0; struct page * map; int i; int datain = (rw == READ); /* Make sure the iobuf is not already mapped somewhere. */ if (iobuf->nr_pages) return -EINVAL; mm = current->mm; dprintk ("map_user_kiobuf: begin\n"); ptr = va & PAGE_MASK; end = (va + len + PAGE_SIZE - 1) & PAGE_MASK; err = expand_kiobuf(iobuf, (end - ptr) >> PAGE_SHIFT); if (err) return err; down_write(&mm->mmap_sem); err = -EFAULT; iobuf->locked = 0; iobuf->offset = va & ~PAGE_MASK; iobuf->length = len; i = 0; /* * First of all, try to fault in all of the necessary pages */ while (ptr < end) { if (!vma || ptr >= vma->vm_end) { vma = find_vma(current->mm, ptr); if (!vma) goto out_unlock; if (vma->vm_start > ptr) { if (!(vma->vm_flags & VM_GROWSDOWN)) goto out_unlock; if (expand_stack(vma, ptr)) goto out_unlock; } if (((datain) && (!(vma->vm_flags & VM_WRITE))) || (!(vma->vm_flags & VM_READ))) { err = -EACCES; goto out_unlock; } } spin_lock(&mm->page_table_lock); while (!(map = follow_page(ptr, datain))) { int ret; spin_unlock(&mm->page_table_lock); ret = handle_mm_fault(current->mm, vma, ptr, datain); if (ret <= 0) { if (!ret) goto out_unlock; else { err = -ENOMEM; goto out_unlock; } } spin_lock(&mm->page_table_lock); } map = get_page_map(map); if (map) { flush_dcache_page(map); atomic_inc(&map->count); } else printk (KERN_INFO "Mapped page missing [%d]\n", i); spin_unlock(&mm->page_table_lock); iobuf->maplist[i] = map; iobuf->nr_pages = ++i; ptr += PAGE_SIZE; } up_write(&mm->mmap_sem); dprintk ("map_user_kiobuf: end OK\n"); return 0; out_unlock: up_write(&mm->mmap_sem); unmap_kiobuf(iobuf); dprintk ("map_user_kiobuf: end %d\n", err); return err; } /* * Mark all of the pages in a kiobuf as dirty * * We need to be able to deal with short reads from disk: if an IO error * occurs, the number of bytes read into memory may be less than the * size of the kiobuf, so we have to stop marking pages dirty once the * requested byte count has been reached. */ void mark_dirty_kiobuf(struct kiobuf *iobuf, int bytes) { int index, offset, remaining; struct page *page; index = iobuf->offset >> PAGE_SHIFT; offset = iobuf->offset & ~PAGE_MASK; remaining = bytes; if (remaining > iobuf->length) remaining = iobuf->length; while (remaining > 0 && index < iobuf->nr_pages) { page = iobuf->maplist[index]; if (!PageReserved(page)) SetPageDirty(page); remaining -= (PAGE_SIZE - offset); offset = 0; index++; } } /* * Unmap all of the pages referenced by a kiobuf. We release the pages, * and unlock them if they were locked. */ void unmap_kiobuf (struct kiobuf *iobuf) { int i; struct page *map; for (i = 0; i < iobuf->nr_pages; i++) { map = iobuf->maplist[i]; if (map) { if (iobuf->locked) UnlockPage(map); __free_page(map); } } iobuf->nr_pages = 0; iobuf->locked = 0; } /* * Lock down all of the pages of a kiovec for IO. * * If any page is mapped twice in the kiovec, we return the error -EINVAL. * * The optional wait parameter causes the lock call to block until all * pages can be locked if set. If wait==0, the lock operation is * aborted if any locked pages are found and -EAGAIN is returned. */ int lock_kiovec(int nr, struct kiobuf *iovec[], int wait) { struct kiobuf *iobuf; int i, j; struct page *page, **ppage; int doublepage = 0; int repeat = 0; repeat: for (i = 0; i < nr; i++) { iobuf = iovec[i]; if (iobuf->locked) continue; ppage = iobuf->maplist; for (j = 0; j < iobuf->nr_pages; ppage++, j++) { page = *ppage; if (!page) continue; if (TryLockPage(page)) { while (j--) { page = *(--ppage); if (page) UnlockPage(page); } goto retry; } } iobuf->locked = 1; } return 0; retry: /* * We couldn't lock one of the pages. Undo the locking so far, * wait on the page we got to, and try again. */ unlock_kiovec(nr, iovec); if (!wait) return -EAGAIN; /* * Did the release also unlock the page we got stuck on? */ if (!PageLocked(page)) { /* * If so, we may well have the page mapped twice * in the IO address range. Bad news. Of * course, it _might_ just be a coincidence, * but if it happens more than once, chances * are we have a double-mapped page. */ if (++doublepage >= 3) return -EINVAL; /* Try again... */ wait_on_page(page); } if (++repeat < 16) goto repeat; return -EAGAIN; } /* * Unlock all of the pages of a kiovec after IO. */ int unlock_kiovec(int nr, struct kiobuf *iovec[]) { struct kiobuf *iobuf; int i, j; struct page *page, **ppage; for (i = 0; i < nr; i++) { iobuf = iovec[i]; if (!iobuf->locked) continue; iobuf->locked = 0; ppage = iobuf->maplist; for (j = 0; j < iobuf->nr_pages; ppage++, j++) { page = *ppage; if (!page) continue; UnlockPage(page); } } return 0; } static inline void zeromap_pte_range(pte_t * pte, unsigned long address, unsigned long size, pgprot_t prot) { unsigned long end; address &= ~PMD_MASK; end = address + size; if (end > PMD_SIZE) end = PMD_SIZE; do { pte_t zero_pte = pte_wrprotect(mk_pte(ZERO_PAGE(address), prot)); pte_t oldpage = ptep_get_and_clear(pte); set_pte(pte, zero_pte); forget_pte(oldpage); address += PAGE_SIZE; pte++; } while (address && (address < end)); } static inline int zeromap_pmd_range(struct mm_struct *mm, pmd_t * pmd, unsigned long address, unsigned long size, pgprot_t prot) { unsigned long end; address &= ~PGDIR_MASK; end = address + size; if (end > PGDIR_SIZE) end = PGDIR_SIZE; do { pte_t * pte = pte_alloc(mm, pmd, address); if (!pte) return -ENOMEM; zeromap_pte_range(pte, address, end - address, prot); address = (address + PMD_SIZE) & PMD_MASK; pmd++; } while (address && (address < end)); return 0; } int zeromap_page_range(unsigned long address, unsigned long size, pgprot_t prot) { int error = 0; pgd_t * dir; unsigned long beg = address; unsigned long end = address + size; struct mm_struct *mm = current->mm; dir = pgd_offset(mm, address); flush_cache_range(mm, beg, end); if (address >= end) BUG(); spin_lock(&mm->page_table_lock); do { pmd_t *pmd = pmd_alloc(mm, dir, address); error = -ENOMEM; if (!pmd) break; error = zeromap_pmd_range(mm, pmd, address, end - address, prot); if (error) break; address = (address + PGDIR_SIZE) & PGDIR_MASK; dir++; } while (address && (address < end)); spin_unlock(&mm->page_table_lock); flush_tlb_range(mm, beg, end); return error; } /* * maps a range of physical memory into the requested pages. the old * mappings are removed. any references to nonexistent pages results * in null mappings (currently treated as "copy-on-access") */ static inline void remap_pte_range(pte_t * pte, unsigned long address, unsigned long size, unsigned long phys_addr, pgprot_t prot) { unsigned long end; address &= ~PMD_MASK; end = address + size; if (end > PMD_SIZE) end = PMD_SIZE; do { struct page *page; pte_t oldpage; oldpage = ptep_get_and_clear(pte); page = virt_to_page(__va(phys_addr)); if ((!VALID_PAGE(page)) || PageReserved(page)) set_pte(pte, mk_pte_phys(phys_addr, prot)); forget_pte(oldpage); address += PAGE_SIZE; phys_addr += PAGE_SIZE; pte++; } while (address && (address < end)); } static inline int remap_pmd_range(struct mm_struct *mm, pmd_t * pmd, unsigned long address, unsigned long size, unsigned long phys_addr, pgprot_t prot) { unsigned long end; address &= ~PGDIR_MASK; end = address + size; if (end > PGDIR_SIZE) end = PGDIR_SIZE; phys_addr -= address; do { pte_t * pte = pte_alloc(mm, pmd, address); if (!pte) return -ENOMEM; remap_pte_range(pte, address, end - address, address + phys_addr, prot); address = (address + PMD_SIZE) & PMD_MASK; pmd++; } while (address && (address < end)); return 0; } /* Note: this is only safe if the mm semaphore is held when called. */ int remap_page_range(unsigned long from, unsigned long phys_addr, unsigned long size, pgprot_t prot) { int error = 0; pgd_t * dir; unsigned long beg = from; unsigned long end = from + size; struct mm_struct *mm = current->mm; phys_addr -= from; dir = pgd_offset(mm, from); flush_cache_range(mm, beg, end); if (from >= end) BUG(); spin_lock(&mm->page_table_lock); do { pmd_t *pmd = pmd_alloc(mm, dir, from); error = -ENOMEM; if (!pmd) break; error = remap_pmd_range(mm, pmd, from, end - from, phys_addr + from, prot); if (error) break; from = (from + PGDIR_SIZE) & PGDIR_MASK; dir++; } while (from && (from < end)); spin_unlock(&mm->page_table_lock); flush_tlb_range(mm, beg, end); return error; } /* * Establish a new mapping: * - flush the old one * - update the page tables * - inform the TLB about the new one * * We hold the mm semaphore for reading and vma->vm_mm->page_table_lock */ static inline void establish_pte(struct vm_area_struct * vma, unsigned long address, pte_t *page_table, pte_t entry) { set_pte(page_table, entry); flush_tlb_page(vma, address); update_mmu_cache(vma, address, entry); } /* * We hold the mm semaphore for reading and vma->vm_mm->page_table_lock */ static inline void break_cow(struct vm_area_struct * vma, struct page * old_page, struct page * new_page, unsigned long address, pte_t *page_table) { copy_cow_page(old_page,new_page,address); flush_page_to_ram(new_page); flush_cache_page(vma, address); establish_pte(vma, address, page_table, pte_mkwrite(pte_mkdirty(mk_pte(new_page, vma->vm_page_prot)))); } /* * This routine handles present pages, when users try to write * to a shared page. It is done by copying the page to a new address * and decrementing the shared-page counter for the old page. * * Goto-purists beware: the only reason for goto's here is that it results * in better assembly code.. The "default" path will see no jumps at all. * * Note that this routine assumes that the protection checks have been * done by the caller (the low-level page fault routine in most cases). * Thus we can safely just mark it writable once we've done any necessary * COW. * * We also mark the page dirty at this point even though the page will * change only once the write actually happens. This avoids a few races, * and potentially makes it more efficient. * * We enter with the page table read-lock held, and need to exit without * it. */ static int do_wp_page(struct mm_struct *mm, struct vm_area_struct * vma, unsigned long address, pte_t *page_table, pte_t pte) { struct page *old_page, *new_page; old_page = pte_page(pte); if (!VALID_PAGE(old_page)) goto bad_wp_page; /* * We can avoid the copy if: * - we're the only user (count == 1) * - the only other user is the swap cache, * and the only swap cache user is itself, * in which case we can just continue to * use the same swap cache (it will be * marked dirty). */ switch (page_count(old_page)) { int can_reuse; case 3: if (!old_page->buffers) break; /* FallThrough */ case 2: if (!PageSwapCache(old_page)) break; if (TryLockPage(old_page)) break; /* Recheck swapcachedness once the page is locked */ can_reuse = exclusive_swap_page(old_page); UnlockPage(old_page); if (!can_reuse) break; /* FallThrough */ case 1: if (PageReserved(old_page)) break; flush_cache_page(vma, address); establish_pte(vma, address, page_table, pte_mkyoung(pte_mkdirty(pte_mkwrite(pte)))); return 1; /* Minor fault */ } /* * Ok, we need to copy. Oh, well.. */ spin_unlock(&mm->page_table_lock); new_page = alloc_page(GFP_HIGHUSER); spin_lock(&mm->page_table_lock); if (!new_page) return -1; /* * Re-check the pte - we dropped the lock */ if (pte_same(*page_table, pte)) { if (PageReserved(old_page)) ++mm->rss; break_cow(vma, old_page, new_page, address, page_table); /* Free the old page.. */ new_page = old_page; } page_cache_release(new_page); return 1; /* Minor fault */ bad_wp_page: printk("do_wp_page: bogus page at address %08lx (page 0x%lx)\n",address,(unsigned long)old_page); return -1; } static void vmtruncate_list(struct vm_area_struct *mpnt, unsigned long pgoff) { do { struct mm_struct *mm = mpnt->vm_mm; unsigned long start = mpnt->vm_start; unsigned long end = mpnt->vm_end; unsigned long len = end - start; unsigned long diff; /* mapping wholly truncated? */ if (mpnt->vm_pgoff >= pgoff) { flush_cache_range(mm, start, end); zap_page_range(mm, start, len); flush_tlb_range(mm, start, end); continue; } /* mapping wholly unaffected? */ len = len >> PAGE_SHIFT; diff = pgoff - mpnt->vm_pgoff; if (diff >= len) continue; /* Ok, partially affected.. */ start += diff << PAGE_SHIFT; len = (len - diff) << PAGE_SHIFT; flush_cache_range(mm, start, end); zap_page_range(mm, start, len); flush_tlb_range(mm, start, end); } while ((mpnt = mpnt->vm_next_share) != NULL); } /* * Handle all mappings that got truncated by a "truncate()" * system call. * * NOTE! We have to be ready to update the memory sharing * between the file and the memory map for a potential last * incomplete page. Ugly, but necessary. */ void vmtruncate(struct inode * inode, loff_t offset) { unsigned long pgoff; struct address_space *mapping = inode->i_mapping; unsigned long limit; if (inode->i_size < offset) goto do_expand; inode->i_size = offset; spin_lock(&mapping->i_shared_lock); if (!mapping->i_mmap && !mapping->i_mmap_shared) goto out_unlock; pgoff = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; if (mapping->i_mmap != NULL) vmtruncate_list(mapping->i_mmap, pgoff); if (mapping->i_mmap_shared != NULL) vmtruncate_list(mapping->i_mmap_shared, pgoff); out_unlock: spin_unlock(&mapping->i_shared_lock); truncate_inode_pages(mapping, offset); goto out_truncate; do_expand: limit = current->rlim[RLIMIT_FSIZE].rlim_cur; if (limit != RLIM_INFINITY) { if (inode->i_size >= limit) { send_sig(SIGXFSZ, current, 0); goto out; } if (offset > limit) { send_sig(SIGXFSZ, current, 0); offset = limit; } } inode->i_size = offset; out_truncate: if (inode->i_op && inode->i_op->truncate) { lock_kernel(); inode->i_op->truncate(inode); unlock_kernel(); } out: return; } /* * Primitive swap readahead code. We simply read an aligned block of * (1 << page_cluster) entries in the swap area. This method is chosen * because it doesn't cost us any seek time. We also make sure to queue * the 'original' request together with the readahead ones... */ void swapin_readahead(swp_entry_t entry) { int i, num; struct page *new_page; unsigned long offset; /* * Get the number of handles we should do readahead io to. Also, * grab temporary references on them, releasing them as io completes. */ num = valid_swaphandles(entry, &offset); for (i = 0; i < num; offset++, i++) { /* Don't block on I/O for read-ahead */ if (atomic_read(&nr_async_pages) >= pager_daemon.swap_cluster * (1 << page_cluster)) { while (i++ < num) swap_free(SWP_ENTRY(SWP_TYPE(entry), offset++)); break; } /* Ok, do the async read-ahead now */ new_page = read_swap_cache_async(SWP_ENTRY(SWP_TYPE(entry), offset)); if (new_page != NULL) page_cache_release(new_page); swap_free(SWP_ENTRY(SWP_TYPE(entry), offset)); } return; } /* * We hold the mm semaphore and the page_table_lock on entry and exit. */ static int do_swap_page(struct mm_struct * mm, struct vm_area_struct * vma, unsigned long address, pte_t * page_table, swp_entry_t entry, int write_access) { struct page *page; pte_t pte; spin_unlock(&mm->page_table_lock); page = lookup_swap_cache(entry); if (!page) { lock_kernel(); swapin_readahead(entry); page = read_swap_cache_async(entry); unlock_kernel(); if (!page) { spin_lock(&mm->page_table_lock); return -1; } wait_on_page(page); flush_page_to_ram(page); flush_icache_page(vma, page); } /* * Freeze the "shared"ness of the page, ie page_count + swap_count. * Must lock page before transferring our swap count to already * obtained page count. */ lock_page(page); /* * Back out if somebody else faulted in this pte while we * released the page table lock. */ spin_lock(&mm->page_table_lock); if (pte_present(*page_table)) { UnlockPage(page); page_cache_release(page); return 1; } /* The page isn't present yet, go ahead with the fault. */ mm->rss++; pte = mk_pte(page, vma->vm_page_prot); swap_free(entry); if (write_access && exclusive_swap_page(page)) pte = pte_mkwrite(pte_mkdirty(pte)); UnlockPage(page); set_pte(page_table, pte); /* No need to invalidate - it was non-present before */ update_mmu_cache(vma, address, pte); return 1; /* Minor fault */ } /* * We are called with the MM semaphore and page_table_lock * spinlock held to protect against concurrent faults in * multithreaded programs. */ static int do_anonymous_page(struct mm_struct * mm, struct vm_area_struct * vma, pte_t *page_table, int write_access, unsigned long addr) { pte_t entry; /* Read-only mapping of ZERO_PAGE. */ entry = pte_wrprotect(mk_pte(ZERO_PAGE(addr), vma->vm_page_prot)); /* ..except if it's a write access */ if (write_access) { struct page *page; /* Allocate our own private page. */ spin_unlock(&mm->page_table_lock); page = alloc_page(GFP_HIGHUSER); spin_lock(&mm->page_table_lock); if (!page) return -1; if (!pte_none(*page_table)) { page_cache_release(page); return 1; } mm->rss++; clear_user_highpage(page, addr); flush_page_to_ram(page); entry = pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot))); } set_pte(page_table, entry); /* No need to invalidate - it was non-present before */ update_mmu_cache(vma, addr, entry); return 1; /* Minor fault */ } /* * do_no_page() tries to create a new page mapping. It aggressively * tries to share with existing pages, but makes a separate copy if * the "write_access" parameter is true in order to avoid the next * page fault. * * As this is called only for pages that do not currently exist, we * do not need to flush old virtual caches or the TLB. * * This is called with the MM semaphore held and the page table * spinlock held. */ static int do_no_page(struct mm_struct * mm, struct vm_area_struct * vma, unsigned long address, int write_access, pte_t *page_table) { struct page * new_page; pte_t entry; if (!vma->vm_ops || !vma->vm_ops->nopage) return do_anonymous_page(mm, vma, page_table, write_access, address); spin_unlock(&mm->page_table_lock); /* * The third argument is "no_share", which tells the low-level code * to copy, not share the page even if sharing is possible. It's * essentially an early COW detection. */ new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, (vma->vm_flags & VM_SHARED)?0:write_access); spin_lock(&mm->page_table_lock); if (new_page == NULL) /* no page was available -- SIGBUS */ return 0; if (new_page == NOPAGE_OOM) return -1; /* * This silly early PAGE_DIRTY setting removes a race * due to the bad i386 page protection. But it's valid * for other architectures too. * * Note that if write_access is true, we either now have * an exclusive copy of the page, or this is a shared mapping, * so we can make it writable and dirty to avoid having to * handle that later. */ /* Only go through if we didn't race with anybody else... */ if (pte_none(*page_table)) { ++mm->rss; flush_page_to_ram(new_page); flush_icache_page(vma, new_page); entry = mk_pte(new_page, vma->vm_page_prot); if (write_access) { entry = pte_mkwrite(pte_mkdirty(entry)); } else if (page_count(new_page) > 1 && !(vma->vm_flags & VM_SHARED)) entry = pte_wrprotect(entry); set_pte(page_table, entry); } else { /* One of our sibling threads was faster, back out. */ page_cache_release(new_page); return 1; } /* no need to invalidate: a not-present page shouldn't be cached */ update_mmu_cache(vma, address, entry); return 2; /* Major fault */ } /* * These routines also need to handle stuff like marking pages dirty * and/or accessed for architectures that don't do it in hardware (most * RISC architectures). The early dirtying is also good on the i386. * * There is also a hook called "update_mmu_cache()" that architectures * with external mmu caches can use to update those (ie the Sparc or * PowerPC hashed page tables that act as extended TLBs). * * Note the "page_table_lock". It is to protect against kswapd removing * pages from under us. Note that kswapd only ever _removes_ pages, never * adds them. As such, once we have noticed that the page is not present, * we can drop the lock early. * * The adding of pages is protected by the MM semaphore (which we hold), * so we don't need to worry about a page being suddenly been added into * our VM. */ static inline int handle_pte_fault(struct mm_struct *mm, struct vm_area_struct * vma, unsigned long address, int write_access, pte_t * pte) { pte_t entry; entry = *pte; if (!pte_present(entry)) { /* * If it truly wasn't present, we know that kswapd * and the PTE updates will not touch it later. So * drop the lock. */ if (pte_none(entry)) return do_no_page(mm, vma, address, write_access, pte); return do_swap_page(mm, vma, address, pte, pte_to_swp_entry(entry), write_access); } if (write_access) { if (!pte_write(entry)) return do_wp_page(mm, vma, address, pte, entry); entry = pte_mkdirty(entry); } entry = pte_mkyoung(entry); establish_pte(vma, address, pte, entry); return 1; } /* * By the time we get here, we already hold the mm semaphore */ int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct * vma, unsigned long address, int write_access) { int ret = -1; pgd_t *pgd; pmd_t *pmd; current->state = TASK_RUNNING; pgd = pgd_offset(mm, address); /* * We need the page table lock to synchronize with kswapd * and the SMP-safe atomic PTE updates. */ spin_lock(&mm->page_table_lock); pmd = pmd_alloc(mm, pgd, address); if (pmd) { pte_t * pte = pte_alloc(mm, pmd, address); if (pte) ret = handle_pte_fault(mm, vma, address, write_access, pte); } spin_unlock(&mm->page_table_lock); return ret; } /* * Allocate page middle directory. * * We've already handled the fast-path in-line, and we own the * page table lock. * * On a two-level page table, this ends up actually being entirely * optimized away. */ pmd_t *__pmd_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) { pmd_t *new; /* "fast" allocation can happen without dropping the lock.. */ new = pmd_alloc_one_fast(mm, address); if (!new) { spin_unlock(&mm->page_table_lock); new = pmd_alloc_one(mm, address); spin_lock(&mm->page_table_lock); if (!new) return NULL; /* * Because we dropped the lock, we should re-check the * entry, as somebody else could have populated it.. */ if (pgd_present(*pgd)) { pmd_free(new); goto out; } } pgd_populate(mm, pgd, new); out: return pmd_offset(pgd, address); } /* * Allocate the page table directory. * * We've already handled the fast-path in-line, and we own the * page table lock. */ pte_t *pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address) { if (!pmd_present(*pmd)) { pte_t *new; /* "fast" allocation can happen without dropping the lock.. */ new = pte_alloc_one_fast(mm, address); if (!new) { spin_unlock(&mm->page_table_lock); new = pte_alloc_one(mm, address); spin_lock(&mm->page_table_lock); if (!new) return NULL; /* * Because we dropped the lock, we should re-check the * entry, as somebody else could have populated it.. */ if (pmd_present(*pmd)) { pte_free(new); goto out; } } pmd_populate(mm, pmd, new); } out: return pte_offset(pmd, address); } /* * Simplistic page force-in.. */ int make_pages_present(unsigned long addr, unsigned long end) { int write; struct mm_struct *mm = current->mm; struct vm_area_struct * vma; vma = find_vma(mm, addr); write = (vma->vm_flags & VM_WRITE) != 0; if (addr >= end) BUG(); do { if (handle_mm_fault(mm, vma, addr, write) < 0) return -1; addr += PAGE_SIZE; } while (addr < end); return 0; } |