Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 | /* * linux/mm/memory.c * * Copyright (C) 1991, 1992 Linus Torvalds */ /* * demand-loading started 01.12.91 - seems it is high on the list of * things wanted, and it should be easy to implement. - Linus */ /* * Ok, demand-loading was easy, shared pages a little bit tricker. Shared * pages started 02.12.91, seems to work. - Linus. * * Tested sharing by executing about 30 /bin/sh: under the old kernel it * would have taken more than the 6M I have free, but it worked well as * far as I could see. * * Also corrected some "invalidate()"s - I wasn't doing enough of them. */ /* * Real VM (paging to/from disk) started 18.12.91. Much more work and * thought has to go into this. Oh, well.. * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. * Found it. Everything seems to work now. * 20.12.91 - Ok, making the swap-device changeable like the root. */ #include <asm/system.h> #include <linux/signal.h> #include <linux/sched.h> #include <linux/head.h> #include <linux/kernel.h> #include <linux/errno.h> #include <linux/string.h> #include <linux/types.h> unsigned long high_memory = 0; extern void sound_mem_init(void); int nr_free_pages = 0; unsigned long free_page_list = 0; /* * The secondary free_page_list is used for malloc() etc things that * may need pages during interrupts etc. Normal get_free_page() operations * don't touch it, so it stays as a kind of "panic-list", that can be * accessed when all other mm tricks have failed. */ int nr_secondary_pages = 0; unsigned long secondary_page_list = 0; #define copy_page(from,to) \ __asm__("cld ; rep ; movsl"::"S" (from),"D" (to),"c" (1024):"cx","di","si") unsigned short * mem_map = NULL; #define CODE_SPACE(addr,p) ((addr) < (p)->end_code) /* * oom() prints a message (so that the user knows why the process died), * and gives the process an untrappable SIGSEGV. */ void oom(struct task_struct * task) { printk("\nout of memory\n"); task->sigaction[SIGKILL-1].sa_handler = NULL; task->blocked &= ~(1<<(SIGKILL-1)); send_sig(SIGKILL,task,1); } static void free_one_table(unsigned long * page_dir) { int j; unsigned long pg_table = *page_dir; unsigned long * page_table; if (!pg_table) return; if (pg_table >= high_memory || !(pg_table & 1)) { printk("Bad page table: [%08x]=%08x\n",page_dir,pg_table); *page_dir = 0; return; } *page_dir = 0; if (mem_map[MAP_NR(pg_table)] & MAP_PAGE_RESERVED) return; page_table = (unsigned long *) (pg_table & 0xfffff000); for (j = 0 ; j < 1024 ; j++,page_table++) { unsigned long pg = *page_table; if (!pg) continue; *page_table = 0; if (1 & pg) free_page(0xfffff000 & pg); else swap_free(pg >> 1); } free_page(0xfffff000 & pg_table); } /* * This function clears all user-level page tables of a process - this * is needed by execve(), so that old pages aren't in the way. Note that * unlike 'free_page_tables()', this function still leaves a valid * page-table-tree in memory: it just removes the user pages. The two * functions are similar, but there is a fundamental difference. */ void clear_page_tables(struct task_struct * tsk) { int i; unsigned long * page_dir; if (!tsk) return; if (tsk == task[0]) panic("task[0] (swapper) doesn't support exec() yet\n"); page_dir = (unsigned long *) tsk->tss.cr3; if (!page_dir) { printk("Trying to clear kernel page-directory: not good\n"); return; } for (i = 0 ; i < 768 ; i++,page_dir++) free_one_table(page_dir); invalidate(); return; } /* * This function frees up all page tables of a process when it exits. */ void free_page_tables(struct task_struct * tsk) { int i; unsigned long pg_dir; unsigned long * page_dir; if (!tsk) return; if (tsk == task[0]) { printk("task[0] (swapper) killed: unable to recover\n"); panic("Trying to free up swapper memory space"); } pg_dir = tsk->tss.cr3; if (!pg_dir) { printk("Trying to free kernel page-directory: not good\n"); return; } tsk->tss.cr3 = (unsigned long) swapper_pg_dir; if (tsk == current) __asm__ __volatile__("movl %0,%%cr3"::"a" (tsk->tss.cr3)); page_dir = (unsigned long *) pg_dir; for (i = 0 ; i < 1024 ; i++,page_dir++) free_one_table(page_dir); free_page(pg_dir); invalidate(); } /* * copy_page_tables() just copies the whole process memory range: * note the special handling of RESERVED (ie kernel) pages, which * means that they are always shared by all processes. */ int copy_page_tables(struct task_struct * tsk) { int i; unsigned long old_pg_dir, *old_page_dir; unsigned long new_pg_dir, *new_page_dir; old_pg_dir = current->tss.cr3; new_pg_dir = get_free_page(GFP_KERNEL); if (!new_pg_dir) return -ENOMEM; tsk->tss.cr3 = new_pg_dir; old_page_dir = (unsigned long *) old_pg_dir; new_page_dir = (unsigned long *) new_pg_dir; for (i = 0 ; i < 1024 ; i++,old_page_dir++,new_page_dir++) { int j; unsigned long old_pg_table, *old_page_table; unsigned long new_pg_table, *new_page_table; old_pg_table = *old_page_dir; if (!old_pg_table) continue; if (old_pg_table >= high_memory || !(1 & old_pg_table)) { printk("copy_page_tables: bad page table: " "probable memory corruption"); *old_page_dir = 0; continue; } if (mem_map[MAP_NR(old_pg_table)] & MAP_PAGE_RESERVED) { *new_page_dir = old_pg_table; continue; } new_pg_table = get_free_page(GFP_KERNEL); if (!new_pg_table) { free_page_tables(tsk); return -ENOMEM; } *new_page_dir = new_pg_table | PAGE_ACCESSED | 7; old_page_table = (unsigned long *) (0xfffff000 & old_pg_table); new_page_table = (unsigned long *) (0xfffff000 & new_pg_table); for (j = 0 ; j < 1024 ; j++,old_page_table++,new_page_table++) { unsigned long pg; pg = *old_page_table; if (!pg) continue; if (!(pg & PAGE_PRESENT)) { swap_duplicate(pg>>1); *new_page_table = pg; continue; } pg &= ~2; *new_page_table = pg; if (mem_map[MAP_NR(pg)] & MAP_PAGE_RESERVED) continue; *old_page_table = pg; mem_map[MAP_NR(pg)]++; } } invalidate(); return 0; } /* * a more complete version of free_page_tables which performs with page * granularity. */ int unmap_page_range(unsigned long from, unsigned long size) { unsigned long page, page_dir; unsigned long *page_table, *dir; unsigned long poff, pcnt, pc; if (from & 0xfff) panic("unmap_page_range called with wrong alignment"); if (!from) panic("unmap_page_range trying to free swapper memory space"); size = (size + 0xfff) >> PAGE_SHIFT; dir = (unsigned long *) (current->tss.cr3 + ((from >> 20) & 0xffc)); poff = (from >> PAGE_SHIFT) & 0x3ff; if ((pcnt = 1024 - poff) > size) pcnt = size; for ( ; size > 0; ++dir, size -= pcnt, pcnt = (size > 1024 ? 1024 : size)) { if (!(page_dir = *dir)) { poff = 0; continue; } if (!(page_dir & 1)) { printk("unmap_page_range: bad page directory."); continue; } page_table = (unsigned long *)(0xfffff000 & page_dir); if (poff) { page_table += poff; poff = 0; } for (pc = pcnt; pc--; page_table++) { if ((page = *page_table) != 0) { *page_table = 0; if (1 & page) { --current->rss; free_page(0xfffff000 & page); } else swap_free(page >> 1); } } if (pcnt == 1024) { free_page(0xfffff000 & page_dir); *dir = 0; } } invalidate(); return 0; } /* * maps a range of physical memory into the requested pages. the old * mappings are removed. any references to nonexistent pages results * in null mappings (currently treated as "copy-on-access") * * permiss is encoded as cxwr (copy,exec,write,read) where copy modifies * the behavior of write to be copy-on-write. * * due to current limitations, we actually have the following * on off * read: yes yes * write/copy: yes/copy copy/copy * exec: yes yes */ int remap_page_range(unsigned long from, unsigned long to, unsigned long size, int permiss) { unsigned long *page_table, *dir; unsigned long poff, pcnt; unsigned long page; if ((from & 0xfff) || (to & 0xfff)) panic("remap_page_range called with wrong alignment"); dir = (unsigned long *) (current->tss.cr3 + ((from >> 20) & 0xffc)); size = (size + 0xfff) >> PAGE_SHIFT; poff = (from >> PAGE_SHIFT) & 0x3ff; if ((pcnt = 1024 - poff) > size) pcnt = size; while (size > 0) { if (!(1 & *dir)) { if (!(page_table = (unsigned long *)get_free_page(GFP_KERNEL))) { invalidate(); return -1; } *dir++ = ((unsigned long) page_table) | PAGE_ACCESSED | 7; } else page_table = (unsigned long *)(0xfffff000 & *dir++); if (poff) { page_table += poff; poff = 0; } for (size -= pcnt; pcnt-- ;) { int mask; mask = 4; if (permiss & 1) mask |= 1; if (permiss & 2) { if (permiss & 8) mask |= 1; else mask |= 3; } if (permiss & 4) mask |= 1; if ((page = *page_table) != 0) { *page_table = 0; --current->rss; if (1 & page) free_page(0xfffff000 & page); else swap_free(page >> 1); } /* * i'm not sure of the second cond here. should we * report failure? * the first condition should return an invalid access * when the page is referenced. current assumptions * cause it to be treated as demand allocation. */ if (mask == 4 || to >= high_memory || !mem_map[MAP_NR(to)]) *page_table++ = 0; /* not present */ else { ++current->rss; *page_table++ = (to | mask); if (!(mem_map[MAP_NR(to)] & MAP_PAGE_RESERVED)) mem_map[MAP_NR(to)]++; } to += PAGE_SIZE; } pcnt = (size > 1024 ? 1024 : size); } invalidate(); return 0; } /* * This function puts a page in memory at the wanted address. * It returns the physical address of the page gotten, 0 if * out of memory (either when trying to access page-table or * page.) * if wp = 1 the page will be write protected */ static unsigned long put_page(struct task_struct * tsk,unsigned long page,unsigned long address,int wp) { unsigned long tmp, *page_table; /* NOTE !!! This uses the fact that _pg_dir=0 */ if (page >= high_memory) { printk("put_page: trying to put page %p at %p\n",page,address); return 0; } tmp = mem_map[MAP_NR(page)]; if (!(tmp & MAP_PAGE_RESERVED) && (tmp != 1)) { printk("put_page: mem_map disagrees with %p at %p\n",page,address); return 0; } page_table = (unsigned long *) (tsk->tss.cr3 + ((address>>20) & 0xffc)); if ((*page_table) & PAGE_PRESENT) page_table = (unsigned long *) (0xfffff000 & *page_table); else { printk("put_page: bad page directory entry\n"); oom(tsk); *page_table = BAD_PAGETABLE | PAGE_ACCESSED | 7; return 0; } page_table += (address >> PAGE_SHIFT) & 0x3ff; if (*page_table) { printk("put_page: page already exists\n"); *page_table = 0; invalidate(); } *page_table = page | PAGE_ACCESSED | 5 | (!wp << 1); /* no need for invalidate */ return page; } /* * The previous function doesn't work very well if you also want to mark * the page dirty: exec.c wants this, as it has earlier changed the page, * and we want the dirty-status to be correct (for VM). Thus the same * routine, but this time we mark it dirty too. */ unsigned long put_dirty_page(struct task_struct * tsk, unsigned long page, unsigned long address) { unsigned long tmp, *page_table; /* NOTE !!! This uses the fact that _pg_dir=0 */ if (page >= high_memory) printk("put_dirty_page: trying to put page %p at %p\n",page,address); if (mem_map[MAP_NR(page)] != 1) printk("mem_map disagrees with %p at %p\n",page,address); page_table = (unsigned long *) (tsk->tss.cr3 + ((address>>20) & 0xffc)); if ((*page_table)&1) page_table = (unsigned long *) (0xfffff000 & *page_table); else { if (!(tmp=get_free_page(GFP_KERNEL))) return 0; *page_table = tmp|7; page_table = (unsigned long *) tmp; } page_table += (address >> PAGE_SHIFT) & 0x3ff; if (*page_table) { printk("put_dirty_page: page already exists\n"); *page_table = 0; invalidate(); } *page_table = page | (PAGE_DIRTY | PAGE_ACCESSED | 7); /* no need for invalidate */ return page; } /* * This routine handles present pages, when users try to write * to a shared page. It is done by copying the page to a new address * and decrementing the shared-page counter for the old page. * * Fixed the routine to repeat a bit more: this is slightly slower, * but there were race-conditions in the old code.. */ void do_wp_page(unsigned long error_code, unsigned long address, struct task_struct * tsk, unsigned long user_esp) { unsigned long pde, pte, old_page, dirty; unsigned long new_page = 0; /* check code space write */ if (tsk == current && tsk->executable && CODE_SPACE(address, current)) { /* don't send SIGSEGV when in kernel or v86 mode */ if (user_esp) send_sig(SIGSEGV, tsk, 1); /* Note that we still do the copy-on-write: if the process catches * SIGSEGV we want things to work.. */ } repeat: pde = tsk->tss.cr3 + ((address>>20) & 0xffc); pte = *(unsigned long *) pde; if (!(pte & PAGE_PRESENT)) { if (new_page) free_page(new_page); return; } if ((pte & 7) != 7 || pte >= high_memory) { printk("do_wp_page: bogus page-table at address %08x (%08x)\n",address,pte); *(unsigned long *) pde = BAD_PAGETABLE | 7; send_sig(SIGKILL, tsk, 1); if (new_page) free_page(new_page); return; } pte &= 0xfffff000; pte += (address>>10) & 0xffc; old_page = *(unsigned long *) pte; if (!(old_page & PAGE_PRESENT)) { if (new_page) free_page(new_page); return; } if (old_page >= high_memory) { printk("do_wp_page: bogus page at address %08x (%08x)\n",address,old_page); *(unsigned long *) pte = BAD_PAGE | 7; send_sig(SIGKILL, tsk, 1); if (new_page) free_page(new_page); return; } if (old_page & PAGE_RW) { if (new_page) free_page(new_page); return; } tsk->min_flt++; dirty = old_page & PAGE_DIRTY; old_page &= 0xfffff000; if (mem_map[MAP_NR(old_page)]==1) { *(unsigned long *) pte |= 2; invalidate(); if (new_page) free_page(new_page); return; } if (!new_page && (new_page=get_free_page(GFP_KERNEL))) goto repeat; if (new_page) copy_page(old_page,new_page); else { new_page = BAD_PAGE; oom(tsk); } *(unsigned long *) pte = new_page | dirty | PAGE_ACCESSED | 7; free_page(old_page); invalidate(); } void write_verify(unsigned long address) { if (address < TASK_SIZE) do_wp_page(1,address,current,0); } static void get_empty_page(struct task_struct * tsk, unsigned long address) { unsigned long tmp; tmp = get_free_page(GFP_KERNEL); if (!tmp) { oom(tsk); tmp = BAD_PAGE; } if (!put_page(tsk,tmp,address,0)) free_page(tmp); } /* * try_to_share() checks the page at address "address" in the task "p", * to see if it exists, and if it is clean. If so, share it with the current * task. * * NOTE! This assumes we have checked that p != current, and that they * share the same executable or library. */ static int try_to_share(unsigned long address, struct task_struct * tsk, struct task_struct * p) { unsigned long from; unsigned long to; unsigned long from_page; unsigned long to_page; unsigned long phys_addr; from_page = p->tss.cr3 + ((address>>20) & 0xffc); to_page = tsk->tss.cr3 + ((address>>20) & 0xffc); /* is there a page-directory at from? */ from = *(unsigned long *) from_page; if (!(from & 1)) return 0; from &= 0xfffff000; from_page = from + ((address>>10) & 0xffc); phys_addr = *(unsigned long *) from_page; /* is the page clean and present? */ if ((phys_addr & 0x41) != 0x01) return 0; phys_addr &= 0xfffff000; if (phys_addr >= high_memory) return 0; if (mem_map[MAP_NR(phys_addr)] & MAP_PAGE_RESERVED) return 0; /* share them: write-protect */ *(unsigned long *) from_page &= ~2; invalidate(); phys_addr >>= PAGE_SHIFT; mem_map[phys_addr]++; to = *(unsigned long *) to_page; if (!(to & 1)) { to = get_free_page(GFP_KERNEL); if (!to) { mem_map[phys_addr]--; return 0; } *(unsigned long *) to_page = to | PAGE_ACCESSED | 7; } to &= 0xfffff000; to_page = to + ((address>>10) & 0xffc); if (1 & *(unsigned long *) to_page) panic("try_to_share: to_page already exists"); *(unsigned long *) to_page = *(unsigned long *) from_page; return 1; } /* * share_page() tries to find a process that could share a page with * the current one. Address is the address of the wanted page relative * to the current data space. * * We first check if it is at all feasible by checking executable->i_count. * It should be >1 if there are other tasks sharing this inode. */ static int share_page(struct task_struct * tsk, struct inode * inode, unsigned long address) { struct task_struct ** p; int i; if (!inode || inode->i_count < 2) return 0; for (p = &LAST_TASK ; p > &FIRST_TASK ; --p) { if (!*p) continue; if (tsk == *p) continue; if (inode != (*p)->executable) { for (i=0; i < (*p)->numlibraries; i++) if (inode == (*p)->libraries[i].library) break; if (i >= (*p)->numlibraries) continue; } if (try_to_share(address,tsk,*p)) return 1; } return 0; } /* * fill in an empty page-table if none exists */ static unsigned long get_empty_pgtable(struct task_struct * tsk,unsigned long address) { unsigned long page = 0; unsigned long *p; repeat: p = (unsigned long *) (tsk->tss.cr3 + ((address >> 20) & 0xffc)); if (1 & *p) { free_page(page); return *p; } if (*p) { printk("get_empty_pgtable: bad page-directory entry \n"); *p = 0; } if (page) { *p = page | PAGE_ACCESSED | 7; return *p; } if ((page = get_free_page(GFP_KERNEL)) != 0) goto repeat; oom(current); *p = BAD_PAGETABLE | 7; return 0; } void do_no_page(unsigned long error_code, unsigned long address, struct task_struct *tsk, unsigned long user_esp) { int nr[4]; unsigned long tmp; unsigned long page; unsigned int block,i; struct inode * inode; page = get_empty_pgtable(tsk,address); if (!page) return; page &= 0xfffff000; page += (address >> 10) & 0xffc; tmp = *(unsigned long *) page; if (tmp & 1) return; ++tsk->rss; if (tmp) { ++tsk->maj_flt; swap_in((unsigned long *) page); return; } address &= 0xfffff000; inode = NULL; block = 0; if (address < tsk->end_data) { inode = tsk->executable; block = 1 + address / BLOCK_SIZE; } else { i = tsk->numlibraries; while (i-- > 0) { if (address < tsk->libraries[i].start) continue; block = address - tsk->libraries[i].start; if (block >= tsk->libraries[i].length + tsk->libraries[i].bss) continue; inode = tsk->libraries[i].library; if (block < tsk->libraries[i].length) block = 1 + block / BLOCK_SIZE; else block = 0; break; } } if (!inode) { ++tsk->min_flt; get_empty_page(tsk,address); if (tsk != current) return; if (address < tsk->brk) return; if (address+8192 >= (user_esp & 0xfffff000)) return; send_sig(SIGSEGV,tsk,1); return; } if (share_page(tsk,inode,address)) { ++tsk->min_flt; return; } ++tsk->maj_flt; page = get_free_page(GFP_KERNEL); if (!page) { oom(current); put_page(tsk,BAD_PAGE,address,0); return; } if (block) { for (i=0 ; i<4 ; block++,i++) nr[i] = bmap(inode,block); bread_page(page,inode->i_dev,nr); } if (share_page(tsk,inode,address)) { free_page(page); return; } i = address + PAGE_SIZE - tsk->end_data; if (i > PAGE_SIZE-1) i = 0; tmp = page + PAGE_SIZE; while (i--) { tmp--; *(char *)tmp = 0; } if (put_page(tsk,page,address,CODE_SPACE(address, tsk))) return; free_page(page); oom(current); } /* * This routine handles page faults. It determines the address, * and the problem, and then passes it off to one of the appropriate * routines. */ void do_page_fault(unsigned long *esp, unsigned long error_code) { unsigned long address; unsigned long user_esp = 0; unsigned long stack_limit; unsigned int bit; extern void die_if_kernel(); /* get the address */ __asm__("movl %%cr2,%0":"=r" (address)); if (address < TASK_SIZE) { if (error_code & 4) { /* user mode access? */ if (esp[2] & VM_MASK) { bit = (address - 0xA0000) >> PAGE_SHIFT; if (bit < 32) current->screen_bitmap |= 1 << bit; } else user_esp = esp[3]; } if (error_code & 1) do_wp_page(error_code, address, current, user_esp); else do_no_page(error_code, address, current, user_esp); if (!user_esp) return; stack_limit = current->rlim[RLIMIT_STACK].rlim_cur; if (stack_limit >= RLIM_INFINITY) return; if (stack_limit >= current->start_stack) return; stack_limit = current->start_stack - stack_limit; if (user_esp < stack_limit) send_sig(SIGSEGV, current, 1); return; } printk("Unable to handle kernel paging request at address %08x\n",address); die_if_kernel("Oops",esp,error_code); do_exit(SIGKILL); } /* * BAD_PAGE is the page that is used for page faults when linux * is out-of-memory. Older versions of linux just did a * do_exit(), but using this instead means there is less risk * for a process dying in kernel mode, possibly leaving a inode * unused etc.. * * BAD_PAGETABLE is the accompanying page-table: it is initialized * to point to BAD_PAGE entries. */ unsigned long __bad_pagetable(void) { extern char empty_bad_page_table[PAGE_SIZE]; __asm__ __volatile__("cld ; rep ; stosl" ::"a" (7+BAD_PAGE), "D" ((long) empty_bad_page_table), "c" (1024) :"di","cx"); return (unsigned long) empty_bad_page_table; } unsigned long __bad_page(void) { extern char empty_bad_page[PAGE_SIZE]; __asm__ __volatile__("cld ; rep ; stosl" ::"a" (0), "D" ((long) empty_bad_page), "c" (1024) :"di","cx"); return (unsigned long) empty_bad_page; } void show_mem(void) { int i,free = 0,total = 0,reserved = 0; int shared = 0; printk("Mem-info:\n"); printk("Free pages: %6d\n",nr_free_pages); printk("Secondary pages: %6d\n",nr_secondary_pages); printk("Buffer heads: %6d\n",nr_buffer_heads); printk("Buffer blocks: %6d\n",nr_buffers); i = high_memory >> PAGE_SHIFT; while (i-- > 0) { total++; if (mem_map[i] & MAP_PAGE_RESERVED) reserved++; else if (!mem_map[i]) free++; else shared += mem_map[i]-1; } printk("%d pages of RAM\n",total); printk("%d free pages\n",free); printk("%d reserved pages\n",reserved); printk("%d pages shared\n",shared); } /* * paging_init() sets up the page tables - note that the first 4MB are * already mapped by head.S. * * This routines also unmaps the page at virtual kernel address 0, so * that we can trap those pesky NULL-reference errors in the kernel. */ unsigned long paging_init(unsigned long start_mem, unsigned long end_mem) { unsigned long * pg_dir; unsigned long * pg_table; unsigned long tmp; unsigned long address; /* * Physical page 0 is special: it's a "zero-page", and is guaranteed to * stay that way - it's write-protected and when there is a c-o-w, the * mm handler treats it specially. */ memset((void *) 0, 0, 4096); start_mem += 4095; start_mem &= 0xfffff000; address = 0; pg_dir = swapper_pg_dir + 768; /* at virtual addr 0xC0000000 */ while (address < end_mem) { tmp = *pg_dir; if (!tmp) { tmp = start_mem; *pg_dir = tmp | 7; start_mem += 4096; } pg_dir++; pg_table = (unsigned long *) (tmp & 0xfffff000); for (tmp = 0 ; tmp < 1024 ; tmp++,pg_table++) { if (address && address < end_mem) *pg_table = 7 + address; else *pg_table = 0; address += 4096; } } invalidate(); return start_mem; } void mem_init(unsigned long start_low_mem, unsigned long start_mem, unsigned long end_mem) { int codepages = 0; int reservedpages = 0; int datapages = 0; unsigned long tmp; unsigned short * p; extern int etext; cli(); end_mem &= 0xfffff000; high_memory = end_mem; start_mem += 0x0000000f; start_mem &= 0xfffffff0; tmp = MAP_NR(end_mem); mem_map = (unsigned short *) start_mem; p = mem_map + tmp; start_mem = (unsigned long) p; while (p > mem_map) *--p = MAP_PAGE_RESERVED; start_low_mem += 0x00000fff; start_low_mem &= 0xfffff000; start_mem += 0x00000fff; start_mem &= 0xfffff000; while (start_low_mem < 0xA0000) { mem_map[MAP_NR(start_low_mem)] = 0; start_low_mem += 4096; } while (start_mem < end_mem) { mem_map[MAP_NR(start_mem)] = 0; start_mem += 4096; } sound_mem_init(); free_page_list = 0; nr_free_pages = 0; for (tmp = 0 ; tmp < end_mem ; tmp += 4096) { if (mem_map[MAP_NR(tmp)]) { if (tmp >= 0xA0000 && tmp < 0x100000) reservedpages++; else if (tmp < (unsigned long) &etext) codepages++; else datapages++; continue; } *(unsigned long *) tmp = free_page_list; free_page_list = tmp; nr_free_pages++; } tmp = nr_free_pages << PAGE_SHIFT; printk("Memory: %dk/%dk available (%dk kernel code, %dk reserved, %dk data)\n", tmp >> 10, end_mem >> 10, codepages << 2, reservedpages << 2, datapages << 2); return; } void si_meminfo(struct sysinfo *val) { int i; i = high_memory >> PAGE_SHIFT; val->totalram = 0; val->freeram = 0; val->sharedram = 0; val->bufferram = buffermem; while (i-- > 0) { if (mem_map[i] & MAP_PAGE_RESERVED) continue; val->totalram++; if (!mem_map[i]) { val->freeram++; continue; } val->sharedram += mem_map[i]-1; } val->totalram <<= PAGE_SHIFT; val->freeram <<= PAGE_SHIFT; val->sharedram <<= PAGE_SHIFT; return; } |