Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 | /* * linux/mm/page_io.c * * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds * * Swap reorganised 29.12.95, * Asynchronous swapping added 30.12.95. Stephen Tweedie * Removed race in async swapping. 14.4.1996. Bruno Haible * Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie * Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman */ #include <linux/mm.h> #include <linux/kernel_stat.h> #include <linux/swap.h> #include <linux/locks.h> #include <linux/swapctl.h> #include <asm/pgtable.h> /* * Reads or writes a swap page. * wait=1: start I/O and wait for completion. wait=0: start asynchronous I/O. * * Important prevention of race condition: the caller *must* atomically * create a unique swap cache entry for this swap page before calling * rw_swap_page, and must lock that page. By ensuring that there is a * single page of memory reserved for the swap entry, the normal VM page * lock on that page also doubles as a lock on swap entries. Having only * one lock to deal with per swap entry (rather than locking swap and memory * independently) also makes it easier to make certain swapping operations * atomic, which is particularly important when we are trying to ensure * that shared pages stay shared while being swapped. */ static int rw_swap_page_base(int rw, swp_entry_t entry, struct page *page) { unsigned long offset; sector_t zones[PAGE_SIZE/512]; int zones_used; kdev_t dev = 0; int block_size; struct inode *swapf = 0; if (rw == READ) { ClearPageUptodate(page); kstat.pswpin++; } else kstat.pswpout++; get_swaphandle_info(entry, &offset, &dev, &swapf); if (dev) { zones[0] = offset; zones_used = 1; block_size = PAGE_SIZE; } else if (swapf) { int i, j; unsigned int block = offset << (PAGE_SHIFT - swapf->i_sb->s_blocksize_bits); block_size = swapf->i_sb->s_blocksize; for (i=0, j=0; j< PAGE_SIZE ; i++, j += block_size) if (!(zones[i] = bmap(swapf,block++))) { printk("rw_swap_page: bad swap file\n"); return 0; } zones_used = i; dev = swapf->i_dev; } else { return 0; } /* block_size == PAGE_SIZE/zones_used */ brw_page(rw, page, dev, zones, block_size); /* Note! For consistency we do all of the logic, * decrementing the page count, and unlocking the page in the * swap lock map - in the IO completion handler. */ return 1; } /* * A simple wrapper so the base function doesn't need to enforce * that all swap pages go through the swap cache! We verify that: * - the page is locked * - it's marked as being swap-cache * - it's associated with the swap inode */ void rw_swap_page(int rw, struct page *page) { swp_entry_t entry; entry.val = page->index; if (!PageLocked(page)) PAGE_BUG(page); if (!PageSwapCache(page)) PAGE_BUG(page); if (page->mapping != &swapper_space) PAGE_BUG(page); if (!rw_swap_page_base(rw, entry, page)) UnlockPage(page); } /* * The swap lock map insists that pages be in the page cache! * Therefore we can't use it. Later when we can remove the need for the * lock map and we can reduce the number of functions exported. */ void rw_swap_page_nolock(int rw, swp_entry_t entry, char *buf) { struct page *page = virt_to_page(buf); if (!PageLocked(page)) PAGE_BUG(page); if (PageSwapCache(page)) PAGE_BUG(page); if (page->mapping) PAGE_BUG(page); /* needs sync_page to wait I/O completation */ page->mapping = &swapper_space; if (!rw_swap_page_base(rw, entry, page)) UnlockPage(page); wait_on_page(page); page->mapping = NULL; } |