Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 | /* * linux/mm/page_io.c * * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds * * Swap reorganised 29.12.95, * Asynchronous swapping added 30.12.95. Stephen Tweedie * Removed race in async swapping. 14.4.1996. Bruno Haible * Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie */ #include <linux/mm.h> #include <linux/kernel_stat.h> #include <linux/swap.h> #include <linux/locks.h> #include <linux/swapctl.h> #include <asm/dma.h> #include <asm/uaccess.h> /* for copy_to/from_user */ #include <asm/pgtable.h> static struct wait_queue * lock_queue = NULL; /* * Reads or writes a swap page. * wait=1: start I/O and wait for completion. wait=0: start asynchronous I/O. * All IO to swap files (as opposed to swap partitions) is done * synchronously. * * Important prevention of race condition: the caller *must* atomically * create a unique swap cache entry for this swap page before calling * rw_swap_page, and must lock that page. By ensuring that there is a * single page of memory reserved for the swap entry, the normal VM page * lock on that page also doubles as a lock on swap entries. Having only * one lock to deal with per swap entry (rather than locking swap and memory * independently) also makes it easier to make certain swapping operations * atomic, which is particularly important when we are trying to ensure * that shared pages stay shared while being swapped. */ void rw_swap_page(int rw, unsigned long entry, char * buf, int wait) { unsigned long type, offset; struct swap_info_struct * p; struct page *page = mem_map + MAP_NR(buf); #ifdef DEBUG_SWAP printk ("DebugVM: %s_swap_page entry %08lx, page %p (count %d), %s\n", (rw == READ) ? "read" : "write", entry, buf, atomic_read(&page->count), wait ? "wait" : "nowait"); #endif if (page->inode && page->inode != &swapper_inode) panic ("Tried to swap a non-swapper page"); type = SWP_TYPE(entry); if (type >= nr_swapfiles) { printk("Internal error: bad swap-device\n"); return; } /* Don't allow too many pending pages in flight.. */ if (atomic_read(&nr_async_pages) > SWAP_CLUSTER_MAX) wait = 1; p = &swap_info[type]; offset = SWP_OFFSET(entry); if (offset >= p->max) { printk("rw_swap_page: weirdness\n"); return; } if (p->swap_map && !p->swap_map[offset]) { printk(KERN_ERR "rw_swap_page: " "Trying to %s unallocated swap (%08lx)\n", (rw == READ) ? "read" : "write", entry); return; } if (!(p->flags & SWP_USED)) { printk(KERN_ERR "rw_swap_page: " "Trying to swap to unused swap-device\n"); return; } if (!PageLocked(page)) { printk(KERN_ERR "VM: swap page is unlocked\n"); return; } /* Make sure we are the only process doing I/O with this swap page. */ while (test_and_set_bit(offset,p->swap_lockmap)) { run_task_queue(&tq_disk); sleep_on(&lock_queue); } if (rw == READ) { clear_bit(PG_uptodate, &page->flags); kstat.pswpin++; } else kstat.pswpout++; atomic_inc(&page->count); /* * Make sure that we have a swap cache association for this * page. We need this to find which swap page to unlock once * the swap IO has completed to the physical page. If the page * is not already in the cache, just overload the offset entry * as if it were: we are not allowed to manipulate the inode * hashing for locked pages. */ if (!PageSwapCache(page)) { printk(KERN_ERR "VM: swap page is not in swap cache\n"); return; } if (page->offset != entry) { printk (KERN_ERR "VM: swap entry mismatch\n"); return; } if (p->swap_device) { if (!wait) { set_bit(PG_free_after, &page->flags); set_bit(PG_decr_after, &page->flags); set_bit(PG_swap_unlock_after, &page->flags); atomic_inc(&nr_async_pages); } ll_rw_page(rw,p->swap_device,offset,buf); /* * NOTE! We don't decrement the page count if we * don't wait - that will happen asynchronously * when the IO completes. */ if (!wait) return; wait_on_page(page); } else if (p->swap_file) { struct inode *swapf = p->swap_file->d_inode; unsigned int zones[PAGE_SIZE/512]; int i; if (swapf->i_op->bmap == NULL && swapf->i_op->smap != NULL){ /* With MS-DOS, we use msdos_smap which return a sector number (not a cluster or block number). It is a patch to enable the UMSDOS project. Other people are working on better solution. It sounds like ll_rw_swap_file defined it operation size (sector size) based on PAGE_SIZE and the number of block to read. So using bmap or smap should work even if smap will require more blocks. */ int j; unsigned int block = offset << 3; for (i=0, j=0; j< PAGE_SIZE ; i++, j += 512){ if (!(zones[i] = swapf->i_op->smap(swapf,block++))) { printk("rw_swap_page: bad swap file\n"); return; } } }else{ int j; unsigned int block = offset << (PAGE_SHIFT - swapf->i_sb->s_blocksize_bits); for (i=0, j=0; j< PAGE_SIZE ; i++, j +=swapf->i_sb->s_blocksize) if (!(zones[i] = bmap(swapf,block++))) { printk("rw_swap_page: bad swap file\n"); return; } } ll_rw_swap_file(rw,swapf->i_dev, zones, i,buf); /* Unlike ll_rw_page, ll_rw_swap_file won't unlock the page for us. */ clear_bit(PG_locked, &page->flags); wake_up(&page->wait); } else printk(KERN_ERR "rw_swap_page: no swap file or device\n"); /* This shouldn't happen, but check to be sure. */ if (atomic_read(&page->count) == 1) printk(KERN_ERR "rw_swap_page: page unused while waiting!\n"); atomic_dec(&page->count); if (offset && !test_and_clear_bit(offset,p->swap_lockmap)) printk(KERN_ERR "rw_swap_page: lock already cleared\n"); wake_up(&lock_queue); #ifdef DEBUG_SWAP printk ("DebugVM: %s_swap_page finished on page %p (count %d)\n", (rw == READ) ? "read" : "write", buf, atomic_read(&page->count)); #endif } /* This is run when asynchronous page I/O has completed. */ void swap_after_unlock_page (unsigned long entry) { unsigned long type, offset; struct swap_info_struct * p; type = SWP_TYPE(entry); if (type >= nr_swapfiles) { printk("swap_after_unlock_page: bad swap-device\n"); return; } p = &swap_info[type]; offset = SWP_OFFSET(entry); if (offset >= p->max) { printk("swap_after_unlock_page: weirdness\n"); return; } if (!test_and_clear_bit(offset,p->swap_lockmap)) printk("swap_after_unlock_page: lock already cleared\n"); wake_up(&lock_queue); } /* * Setting up a new swap file needs a simple wrapper just to read the * swap signature. SysV shared memory also needs a simple wrapper. */ void rw_swap_page_nocache(int rw, unsigned long entry, char *buffer) { struct page *page; page = mem_map + MAP_NR((unsigned long) buffer); wait_on_page(page); set_bit(PG_locked, &page->flags); if (test_and_set_bit(PG_swap_cache, &page->flags)) { printk ("VM: read_swap_page: page already in swap cache!\n"); return; } if (page->inode) { printk ("VM: read_swap_page: page already in page cache!\n"); return; } page->inode = &swapper_inode; page->offset = entry; atomic_inc(&page->count); /* Protect from shrink_mmap() */ rw_swap_page(rw, entry, buffer, 1); atomic_dec(&page->count); page->inode = 0; clear_bit(PG_swap_cache, &page->flags); } /* * Swap partitions are now read via brw_page. ll_rw_page is an * asynchronous function now --- we must call wait_on_page afterwards * if synchronous IO is required. */ void ll_rw_page(int rw, kdev_t dev, unsigned long offset, char * buffer) { int block = offset; struct page *page; switch (rw) { case READ: break; case WRITE: if (is_read_only(dev)) { printk("Can't page to read-only device %s\n", kdevname(dev)); return; } break; default: panic("ll_rw_page: bad block dev cmd, must be R/W"); } page = mem_map + MAP_NR(buffer); if (!PageLocked(page)) panic ("ll_rw_page: page not already locked"); brw_page(rw, page, dev, &block, PAGE_SIZE, 0); } |