Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 | /* * linux/mm/page_io.c * * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds * * Swap reorganised 29.12.95, * Asynchronous swapping added 30.12.95. Stephen Tweedie * Removed race in async swapping. 14.4.1996. Bruno Haible */ #include <linux/mm.h> #include <linux/sched.h> #include <linux/head.h> #include <linux/kernel.h> #include <linux/kernel_stat.h> #include <linux/errno.h> #include <linux/string.h> #include <linux/stat.h> #include <linux/swap.h> #include <linux/fs.h> #include <linux/locks.h> #include <linux/swapctl.h> #include <asm/dma.h> #include <asm/system.h> /* for cli()/sti() */ #include <asm/segment.h> /* for memcpy_to/fromfs */ #include <asm/bitops.h> #include <asm/pgtable.h> static struct wait_queue * lock_queue = NULL; /* * Reads or writes a swap page. * wait=1: start I/O and wait for completion. wait=0: start asynchronous I/O. * * Important prevention of race condition: The first thing we do is set a lock * on this swap page, which lasts until I/O completes. This way a * write_swap_page(entry) immediately followed by a read_swap_page(entry) * on the same entry will first complete the write_swap_page(). Fortunately, * not more than one write_swap_page() request can be pending per entry. So * all races the caller must catch are: multiple read_swap_page() requests * on the same entry. */ void rw_swap_page(int rw, unsigned long entry, char * buf, int wait) { unsigned long type, offset; struct swap_info_struct * p; struct page *page; type = SWP_TYPE(entry); if (type >= nr_swapfiles) { printk("Internal error: bad swap-device\n"); return; } p = &swap_info[type]; offset = SWP_OFFSET(entry); if (offset >= p->max) { printk("rw_swap_page: weirdness\n"); return; } if (p->swap_map && !p->swap_map[offset]) { printk("Hmm.. Trying to use unallocated swap (%08lx)\n", entry); return; } if (!(p->flags & SWP_USED)) { printk("Trying to swap to unused swap-device\n"); return; } /* Make sure we are the only process doing I/O with this swap page. */ while (set_bit(offset,p->swap_lockmap)) sleep_on(&lock_queue); if (rw == READ) kstat.pswpin++; else kstat.pswpout++; page = mem_map + MAP_NR(buf); wait_on_page(page); if (p->swap_device) { if (!wait) { page->count++; set_bit(PG_free_after, &page->flags); set_bit(PG_decr_after, &page->flags); set_bit(PG_swap_unlock_after, &page->flags); page->swap_unlock_entry = entry; nr_async_pages++; } ll_rw_page(rw,p->swap_device,offset,buf); if (!wait) return; wait_on_page(page); } else if (p->swap_file) { struct inode *swapf = p->swap_file; unsigned int zones[PAGE_SIZE/512]; int i; if (swapf->i_op->bmap == NULL && swapf->i_op->smap != NULL){ /* With MsDOS, we use msdos_smap which return a sector number (not a cluster or block number). It is a patch to enable the UMSDOS project. Other people are working on better solution. It sounds like ll_rw_swap_file defined it operation size (sector size) based on PAGE_SIZE and the number of block to read. So using bmap or smap should work even if smap will require more blocks. */ int j; unsigned int block = offset << 3; for (i=0, j=0; j< PAGE_SIZE ; i++, j += 512){ if (!(zones[i] = swapf->i_op->smap(swapf,block++))) { printk("rw_swap_page: bad swap file\n"); return; } } }else{ int j; unsigned int block = offset << (PAGE_SHIFT - swapf->i_sb->s_blocksize_bits); for (i=0, j=0; j< PAGE_SIZE ; i++, j +=swapf->i_sb->s_blocksize) if (!(zones[i] = bmap(swapf,block++))) { printk("rw_swap_page: bad swap file\n"); } } ll_rw_swap_file(rw,swapf->i_dev, zones, i,buf); } else printk("rw_swap_page: no swap file or device\n"); if (offset && !clear_bit(offset,p->swap_lockmap)) printk("rw_swap_page: lock already cleared\n"); wake_up(&lock_queue); } /* This is run when asynchronous page I/O has completed. */ void swap_after_unlock_page (unsigned long entry) { unsigned long type, offset; struct swap_info_struct * p; type = SWP_TYPE(entry); if (type >= nr_swapfiles) { printk("swap_after_unlock_page: bad swap-device\n"); return; } p = &swap_info[type]; offset = SWP_OFFSET(entry); if (offset >= p->max) { printk("swap_after_unlock_page: weirdness\n"); return; } if (!clear_bit(offset,p->swap_lockmap)) printk("swap_after_unlock_page: lock already cleared\n"); wake_up(&lock_queue); } /* * Swap partitions are now read via brw_page. ll_rw_page is an * asynchronous function now --- we must call wait_on_page afterwards * if synchronous IO is required. */ void ll_rw_page(int rw, kdev_t dev, unsigned long page, char * buffer) { int block = page; switch (rw) { case READ: break; case WRITE: if (is_read_only(dev)) { printk("Can't page to read-only device %s\n", kdevname(dev)); return; } break; default: panic("ll_rw_page: bad block dev cmd, must be R/W"); } if (set_bit(PG_locked, &mem_map[MAP_NR(buffer)].flags)) panic ("ll_rw_page: page already locked"); brw_page(rw, (unsigned long) buffer, dev, &block, PAGE_SIZE, 0); } |