Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 | /* * linux/mm/page_io.c * * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds * * Swap reorganised 29.12.95, * Asynchronous swapping added 30.12.95. Stephen Tweedie * Removed race in async swapping. 14.4.1996. Bruno Haible * Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie * Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman */ #include <linux/mm.h> #include <linux/kernel_stat.h> #include <linux/swap.h> #include <linux/locks.h> #include <linux/swapctl.h> #include <asm/pgtable.h> static struct wait_queue * lock_queue = NULL; /* * Reads or writes a swap page. * wait=1: start I/O and wait for completion. wait=0: start asynchronous I/O. * * Important prevention of race condition: the caller *must* atomically * create a unique swap cache entry for this swap page before calling * rw_swap_page, and must lock that page. By ensuring that there is a * single page of memory reserved for the swap entry, the normal VM page * lock on that page also doubles as a lock on swap entries. Having only * one lock to deal with per swap entry (rather than locking swap and memory * independently) also makes it easier to make certain swapping operations * atomic, which is particularly important when we are trying to ensure * that shared pages stay shared while being swapped. */ static void rw_swap_page_base(int rw, unsigned long entry, struct page *page, int wait) { unsigned long type, offset; struct swap_info_struct * p; int zones[PAGE_SIZE/512]; int zones_used; kdev_t dev = 0; int block_size; #ifdef DEBUG_SWAP printk ("DebugVM: %s_swap_page entry %08lx, page %p (count %d), %s\n", (rw == READ) ? "read" : "write", entry, (char *) page_address(page), atomic_read(&page->count), wait ? "wait" : "nowait"); #endif type = SWP_TYPE(entry); if (type >= nr_swapfiles) { printk("Internal error: bad swap-device\n"); return; } /* Don't allow too many pending pages in flight.. */ if (atomic_read(&nr_async_pages) > pager_daemon.swap_cluster) wait = 1; p = &swap_info[type]; offset = SWP_OFFSET(entry); if (offset >= p->max) { printk("rw_swap_page: weirdness\n"); return; } if (p->swap_map && !p->swap_map[offset]) { printk(KERN_ERR "rw_swap_page: " "Trying to %s unallocated swap (%08lx)\n", (rw == READ) ? "read" : "write", entry); return; } if (!(p->flags & SWP_USED)) { printk(KERN_ERR "rw_swap_page: " "Trying to swap to unused swap-device\n"); return; } if (!PageLocked(page)) { printk(KERN_ERR "VM: swap page is unlocked\n"); return; } if (PageSwapCache(page)) { /* Make sure we are the only process doing I/O with this swap page. */ if (test_and_set_bit(offset, p->swap_lockmap)) { struct wait_queue __wait; __wait.task = current; add_wait_queue(&lock_queue, &__wait); for (;;) { current->state = TASK_UNINTERRUPTIBLE; mb(); if (!test_and_set_bit(offset, p->swap_lockmap)) break; run_task_queue(&tq_disk); schedule(); } current->state = TASK_RUNNING; remove_wait_queue(&lock_queue, &__wait); } /* * Make sure that we have a swap cache association for this * page. We need this to find which swap page to unlock once * the swap IO has completed to the physical page. If the page * is not already in the cache, just overload the offset entry * as if it were: we are not allowed to manipulate the inode * hashing for locked pages. */ if (page->offset != entry) { printk ("swap entry mismatch"); return; } } if (rw == READ) { clear_bit(PG_uptodate, &page->flags); kstat.pswpin++; } else kstat.pswpout++; atomic_inc(&page->count); if (p->swap_device) { zones[0] = offset; zones_used = 1; dev = p->swap_device; block_size = PAGE_SIZE; } else if (p->swap_file) { struct inode *swapf = p->swap_file->d_inode; int i; if (swapf->i_op->bmap == NULL && swapf->i_op->smap != NULL){ /* With MS-DOS, we use msdos_smap which returns a sector number (not a cluster or block number). It is a patch to enable the UMSDOS project. Other people are working on better solution. It sounds like ll_rw_swap_file defined its operation size (sector size) based on PAGE_SIZE and the number of blocks to read. So using bmap or smap should work even if smap will require more blocks. */ int j; unsigned int block = offset << 3; for (i=0, j=0; j< PAGE_SIZE ; i++, j += 512){ if (!(zones[i] = swapf->i_op->smap(swapf,block++))) { printk("rw_swap_page: bad swap file\n"); return; } } block_size = 512; }else{ int j; unsigned int block = offset << (PAGE_SHIFT - swapf->i_sb->s_blocksize_bits); block_size = swapf->i_sb->s_blocksize; for (i=0, j=0; j< PAGE_SIZE ; i++, j += block_size) if (!(zones[i] = bmap(swapf,block++))) { printk("rw_swap_page: bad swap file\n"); return; } zones_used = i; dev = swapf->i_dev; } } else { printk(KERN_ERR "rw_swap_page: no swap file or device\n"); /* Do some cleaning up so if this ever happens we can hopefully * trigger controlled shutdown. */ if (PageSwapCache(page)) { if (!test_and_clear_bit(offset,p->swap_lockmap)) printk("swap_after_unlock_page: lock already cleared\n"); wake_up(&lock_queue); } atomic_dec(&page->count); return; } if (!wait) { set_bit(PG_decr_after, &page->flags); atomic_inc(&nr_async_pages); } if (PageSwapCache(page)) { /* only lock/unlock swap cache pages! */ set_bit(PG_swap_unlock_after, &page->flags); } set_bit(PG_free_after, &page->flags); /* block_size == PAGE_SIZE/zones_used */ brw_page(rw, page, dev, zones, block_size, 0); /* Note! For consistency we do all of the logic, * decrementing the page count, and unlocking the page in the * swap lock map - in the IO completion handler. */ if (!wait) return; wait_on_page(page); /* This shouldn't happen, but check to be sure. */ if (atomic_read(&page->count) == 0) printk(KERN_ERR "rw_swap_page: page unused while waiting!\n"); #ifdef DEBUG_SWAP printk ("DebugVM: %s_swap_page finished on page %p (count %d)\n", (rw == READ) ? "read" : "write", (char *) page_adddress(page), atomic_read(&page->count)); #endif } /* Note: We could remove this totally asynchronous function, * and improve swap performance, and remove the need for the swap lock map, * by not removing pages from the swap cache until after I/O has been * processed and letting remove_from_page_cache decrement the swap count * just before it removes the page from the page cache. */ /* This is run when asynchronous page I/O has completed. */ void swap_after_unlock_page (unsigned long entry) { unsigned long type, offset; struct swap_info_struct * p; type = SWP_TYPE(entry); if (type >= nr_swapfiles) { printk("swap_after_unlock_page: bad swap-device\n"); return; } p = &swap_info[type]; offset = SWP_OFFSET(entry); if (offset >= p->max) { printk("swap_after_unlock_page: weirdness\n"); return; } if (!test_and_clear_bit(offset,p->swap_lockmap)) printk("swap_after_unlock_page: lock already cleared\n"); wake_up(&lock_queue); } /* A simple wrapper so the base function doesn't need to enforce * that all swap pages go through the swap cache! */ void rw_swap_page(int rw, unsigned long entry, char *buf, int wait) { struct page *page = mem_map + MAP_NR(buf); if (page->inode && page->inode != &swapper_inode) panic ("Tried to swap a non-swapper page"); /* * Make sure that we have a swap cache association for this * page. We need this to find which swap page to unlock once * the swap IO has completed to the physical page. If the page * is not already in the cache, just overload the offset entry * as if it were: we are not allowed to manipulate the inode * hashing for locked pages. */ if (!PageSwapCache(page)) { printk("VM: swap page is not in swap cache\n"); return; } if (page->offset != entry) { printk ("swap entry mismatch"); return; } rw_swap_page_base(rw, entry, page, wait); } /* * Setting up a new swap file needs a simple wrapper just to read the * swap signature. SysV shared memory also needs a simple wrapper. */ void rw_swap_page_nocache(int rw, unsigned long entry, char *buffer) { struct page *page; page = mem_map + MAP_NR((unsigned long) buffer); wait_on_page(page); set_bit(PG_locked, &page->flags); if (test_and_set_bit(PG_swap_cache, &page->flags)) { printk ("VM: read_swap_page: page already in swap cache!\n"); return; } if (page->inode) { printk ("VM: read_swap_page: page already in page cache!\n"); return; } page->inode = &swapper_inode; page->offset = entry; atomic_inc(&page->count); /* Protect from shrink_mmap() */ rw_swap_page(rw, entry, buffer, 1); atomic_dec(&page->count); page->inode = 0; clear_bit(PG_swap_cache, &page->flags); } /* * shmfs needs a version that doesn't put the page in the page cache! * The swap lock map insists that pages be in the page cache! * Therefore we can't use it. Later when we can remove the need for the * lock map and we can reduce the number of functions exported. */ void rw_swap_page_nolock(int rw, unsigned long entry, char *buffer, int wait) { struct page *page = mem_map + MAP_NR((unsigned long) buffer); if (!PageLocked(page)) { printk("VM: rw_swap_page_nolock: page not locked!\n"); return; } if (PageSwapCache(page)) { printk ("VM: rw_swap_page_nolock: page in swap cache!\n"); return; } rw_swap_page_base(rw, entry, page, wait); } |