Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 | // SPDX-License-Identifier: GPL-2.0 /* * SH RSPI driver * * Copyright (C) 2012, 2013 Renesas Solutions Corp. * Copyright (C) 2014 Glider bvba * * Based on spi-sh.c: * Copyright (C) 2011 Renesas Solutions Corp. */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/sched.h> #include <linux/errno.h> #include <linux/interrupt.h> #include <linux/platform_device.h> #include <linux/io.h> #include <linux/clk.h> #include <linux/dmaengine.h> #include <linux/dma-mapping.h> #include <linux/of.h> #include <linux/pm_runtime.h> #include <linux/reset.h> #include <linux/sh_dma.h> #include <linux/spi/spi.h> #include <linux/spi/rspi.h> #include <linux/spinlock.h> #define RSPI_SPCR 0x00 /* Control Register */ #define RSPI_SSLP 0x01 /* Slave Select Polarity Register */ #define RSPI_SPPCR 0x02 /* Pin Control Register */ #define RSPI_SPSR 0x03 /* Status Register */ #define RSPI_SPDR 0x04 /* Data Register */ #define RSPI_SPSCR 0x08 /* Sequence Control Register */ #define RSPI_SPSSR 0x09 /* Sequence Status Register */ #define RSPI_SPBR 0x0a /* Bit Rate Register */ #define RSPI_SPDCR 0x0b /* Data Control Register */ #define RSPI_SPCKD 0x0c /* Clock Delay Register */ #define RSPI_SSLND 0x0d /* Slave Select Negation Delay Register */ #define RSPI_SPND 0x0e /* Next-Access Delay Register */ #define RSPI_SPCR2 0x0f /* Control Register 2 (SH only) */ #define RSPI_SPCMD0 0x10 /* Command Register 0 */ #define RSPI_SPCMD1 0x12 /* Command Register 1 */ #define RSPI_SPCMD2 0x14 /* Command Register 2 */ #define RSPI_SPCMD3 0x16 /* Command Register 3 */ #define RSPI_SPCMD4 0x18 /* Command Register 4 */ #define RSPI_SPCMD5 0x1a /* Command Register 5 */ #define RSPI_SPCMD6 0x1c /* Command Register 6 */ #define RSPI_SPCMD7 0x1e /* Command Register 7 */ #define RSPI_SPCMD(i) (RSPI_SPCMD0 + (i) * 2) #define RSPI_NUM_SPCMD 8 #define RSPI_RZ_NUM_SPCMD 4 #define QSPI_NUM_SPCMD 4 /* RSPI on RZ only */ #define RSPI_SPBFCR 0x20 /* Buffer Control Register */ #define RSPI_SPBFDR 0x22 /* Buffer Data Count Setting Register */ /* QSPI only */ #define QSPI_SPBFCR 0x18 /* Buffer Control Register */ #define QSPI_SPBDCR 0x1a /* Buffer Data Count Register */ #define QSPI_SPBMUL0 0x1c /* Transfer Data Length Multiplier Setting Register 0 */ #define QSPI_SPBMUL1 0x20 /* Transfer Data Length Multiplier Setting Register 1 */ #define QSPI_SPBMUL2 0x24 /* Transfer Data Length Multiplier Setting Register 2 */ #define QSPI_SPBMUL3 0x28 /* Transfer Data Length Multiplier Setting Register 3 */ #define QSPI_SPBMUL(i) (QSPI_SPBMUL0 + (i) * 4) /* SPCR - Control Register */ #define SPCR_SPRIE 0x80 /* Receive Interrupt Enable */ #define SPCR_SPE 0x40 /* Function Enable */ #define SPCR_SPTIE 0x20 /* Transmit Interrupt Enable */ #define SPCR_SPEIE 0x10 /* Error Interrupt Enable */ #define SPCR_MSTR 0x08 /* Master/Slave Mode Select */ #define SPCR_MODFEN 0x04 /* Mode Fault Error Detection Enable */ /* RSPI on SH only */ #define SPCR_TXMD 0x02 /* TX Only Mode (vs. Full Duplex) */ #define SPCR_SPMS 0x01 /* 3-wire Mode (vs. 4-wire) */ /* QSPI on R-Car Gen2 only */ #define SPCR_WSWAP 0x02 /* Word Swap of read-data for DMAC */ #define SPCR_BSWAP 0x01 /* Byte Swap of read-data for DMAC */ /* SSLP - Slave Select Polarity Register */ #define SSLP_SSLP(i) BIT(i) /* SSLi Signal Polarity Setting */ /* SPPCR - Pin Control Register */ #define SPPCR_MOIFE 0x20 /* MOSI Idle Value Fixing Enable */ #define SPPCR_MOIFV 0x10 /* MOSI Idle Fixed Value */ #define SPPCR_SPOM 0x04 #define SPPCR_SPLP2 0x02 /* Loopback Mode 2 (non-inverting) */ #define SPPCR_SPLP 0x01 /* Loopback Mode (inverting) */ #define SPPCR_IO3FV 0x04 /* Single-/Dual-SPI Mode IO3 Output Fixed Value */ #define SPPCR_IO2FV 0x04 /* Single-/Dual-SPI Mode IO2 Output Fixed Value */ /* SPSR - Status Register */ #define SPSR_SPRF 0x80 /* Receive Buffer Full Flag */ #define SPSR_TEND 0x40 /* Transmit End */ #define SPSR_SPTEF 0x20 /* Transmit Buffer Empty Flag */ #define SPSR_PERF 0x08 /* Parity Error Flag */ #define SPSR_MODF 0x04 /* Mode Fault Error Flag */ #define SPSR_IDLNF 0x02 /* RSPI Idle Flag */ #define SPSR_OVRF 0x01 /* Overrun Error Flag (RSPI only) */ /* SPSCR - Sequence Control Register */ #define SPSCR_SPSLN_MASK 0x07 /* Sequence Length Specification */ /* SPSSR - Sequence Status Register */ #define SPSSR_SPECM_MASK 0x70 /* Command Error Mask */ #define SPSSR_SPCP_MASK 0x07 /* Command Pointer Mask */ /* SPDCR - Data Control Register */ #define SPDCR_TXDMY 0x80 /* Dummy Data Transmission Enable */ #define SPDCR_SPLW1 0x40 /* Access Width Specification (RZ) */ #define SPDCR_SPLW0 0x20 /* Access Width Specification (RZ) */ #define SPDCR_SPLLWORD (SPDCR_SPLW1 | SPDCR_SPLW0) #define SPDCR_SPLWORD SPDCR_SPLW1 #define SPDCR_SPLBYTE SPDCR_SPLW0 #define SPDCR_SPLW 0x20 /* Access Width Specification (SH) */ #define SPDCR_SPRDTD 0x10 /* Receive Transmit Data Select (SH) */ #define SPDCR_SLSEL1 0x08 #define SPDCR_SLSEL0 0x04 #define SPDCR_SLSEL_MASK 0x0c /* SSL1 Output Select (SH) */ #define SPDCR_SPFC1 0x02 #define SPDCR_SPFC0 0x01 #define SPDCR_SPFC_MASK 0x03 /* Frame Count Setting (1-4) (SH) */ /* SPCKD - Clock Delay Register */ #define SPCKD_SCKDL_MASK 0x07 /* Clock Delay Setting (1-8) */ /* SSLND - Slave Select Negation Delay Register */ #define SSLND_SLNDL_MASK 0x07 /* SSL Negation Delay Setting (1-8) */ /* SPND - Next-Access Delay Register */ #define SPND_SPNDL_MASK 0x07 /* Next-Access Delay Setting (1-8) */ /* SPCR2 - Control Register 2 */ #define SPCR2_PTE 0x08 /* Parity Self-Test Enable */ #define SPCR2_SPIE 0x04 /* Idle Interrupt Enable */ #define SPCR2_SPOE 0x02 /* Odd Parity Enable (vs. Even) */ #define SPCR2_SPPE 0x01 /* Parity Enable */ /* SPCMDn - Command Registers */ #define SPCMD_SCKDEN 0x8000 /* Clock Delay Setting Enable */ #define SPCMD_SLNDEN 0x4000 /* SSL Negation Delay Setting Enable */ #define SPCMD_SPNDEN 0x2000 /* Next-Access Delay Enable */ #define SPCMD_LSBF 0x1000 /* LSB First */ #define SPCMD_SPB_MASK 0x0f00 /* Data Length Setting */ #define SPCMD_SPB_8_TO_16(bit) (((bit - 1) << 8) & SPCMD_SPB_MASK) #define SPCMD_SPB_8BIT 0x0000 /* QSPI only */ #define SPCMD_SPB_16BIT 0x0100 #define SPCMD_SPB_20BIT 0x0000 #define SPCMD_SPB_24BIT 0x0100 #define SPCMD_SPB_32BIT 0x0200 #define SPCMD_SSLKP 0x0080 /* SSL Signal Level Keeping */ #define SPCMD_SPIMOD_MASK 0x0060 /* SPI Operating Mode (QSPI only) */ #define SPCMD_SPIMOD1 0x0040 #define SPCMD_SPIMOD0 0x0020 #define SPCMD_SPIMOD_SINGLE 0 #define SPCMD_SPIMOD_DUAL SPCMD_SPIMOD0 #define SPCMD_SPIMOD_QUAD SPCMD_SPIMOD1 #define SPCMD_SPRW 0x0010 /* SPI Read/Write Access (Dual/Quad) */ #define SPCMD_SSLA(i) ((i) << 4) /* SSL Assert Signal Setting */ #define SPCMD_BRDV_MASK 0x000c /* Bit Rate Division Setting */ #define SPCMD_BRDV(brdv) ((brdv) << 2) #define SPCMD_CPOL 0x0002 /* Clock Polarity Setting */ #define SPCMD_CPHA 0x0001 /* Clock Phase Setting */ /* SPBFCR - Buffer Control Register */ #define SPBFCR_TXRST 0x80 /* Transmit Buffer Data Reset */ #define SPBFCR_RXRST 0x40 /* Receive Buffer Data Reset */ #define SPBFCR_TXTRG_MASK 0x30 /* Transmit Buffer Data Triggering Number */ #define SPBFCR_RXTRG_MASK 0x07 /* Receive Buffer Data Triggering Number */ /* QSPI on R-Car Gen2 */ #define SPBFCR_TXTRG_1B 0x00 /* 31 bytes (1 byte available) */ #define SPBFCR_TXTRG_32B 0x30 /* 0 byte (32 bytes available) */ #define SPBFCR_RXTRG_1B 0x00 /* 1 byte (31 bytes available) */ #define SPBFCR_RXTRG_32B 0x07 /* 32 bytes (0 byte available) */ #define QSPI_BUFFER_SIZE 32u struct rspi_data { void __iomem *addr; u32 speed_hz; struct spi_controller *ctlr; struct platform_device *pdev; wait_queue_head_t wait; spinlock_t lock; /* Protects RMW-access to RSPI_SSLP */ struct clk *clk; u16 spcmd; u8 spsr; u8 sppcr; int rx_irq, tx_irq; const struct spi_ops *ops; unsigned dma_callbacked:1; unsigned byte_access:1; }; static void rspi_write8(const struct rspi_data *rspi, u8 data, u16 offset) { iowrite8(data, rspi->addr + offset); } static void rspi_write16(const struct rspi_data *rspi, u16 data, u16 offset) { iowrite16(data, rspi->addr + offset); } static void rspi_write32(const struct rspi_data *rspi, u32 data, u16 offset) { iowrite32(data, rspi->addr + offset); } static u8 rspi_read8(const struct rspi_data *rspi, u16 offset) { return ioread8(rspi->addr + offset); } static u16 rspi_read16(const struct rspi_data *rspi, u16 offset) { return ioread16(rspi->addr + offset); } static void rspi_write_data(const struct rspi_data *rspi, u16 data) { if (rspi->byte_access) rspi_write8(rspi, data, RSPI_SPDR); else /* 16 bit */ rspi_write16(rspi, data, RSPI_SPDR); } static u16 rspi_read_data(const struct rspi_data *rspi) { if (rspi->byte_access) return rspi_read8(rspi, RSPI_SPDR); else /* 16 bit */ return rspi_read16(rspi, RSPI_SPDR); } /* optional functions */ struct spi_ops { int (*set_config_register)(struct rspi_data *rspi, int access_size); int (*transfer_one)(struct spi_controller *ctlr, struct spi_device *spi, struct spi_transfer *xfer); u16 extra_mode_bits; u16 min_div; u16 max_div; u16 flags; u16 fifo_size; u8 num_hw_ss; }; static void rspi_set_rate(struct rspi_data *rspi) { unsigned long clksrc; int brdv = 0, spbr; clksrc = clk_get_rate(rspi->clk); spbr = DIV_ROUND_UP(clksrc, 2 * rspi->speed_hz) - 1; while (spbr > 255 && brdv < 3) { brdv++; spbr = DIV_ROUND_UP(spbr + 1, 2) - 1; } rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR); rspi->spcmd |= SPCMD_BRDV(brdv); rspi->speed_hz = DIV_ROUND_UP(clksrc, (2U << brdv) * (spbr + 1)); } /* * functions for RSPI on legacy SH */ static int rspi_set_config_register(struct rspi_data *rspi, int access_size) { /* Sets output mode, MOSI signal, and (optionally) loopback */ rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR); /* Sets transfer bit rate */ rspi_set_rate(rspi); /* Disable dummy transmission, set 16-bit word access, 1 frame */ rspi_write8(rspi, 0, RSPI_SPDCR); rspi->byte_access = 0; /* Sets RSPCK, SSL, next-access delay value */ rspi_write8(rspi, 0x00, RSPI_SPCKD); rspi_write8(rspi, 0x00, RSPI_SSLND); rspi_write8(rspi, 0x00, RSPI_SPND); /* Sets parity, interrupt mask */ rspi_write8(rspi, 0x00, RSPI_SPCR2); /* Resets sequencer */ rspi_write8(rspi, 0, RSPI_SPSCR); rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size); rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0); /* Sets RSPI mode */ rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR); return 0; } /* * functions for RSPI on RZ */ static int rspi_rz_set_config_register(struct rspi_data *rspi, int access_size) { /* Sets output mode, MOSI signal, and (optionally) loopback */ rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR); /* Sets transfer bit rate */ rspi_set_rate(rspi); /* Disable dummy transmission, set byte access */ rspi_write8(rspi, SPDCR_SPLBYTE, RSPI_SPDCR); rspi->byte_access = 1; /* Sets RSPCK, SSL, next-access delay value */ rspi_write8(rspi, 0x00, RSPI_SPCKD); rspi_write8(rspi, 0x00, RSPI_SSLND); rspi_write8(rspi, 0x00, RSPI_SPND); /* Resets sequencer */ rspi_write8(rspi, 0, RSPI_SPSCR); rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size); rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0); /* Sets RSPI mode */ rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR); return 0; } /* * functions for QSPI */ static int qspi_set_config_register(struct rspi_data *rspi, int access_size) { unsigned long clksrc; int brdv = 0, spbr; /* Sets output mode, MOSI signal, and (optionally) loopback */ rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR); /* Sets transfer bit rate */ clksrc = clk_get_rate(rspi->clk); if (rspi->speed_hz >= clksrc) { spbr = 0; rspi->speed_hz = clksrc; } else { spbr = DIV_ROUND_UP(clksrc, 2 * rspi->speed_hz); while (spbr > 255 && brdv < 3) { brdv++; spbr = DIV_ROUND_UP(spbr, 2); } spbr = clamp(spbr, 0, 255); rspi->speed_hz = DIV_ROUND_UP(clksrc, (2U << brdv) * spbr); } rspi_write8(rspi, spbr, RSPI_SPBR); rspi->spcmd |= SPCMD_BRDV(brdv); /* Disable dummy transmission, set byte access */ rspi_write8(rspi, 0, RSPI_SPDCR); rspi->byte_access = 1; /* Sets RSPCK, SSL, next-access delay value */ rspi_write8(rspi, 0x00, RSPI_SPCKD); rspi_write8(rspi, 0x00, RSPI_SSLND); rspi_write8(rspi, 0x00, RSPI_SPND); /* Data Length Setting */ if (access_size == 8) rspi->spcmd |= SPCMD_SPB_8BIT; else if (access_size == 16) rspi->spcmd |= SPCMD_SPB_16BIT; else rspi->spcmd |= SPCMD_SPB_32BIT; rspi->spcmd |= SPCMD_SCKDEN | SPCMD_SLNDEN | SPCMD_SPNDEN; /* Resets transfer data length */ rspi_write32(rspi, 0, QSPI_SPBMUL0); /* Resets transmit and receive buffer */ rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR); /* Sets buffer to allow normal operation */ rspi_write8(rspi, 0x00, QSPI_SPBFCR); /* Resets sequencer */ rspi_write8(rspi, 0, RSPI_SPSCR); rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0); /* Sets RSPI mode */ rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR); return 0; } static void qspi_update(const struct rspi_data *rspi, u8 mask, u8 val, u8 reg) { u8 data; data = rspi_read8(rspi, reg); data &= ~mask; data |= (val & mask); rspi_write8(rspi, data, reg); } static unsigned int qspi_set_send_trigger(struct rspi_data *rspi, unsigned int len) { unsigned int n; n = min(len, QSPI_BUFFER_SIZE); if (len >= QSPI_BUFFER_SIZE) { /* sets triggering number to 32 bytes */ qspi_update(rspi, SPBFCR_TXTRG_MASK, SPBFCR_TXTRG_32B, QSPI_SPBFCR); } else { /* sets triggering number to 1 byte */ qspi_update(rspi, SPBFCR_TXTRG_MASK, SPBFCR_TXTRG_1B, QSPI_SPBFCR); } return n; } static int qspi_set_receive_trigger(struct rspi_data *rspi, unsigned int len) { unsigned int n; n = min(len, QSPI_BUFFER_SIZE); if (len >= QSPI_BUFFER_SIZE) { /* sets triggering number to 32 bytes */ qspi_update(rspi, SPBFCR_RXTRG_MASK, SPBFCR_RXTRG_32B, QSPI_SPBFCR); } else { /* sets triggering number to 1 byte */ qspi_update(rspi, SPBFCR_RXTRG_MASK, SPBFCR_RXTRG_1B, QSPI_SPBFCR); } return n; } static void rspi_enable_irq(const struct rspi_data *rspi, u8 enable) { rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR); } static void rspi_disable_irq(const struct rspi_data *rspi, u8 disable) { rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR); } static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask, u8 enable_bit) { int ret; rspi->spsr = rspi_read8(rspi, RSPI_SPSR); if (rspi->spsr & wait_mask) return 0; rspi_enable_irq(rspi, enable_bit); ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ); if (ret == 0 && !(rspi->spsr & wait_mask)) return -ETIMEDOUT; return 0; } static inline int rspi_wait_for_tx_empty(struct rspi_data *rspi) { return rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE); } static inline int rspi_wait_for_rx_full(struct rspi_data *rspi) { return rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE); } static int rspi_data_out(struct rspi_data *rspi, u8 data) { int error = rspi_wait_for_tx_empty(rspi); if (error < 0) { dev_err(&rspi->ctlr->dev, "transmit timeout\n"); return error; } rspi_write_data(rspi, data); return 0; } static int rspi_data_in(struct rspi_data *rspi) { int error; u8 data; error = rspi_wait_for_rx_full(rspi); if (error < 0) { dev_err(&rspi->ctlr->dev, "receive timeout\n"); return error; } data = rspi_read_data(rspi); return data; } static int rspi_pio_transfer(struct rspi_data *rspi, const u8 *tx, u8 *rx, unsigned int n) { while (n-- > 0) { if (tx) { int ret = rspi_data_out(rspi, *tx++); if (ret < 0) return ret; } if (rx) { int ret = rspi_data_in(rspi); if (ret < 0) return ret; *rx++ = ret; } } return 0; } static void rspi_dma_complete(void *arg) { struct rspi_data *rspi = arg; rspi->dma_callbacked = 1; wake_up_interruptible(&rspi->wait); } static int rspi_dma_transfer(struct rspi_data *rspi, struct sg_table *tx, struct sg_table *rx) { struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL; u8 irq_mask = 0; unsigned int other_irq = 0; dma_cookie_t cookie; int ret; /* First prepare and submit the DMA request(s), as this may fail */ if (rx) { desc_rx = dmaengine_prep_slave_sg(rspi->ctlr->dma_rx, rx->sgl, rx->nents, DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!desc_rx) { ret = -EAGAIN; goto no_dma_rx; } desc_rx->callback = rspi_dma_complete; desc_rx->callback_param = rspi; cookie = dmaengine_submit(desc_rx); if (dma_submit_error(cookie)) { ret = cookie; goto no_dma_rx; } irq_mask |= SPCR_SPRIE; } if (tx) { desc_tx = dmaengine_prep_slave_sg(rspi->ctlr->dma_tx, tx->sgl, tx->nents, DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!desc_tx) { ret = -EAGAIN; goto no_dma_tx; } if (rx) { /* No callback */ desc_tx->callback = NULL; } else { desc_tx->callback = rspi_dma_complete; desc_tx->callback_param = rspi; } cookie = dmaengine_submit(desc_tx); if (dma_submit_error(cookie)) { ret = cookie; goto no_dma_tx; } irq_mask |= SPCR_SPTIE; } /* * DMAC needs SPxIE, but if SPxIE is set, the IRQ routine will be * called. So, this driver disables the IRQ while DMA transfer. */ if (tx) disable_irq(other_irq = rspi->tx_irq); if (rx && rspi->rx_irq != other_irq) disable_irq(rspi->rx_irq); rspi_enable_irq(rspi, irq_mask); rspi->dma_callbacked = 0; /* Now start DMA */ if (rx) dma_async_issue_pending(rspi->ctlr->dma_rx); if (tx) dma_async_issue_pending(rspi->ctlr->dma_tx); ret = wait_event_interruptible_timeout(rspi->wait, rspi->dma_callbacked, HZ); if (ret > 0 && rspi->dma_callbacked) { ret = 0; if (tx) dmaengine_synchronize(rspi->ctlr->dma_tx); if (rx) dmaengine_synchronize(rspi->ctlr->dma_rx); } else { if (!ret) { dev_err(&rspi->ctlr->dev, "DMA timeout\n"); ret = -ETIMEDOUT; } if (tx) dmaengine_terminate_sync(rspi->ctlr->dma_tx); if (rx) dmaengine_terminate_sync(rspi->ctlr->dma_rx); } rspi_disable_irq(rspi, irq_mask); if (tx) enable_irq(rspi->tx_irq); if (rx && rspi->rx_irq != other_irq) enable_irq(rspi->rx_irq); return ret; no_dma_tx: if (rx) dmaengine_terminate_sync(rspi->ctlr->dma_rx); no_dma_rx: if (ret == -EAGAIN) { dev_warn_once(&rspi->ctlr->dev, "DMA not available, falling back to PIO\n"); } return ret; } static void rspi_receive_init(const struct rspi_data *rspi) { u8 spsr; spsr = rspi_read8(rspi, RSPI_SPSR); if (spsr & SPSR_SPRF) rspi_read_data(rspi); /* dummy read */ if (spsr & SPSR_OVRF) rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF, RSPI_SPSR); } static void rspi_rz_receive_init(const struct rspi_data *rspi) { rspi_receive_init(rspi); rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, RSPI_SPBFCR); rspi_write8(rspi, 0, RSPI_SPBFCR); } static void qspi_receive_init(const struct rspi_data *rspi) { u8 spsr; spsr = rspi_read8(rspi, RSPI_SPSR); if (spsr & SPSR_SPRF) rspi_read_data(rspi); /* dummy read */ rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR); rspi_write8(rspi, 0, QSPI_SPBFCR); } static bool __rspi_can_dma(const struct rspi_data *rspi, const struct spi_transfer *xfer) { return xfer->len > rspi->ops->fifo_size; } static bool rspi_can_dma(struct spi_controller *ctlr, struct spi_device *spi, struct spi_transfer *xfer) { struct rspi_data *rspi = spi_controller_get_devdata(ctlr); return __rspi_can_dma(rspi, xfer); } static int rspi_dma_check_then_transfer(struct rspi_data *rspi, struct spi_transfer *xfer) { if (!rspi->ctlr->can_dma || !__rspi_can_dma(rspi, xfer)) return -EAGAIN; /* rx_buf can be NULL on RSPI on SH in TX-only Mode */ return rspi_dma_transfer(rspi, &xfer->tx_sg, xfer->rx_buf ? &xfer->rx_sg : NULL); } static int rspi_common_transfer(struct rspi_data *rspi, struct spi_transfer *xfer) { int ret; xfer->effective_speed_hz = rspi->speed_hz; ret = rspi_dma_check_then_transfer(rspi, xfer); if (ret != -EAGAIN) return ret; ret = rspi_pio_transfer(rspi, xfer->tx_buf, xfer->rx_buf, xfer->len); if (ret < 0) return ret; /* Wait for the last transmission */ rspi_wait_for_tx_empty(rspi); return 0; } static int rspi_transfer_one(struct spi_controller *ctlr, struct spi_device *spi, struct spi_transfer *xfer) { struct rspi_data *rspi = spi_controller_get_devdata(ctlr); u8 spcr; spcr = rspi_read8(rspi, RSPI_SPCR); if (xfer->rx_buf) { rspi_receive_init(rspi); spcr &= ~SPCR_TXMD; } else { spcr |= SPCR_TXMD; } rspi_write8(rspi, spcr, RSPI_SPCR); return rspi_common_transfer(rspi, xfer); } static int rspi_rz_transfer_one(struct spi_controller *ctlr, struct spi_device *spi, struct spi_transfer *xfer) { struct rspi_data *rspi = spi_controller_get_devdata(ctlr); rspi_rz_receive_init(rspi); return rspi_common_transfer(rspi, xfer); } static int qspi_trigger_transfer_out_in(struct rspi_data *rspi, const u8 *tx, u8 *rx, unsigned int len) { unsigned int i, n; int ret; while (len > 0) { n = qspi_set_send_trigger(rspi, len); qspi_set_receive_trigger(rspi, len); ret = rspi_wait_for_tx_empty(rspi); if (ret < 0) { dev_err(&rspi->ctlr->dev, "transmit timeout\n"); return ret; } for (i = 0; i < n; i++) rspi_write_data(rspi, *tx++); ret = rspi_wait_for_rx_full(rspi); if (ret < 0) { dev_err(&rspi->ctlr->dev, "receive timeout\n"); return ret; } for (i = 0; i < n; i++) *rx++ = rspi_read_data(rspi); len -= n; } return 0; } static int qspi_transfer_out_in(struct rspi_data *rspi, struct spi_transfer *xfer) { int ret; qspi_receive_init(rspi); ret = rspi_dma_check_then_transfer(rspi, xfer); if (ret != -EAGAIN) return ret; return qspi_trigger_transfer_out_in(rspi, xfer->tx_buf, xfer->rx_buf, xfer->len); } static int qspi_transfer_out(struct rspi_data *rspi, struct spi_transfer *xfer) { const u8 *tx = xfer->tx_buf; unsigned int n = xfer->len; unsigned int i, len; int ret; if (rspi->ctlr->can_dma && __rspi_can_dma(rspi, xfer)) { ret = rspi_dma_transfer(rspi, &xfer->tx_sg, NULL); if (ret != -EAGAIN) return ret; } while (n > 0) { len = qspi_set_send_trigger(rspi, n); ret = rspi_wait_for_tx_empty(rspi); if (ret < 0) { dev_err(&rspi->ctlr->dev, "transmit timeout\n"); return ret; } for (i = 0; i < len; i++) rspi_write_data(rspi, *tx++); n -= len; } /* Wait for the last transmission */ rspi_wait_for_tx_empty(rspi); return 0; } static int qspi_transfer_in(struct rspi_data *rspi, struct spi_transfer *xfer) { u8 *rx = xfer->rx_buf; unsigned int n = xfer->len; unsigned int i, len; int ret; if (rspi->ctlr->can_dma && __rspi_can_dma(rspi, xfer)) { ret = rspi_dma_transfer(rspi, NULL, &xfer->rx_sg); if (ret != -EAGAIN) return ret; } while (n > 0) { len = qspi_set_receive_trigger(rspi, n); ret = rspi_wait_for_rx_full(rspi); if (ret < 0) { dev_err(&rspi->ctlr->dev, "receive timeout\n"); return ret; } for (i = 0; i < len; i++) *rx++ = rspi_read_data(rspi); n -= len; } return 0; } static int qspi_transfer_one(struct spi_controller *ctlr, struct spi_device *spi, struct spi_transfer *xfer) { struct rspi_data *rspi = spi_controller_get_devdata(ctlr); xfer->effective_speed_hz = rspi->speed_hz; if (spi->mode & SPI_LOOP) { return qspi_transfer_out_in(rspi, xfer); } else if (xfer->tx_nbits > SPI_NBITS_SINGLE) { /* Quad or Dual SPI Write */ return qspi_transfer_out(rspi, xfer); } else if (xfer->rx_nbits > SPI_NBITS_SINGLE) { /* Quad or Dual SPI Read */ return qspi_transfer_in(rspi, xfer); } else { /* Single SPI Transfer */ return qspi_transfer_out_in(rspi, xfer); } } static u16 qspi_transfer_mode(const struct spi_transfer *xfer) { if (xfer->tx_buf) switch (xfer->tx_nbits) { case SPI_NBITS_QUAD: return SPCMD_SPIMOD_QUAD; case SPI_NBITS_DUAL: return SPCMD_SPIMOD_DUAL; default: return 0; } if (xfer->rx_buf) switch (xfer->rx_nbits) { case SPI_NBITS_QUAD: return SPCMD_SPIMOD_QUAD | SPCMD_SPRW; case SPI_NBITS_DUAL: return SPCMD_SPIMOD_DUAL | SPCMD_SPRW; default: return 0; } return 0; } static int qspi_setup_sequencer(struct rspi_data *rspi, const struct spi_message *msg) { const struct spi_transfer *xfer; unsigned int i = 0, len = 0; u16 current_mode = 0xffff, mode; list_for_each_entry(xfer, &msg->transfers, transfer_list) { mode = qspi_transfer_mode(xfer); if (mode == current_mode) { len += xfer->len; continue; } /* Transfer mode change */ if (i) { /* Set transfer data length of previous transfer */ rspi_write32(rspi, len, QSPI_SPBMUL(i - 1)); } if (i >= QSPI_NUM_SPCMD) { dev_err(&msg->spi->dev, "Too many different transfer modes"); return -EINVAL; } /* Program transfer mode for this transfer */ rspi_write16(rspi, rspi->spcmd | mode, RSPI_SPCMD(i)); current_mode = mode; len = xfer->len; i++; } if (i) { /* Set final transfer data length and sequence length */ rspi_write32(rspi, len, QSPI_SPBMUL(i - 1)); rspi_write8(rspi, i - 1, RSPI_SPSCR); } return 0; } static int rspi_setup(struct spi_device *spi) { struct rspi_data *rspi = spi_controller_get_devdata(spi->controller); u8 sslp; if (spi_get_csgpiod(spi, 0)) return 0; pm_runtime_get_sync(&rspi->pdev->dev); spin_lock_irq(&rspi->lock); sslp = rspi_read8(rspi, RSPI_SSLP); if (spi->mode & SPI_CS_HIGH) sslp |= SSLP_SSLP(spi_get_chipselect(spi, 0)); else sslp &= ~SSLP_SSLP(spi_get_chipselect(spi, 0)); rspi_write8(rspi, sslp, RSPI_SSLP); spin_unlock_irq(&rspi->lock); pm_runtime_put(&rspi->pdev->dev); return 0; } static int rspi_prepare_message(struct spi_controller *ctlr, struct spi_message *msg) { struct rspi_data *rspi = spi_controller_get_devdata(ctlr); struct spi_device *spi = msg->spi; const struct spi_transfer *xfer; int ret; /* * As the Bit Rate Register must not be changed while the device is * active, all transfers in a message must use the same bit rate. * In theory, the sequencer could be enabled, and each Command Register * could divide the base bit rate by a different value. * However, most RSPI variants do not have Transfer Data Length * Multiplier Setting Registers, so each sequence step would be limited * to a single word, making this feature unsuitable for large * transfers, which would gain most from it. */ rspi->speed_hz = spi->max_speed_hz; list_for_each_entry(xfer, &msg->transfers, transfer_list) { if (xfer->speed_hz < rspi->speed_hz) rspi->speed_hz = xfer->speed_hz; } rspi->spcmd = SPCMD_SSLKP; if (spi->mode & SPI_CPOL) rspi->spcmd |= SPCMD_CPOL; if (spi->mode & SPI_CPHA) rspi->spcmd |= SPCMD_CPHA; if (spi->mode & SPI_LSB_FIRST) rspi->spcmd |= SPCMD_LSBF; /* Configure slave signal to assert */ rspi->spcmd |= SPCMD_SSLA(spi_get_csgpiod(spi, 0) ? rspi->ctlr->unused_native_cs : spi_get_chipselect(spi, 0)); /* CMOS output mode and MOSI signal from previous transfer */ rspi->sppcr = 0; if (spi->mode & SPI_LOOP) rspi->sppcr |= SPPCR_SPLP; rspi->ops->set_config_register(rspi, 8); if (msg->spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)) { /* Setup sequencer for messages with multiple transfer modes */ ret = qspi_setup_sequencer(rspi, msg); if (ret < 0) return ret; } /* Enable SPI function in master mode */ rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR); return 0; } static int rspi_unprepare_message(struct spi_controller *ctlr, struct spi_message *msg) { struct rspi_data *rspi = spi_controller_get_devdata(ctlr); /* Disable SPI function */ rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR); /* Reset sequencer for Single SPI Transfers */ rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0); rspi_write8(rspi, 0, RSPI_SPSCR); return 0; } static irqreturn_t rspi_irq_mux(int irq, void *_sr) { struct rspi_data *rspi = _sr; u8 spsr; irqreturn_t ret = IRQ_NONE; u8 disable_irq = 0; rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR); if (spsr & SPSR_SPRF) disable_irq |= SPCR_SPRIE; if (spsr & SPSR_SPTEF) disable_irq |= SPCR_SPTIE; if (disable_irq) { ret = IRQ_HANDLED; rspi_disable_irq(rspi, disable_irq); wake_up(&rspi->wait); } return ret; } static irqreturn_t rspi_irq_rx(int irq, void *_sr) { struct rspi_data *rspi = _sr; u8 spsr; rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR); if (spsr & SPSR_SPRF) { rspi_disable_irq(rspi, SPCR_SPRIE); wake_up(&rspi->wait); return IRQ_HANDLED; } return 0; } static irqreturn_t rspi_irq_tx(int irq, void *_sr) { struct rspi_data *rspi = _sr; u8 spsr; rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR); if (spsr & SPSR_SPTEF) { rspi_disable_irq(rspi, SPCR_SPTIE); wake_up(&rspi->wait); return IRQ_HANDLED; } return 0; } static struct dma_chan *rspi_request_dma_chan(struct device *dev, enum dma_transfer_direction dir, unsigned int id, dma_addr_t port_addr) { dma_cap_mask_t mask; struct dma_chan *chan; struct dma_slave_config cfg; int ret; dma_cap_zero(mask); dma_cap_set(DMA_SLAVE, mask); chan = dma_request_slave_channel_compat(mask, shdma_chan_filter, (void *)(unsigned long)id, dev, dir == DMA_MEM_TO_DEV ? "tx" : "rx"); if (!chan) { dev_warn(dev, "dma_request_slave_channel_compat failed\n"); return NULL; } memset(&cfg, 0, sizeof(cfg)); cfg.dst_addr = port_addr + RSPI_SPDR; cfg.src_addr = port_addr + RSPI_SPDR; cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; cfg.direction = dir; ret = dmaengine_slave_config(chan, &cfg); if (ret) { dev_warn(dev, "dmaengine_slave_config failed %d\n", ret); dma_release_channel(chan); return NULL; } return chan; } static int rspi_request_dma(struct device *dev, struct spi_controller *ctlr, const struct resource *res) { const struct rspi_plat_data *rspi_pd = dev_get_platdata(dev); unsigned int dma_tx_id, dma_rx_id; if (dev->of_node) { /* In the OF case we will get the slave IDs from the DT */ dma_tx_id = 0; dma_rx_id = 0; } else if (rspi_pd && rspi_pd->dma_tx_id && rspi_pd->dma_rx_id) { dma_tx_id = rspi_pd->dma_tx_id; dma_rx_id = rspi_pd->dma_rx_id; } else { /* The driver assumes no error. */ return 0; } ctlr->dma_tx = rspi_request_dma_chan(dev, DMA_MEM_TO_DEV, dma_tx_id, res->start); if (!ctlr->dma_tx) return -ENODEV; ctlr->dma_rx = rspi_request_dma_chan(dev, DMA_DEV_TO_MEM, dma_rx_id, res->start); if (!ctlr->dma_rx) { dma_release_channel(ctlr->dma_tx); ctlr->dma_tx = NULL; return -ENODEV; } ctlr->can_dma = rspi_can_dma; dev_info(dev, "DMA available"); return 0; } static void rspi_release_dma(struct spi_controller *ctlr) { if (ctlr->dma_tx) dma_release_channel(ctlr->dma_tx); if (ctlr->dma_rx) dma_release_channel(ctlr->dma_rx); } static void rspi_remove(struct platform_device *pdev) { struct rspi_data *rspi = platform_get_drvdata(pdev); rspi_release_dma(rspi->ctlr); pm_runtime_disable(&pdev->dev); } static const struct spi_ops rspi_ops = { .set_config_register = rspi_set_config_register, .transfer_one = rspi_transfer_one, .min_div = 2, .max_div = 4096, .flags = SPI_CONTROLLER_MUST_TX, .fifo_size = 8, .num_hw_ss = 2, }; static const struct spi_ops rspi_rz_ops __maybe_unused = { .set_config_register = rspi_rz_set_config_register, .transfer_one = rspi_rz_transfer_one, .min_div = 2, .max_div = 4096, .flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX, .fifo_size = 8, /* 8 for TX, 32 for RX */ .num_hw_ss = 1, }; static const struct spi_ops qspi_ops __maybe_unused = { .set_config_register = qspi_set_config_register, .transfer_one = qspi_transfer_one, .extra_mode_bits = SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD, .min_div = 1, .max_div = 4080, .flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX, .fifo_size = 32, .num_hw_ss = 1, }; static const struct of_device_id rspi_of_match[] __maybe_unused = { /* RSPI on legacy SH */ { .compatible = "renesas,rspi", .data = &rspi_ops }, /* RSPI on RZ/A1H */ { .compatible = "renesas,rspi-rz", .data = &rspi_rz_ops }, /* QSPI on R-Car Gen2 */ { .compatible = "renesas,qspi", .data = &qspi_ops }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, rspi_of_match); #ifdef CONFIG_OF static void rspi_reset_control_assert(void *data) { reset_control_assert(data); } static int rspi_parse_dt(struct device *dev, struct spi_controller *ctlr) { struct reset_control *rstc; u32 num_cs; int error; /* Parse DT properties */ error = of_property_read_u32(dev->of_node, "num-cs", &num_cs); if (error) { dev_err(dev, "of_property_read_u32 num-cs failed %d\n", error); return error; } ctlr->num_chipselect = num_cs; rstc = devm_reset_control_get_optional_exclusive(dev, NULL); if (IS_ERR(rstc)) return dev_err_probe(dev, PTR_ERR(rstc), "failed to get reset ctrl\n"); error = reset_control_deassert(rstc); if (error) { dev_err(dev, "failed to deassert reset %d\n", error); return error; } error = devm_add_action_or_reset(dev, rspi_reset_control_assert, rstc); if (error) { dev_err(dev, "failed to register assert devm action, %d\n", error); return error; } return 0; } #else #define rspi_of_match NULL static inline int rspi_parse_dt(struct device *dev, struct spi_controller *ctlr) { return -EINVAL; } #endif /* CONFIG_OF */ static int rspi_request_irq(struct device *dev, unsigned int irq, irq_handler_t handler, const char *suffix, void *dev_id) { const char *name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s", dev_name(dev), suffix); if (!name) return -ENOMEM; return devm_request_irq(dev, irq, handler, 0, name, dev_id); } static int rspi_probe(struct platform_device *pdev) { struct resource *res; struct spi_controller *ctlr; struct rspi_data *rspi; int ret; const struct rspi_plat_data *rspi_pd; const struct spi_ops *ops; unsigned long clksrc; ctlr = spi_alloc_host(&pdev->dev, sizeof(struct rspi_data)); if (ctlr == NULL) return -ENOMEM; ops = of_device_get_match_data(&pdev->dev); if (ops) { ret = rspi_parse_dt(&pdev->dev, ctlr); if (ret) goto error1; } else { ops = (struct spi_ops *)pdev->id_entry->driver_data; rspi_pd = dev_get_platdata(&pdev->dev); if (rspi_pd && rspi_pd->num_chipselect) ctlr->num_chipselect = rspi_pd->num_chipselect; else ctlr->num_chipselect = 2; /* default */ } rspi = spi_controller_get_devdata(ctlr); platform_set_drvdata(pdev, rspi); rspi->ops = ops; rspi->ctlr = ctlr; rspi->addr = devm_platform_get_and_ioremap_resource(pdev, 0, &res); if (IS_ERR(rspi->addr)) { ret = PTR_ERR(rspi->addr); goto error1; } rspi->clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(rspi->clk)) { dev_err(&pdev->dev, "cannot get clock\n"); ret = PTR_ERR(rspi->clk); goto error1; } rspi->pdev = pdev; pm_runtime_enable(&pdev->dev); init_waitqueue_head(&rspi->wait); spin_lock_init(&rspi->lock); ctlr->bus_num = pdev->id; ctlr->setup = rspi_setup; ctlr->auto_runtime_pm = true; ctlr->transfer_one = ops->transfer_one; ctlr->prepare_message = rspi_prepare_message; ctlr->unprepare_message = rspi_unprepare_message; ctlr->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST | SPI_LOOP | ops->extra_mode_bits; clksrc = clk_get_rate(rspi->clk); ctlr->min_speed_hz = DIV_ROUND_UP(clksrc, ops->max_div); ctlr->max_speed_hz = DIV_ROUND_UP(clksrc, ops->min_div); ctlr->flags = ops->flags; ctlr->dev.of_node = pdev->dev.of_node; ctlr->use_gpio_descriptors = true; ctlr->max_native_cs = rspi->ops->num_hw_ss; ret = platform_get_irq_byname_optional(pdev, "rx"); if (ret < 0) { ret = platform_get_irq_byname_optional(pdev, "mux"); if (ret < 0) ret = platform_get_irq(pdev, 0); if (ret >= 0) rspi->rx_irq = rspi->tx_irq = ret; } else { rspi->rx_irq = ret; ret = platform_get_irq_byname(pdev, "tx"); if (ret >= 0) rspi->tx_irq = ret; } if (rspi->rx_irq == rspi->tx_irq) { /* Single multiplexed interrupt */ ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_mux, "mux", rspi); } else { /* Multi-interrupt mode, only SPRI and SPTI are used */ ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_rx, "rx", rspi); if (!ret) ret = rspi_request_irq(&pdev->dev, rspi->tx_irq, rspi_irq_tx, "tx", rspi); } if (ret < 0) { dev_err(&pdev->dev, "request_irq error\n"); goto error2; } ret = rspi_request_dma(&pdev->dev, ctlr, res); if (ret < 0) dev_warn(&pdev->dev, "DMA not available, using PIO\n"); ret = devm_spi_register_controller(&pdev->dev, ctlr); if (ret < 0) { dev_err(&pdev->dev, "devm_spi_register_controller error.\n"); goto error3; } dev_info(&pdev->dev, "probed\n"); return 0; error3: rspi_release_dma(ctlr); error2: pm_runtime_disable(&pdev->dev); error1: spi_controller_put(ctlr); return ret; } static const struct platform_device_id spi_driver_ids[] = { { "rspi", (kernel_ulong_t)&rspi_ops }, {}, }; MODULE_DEVICE_TABLE(platform, spi_driver_ids); #ifdef CONFIG_PM_SLEEP static int rspi_suspend(struct device *dev) { struct rspi_data *rspi = dev_get_drvdata(dev); return spi_controller_suspend(rspi->ctlr); } static int rspi_resume(struct device *dev) { struct rspi_data *rspi = dev_get_drvdata(dev); return spi_controller_resume(rspi->ctlr); } static SIMPLE_DEV_PM_OPS(rspi_pm_ops, rspi_suspend, rspi_resume); #define DEV_PM_OPS &rspi_pm_ops #else #define DEV_PM_OPS NULL #endif /* CONFIG_PM_SLEEP */ static struct platform_driver rspi_driver = { .probe = rspi_probe, .remove_new = rspi_remove, .id_table = spi_driver_ids, .driver = { .name = "renesas_spi", .pm = DEV_PM_OPS, .of_match_table = of_match_ptr(rspi_of_match), }, }; module_platform_driver(rspi_driver); MODULE_DESCRIPTION("Renesas RSPI bus driver"); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Yoshihiro Shimoda"); |