Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
/*
 * SH RSPI driver
 *
 * Copyright (C) 2012  Renesas Solutions Corp.
 *
 * Based on spi-sh.c:
 * Copyright (C) 2011 Renesas Solutions Corp.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; version 2 of the License.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 *
 */

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/errno.h>
#include <linux/list.h>
#include <linux/workqueue.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/io.h>
#include <linux/clk.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/sh_dma.h>
#include <linux/spi/spi.h>
#include <linux/spi/rspi.h>

#define RSPI_SPCR		0x00
#define RSPI_SSLP		0x01
#define RSPI_SPPCR		0x02
#define RSPI_SPSR		0x03
#define RSPI_SPDR		0x04
#define RSPI_SPSCR		0x08
#define RSPI_SPSSR		0x09
#define RSPI_SPBR		0x0a
#define RSPI_SPDCR		0x0b
#define RSPI_SPCKD		0x0c
#define RSPI_SSLND		0x0d
#define RSPI_SPND		0x0e
#define RSPI_SPCR2		0x0f
#define RSPI_SPCMD0		0x10
#define RSPI_SPCMD1		0x12
#define RSPI_SPCMD2		0x14
#define RSPI_SPCMD3		0x16
#define RSPI_SPCMD4		0x18
#define RSPI_SPCMD5		0x1a
#define RSPI_SPCMD6		0x1c
#define RSPI_SPCMD7		0x1e

/* SPCR */
#define SPCR_SPRIE		0x80
#define SPCR_SPE		0x40
#define SPCR_SPTIE		0x20
#define SPCR_SPEIE		0x10
#define SPCR_MSTR		0x08
#define SPCR_MODFEN		0x04
#define SPCR_TXMD		0x02
#define SPCR_SPMS		0x01

/* SSLP */
#define SSLP_SSL1P		0x02
#define SSLP_SSL0P		0x01

/* SPPCR */
#define SPPCR_MOIFE		0x20
#define SPPCR_MOIFV		0x10
#define SPPCR_SPOM		0x04
#define SPPCR_SPLP2		0x02
#define SPPCR_SPLP		0x01

/* SPSR */
#define SPSR_SPRF		0x80
#define SPSR_SPTEF		0x20
#define SPSR_PERF		0x08
#define SPSR_MODF		0x04
#define SPSR_IDLNF		0x02
#define SPSR_OVRF		0x01

/* SPSCR */
#define SPSCR_SPSLN_MASK	0x07

/* SPSSR */
#define SPSSR_SPECM_MASK	0x70
#define SPSSR_SPCP_MASK		0x07

/* SPDCR */
#define SPDCR_SPLW		0x20
#define SPDCR_SPRDTD		0x10
#define SPDCR_SLSEL1		0x08
#define SPDCR_SLSEL0		0x04
#define SPDCR_SLSEL_MASK	0x0c
#define SPDCR_SPFC1		0x02
#define SPDCR_SPFC0		0x01

/* SPCKD */
#define SPCKD_SCKDL_MASK	0x07

/* SSLND */
#define SSLND_SLNDL_MASK	0x07

/* SPND */
#define SPND_SPNDL_MASK		0x07

/* SPCR2 */
#define SPCR2_PTE		0x08
#define SPCR2_SPIE		0x04
#define SPCR2_SPOE		0x02
#define SPCR2_SPPE		0x01

/* SPCMDn */
#define SPCMD_SCKDEN		0x8000
#define SPCMD_SLNDEN		0x4000
#define SPCMD_SPNDEN		0x2000
#define SPCMD_LSBF		0x1000
#define SPCMD_SPB_MASK		0x0f00
#define SPCMD_SPB_8_TO_16(bit)	(((bit - 1) << 8) & SPCMD_SPB_MASK)
#define SPCMD_SPB_20BIT		0x0000
#define SPCMD_SPB_24BIT		0x0100
#define SPCMD_SPB_32BIT		0x0200
#define SPCMD_SSLKP		0x0080
#define SPCMD_SSLA_MASK		0x0030
#define SPCMD_BRDV_MASK		0x000c
#define SPCMD_CPOL		0x0002
#define SPCMD_CPHA		0x0001

struct rspi_data {
	void __iomem *addr;
	u32 max_speed_hz;
	struct spi_master *master;
	struct list_head queue;
	struct work_struct ws;
	wait_queue_head_t wait;
	spinlock_t lock;
	struct clk *clk;
	unsigned char spsr;

	/* for dmaengine */
	struct dma_chan *chan_tx;
	struct dma_chan *chan_rx;
	int irq;

	unsigned dma_width_16bit:1;
	unsigned dma_callbacked:1;
};

static void rspi_write8(struct rspi_data *rspi, u8 data, u16 offset)
{
	iowrite8(data, rspi->addr + offset);
}

static void rspi_write16(struct rspi_data *rspi, u16 data, u16 offset)
{
	iowrite16(data, rspi->addr + offset);
}

static u8 rspi_read8(struct rspi_data *rspi, u16 offset)
{
	return ioread8(rspi->addr + offset);
}

static u16 rspi_read16(struct rspi_data *rspi, u16 offset)
{
	return ioread16(rspi->addr + offset);
}

static unsigned char rspi_calc_spbr(struct rspi_data *rspi)
{
	int tmp;
	unsigned char spbr;

	tmp = clk_get_rate(rspi->clk) / (2 * rspi->max_speed_hz) - 1;
	spbr = clamp(tmp, 0, 255);

	return spbr;
}

static void rspi_enable_irq(struct rspi_data *rspi, u8 enable)
{
	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR);
}

static void rspi_disable_irq(struct rspi_data *rspi, u8 disable)
{
	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR);
}

static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask,
				   u8 enable_bit)
{
	int ret;

	rspi->spsr = rspi_read8(rspi, RSPI_SPSR);
	rspi_enable_irq(rspi, enable_bit);
	ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ);
	if (ret == 0 && !(rspi->spsr & wait_mask))
		return -ETIMEDOUT;

	return 0;
}

static void rspi_assert_ssl(struct rspi_data *rspi)
{
	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR);
}

static void rspi_negate_ssl(struct rspi_data *rspi)
{
	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR);
}

static int rspi_set_config_register(struct rspi_data *rspi, int access_size)
{
	/* Sets output mode(CMOS) and MOSI signal(from previous transfer) */
	rspi_write8(rspi, 0x00, RSPI_SPPCR);

	/* Sets transfer bit rate */
	rspi_write8(rspi, rspi_calc_spbr(rspi), RSPI_SPBR);

	/* Sets number of frames to be used: 1 frame */
	rspi_write8(rspi, 0x00, RSPI_SPDCR);

	/* Sets RSPCK, SSL, next-access delay value */
	rspi_write8(rspi, 0x00, RSPI_SPCKD);
	rspi_write8(rspi, 0x00, RSPI_SSLND);
	rspi_write8(rspi, 0x00, RSPI_SPND);

	/* Sets parity, interrupt mask */
	rspi_write8(rspi, 0x00, RSPI_SPCR2);

	/* Sets SPCMD */
	rspi_write16(rspi, SPCMD_SPB_8_TO_16(access_size) | SPCMD_SSLKP,
		     RSPI_SPCMD0);

	/* Sets RSPI mode */
	rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);

	return 0;
}

static int rspi_send_pio(struct rspi_data *rspi, struct spi_message *mesg,
			 struct spi_transfer *t)
{
	int remain = t->len;
	u8 *data;

	data = (u8 *)t->tx_buf;
	while (remain > 0) {
		rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_TXMD,
			    RSPI_SPCR);

		if (rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE) < 0) {
			dev_err(&rspi->master->dev,
				"%s: tx empty timeout\n", __func__);
			return -ETIMEDOUT;
		}

		rspi_write16(rspi, *data, RSPI_SPDR);
		data++;
		remain--;
	}

	/* Waiting for the last transmition */
	rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);

	return 0;
}

static void rspi_dma_complete(void *arg)
{
	struct rspi_data *rspi = arg;

	rspi->dma_callbacked = 1;
	wake_up_interruptible(&rspi->wait);
}

static int rspi_dma_map_sg(struct scatterlist *sg, void *buf, unsigned len,
			   struct dma_chan *chan,
			   enum dma_transfer_direction dir)
{
	sg_init_table(sg, 1);
	sg_set_buf(sg, buf, len);
	sg_dma_len(sg) = len;
	return dma_map_sg(chan->device->dev, sg, 1, dir);
}

static void rspi_dma_unmap_sg(struct scatterlist *sg, struct dma_chan *chan,
			      enum dma_transfer_direction dir)
{
	dma_unmap_sg(chan->device->dev, sg, 1, dir);
}

static void rspi_memory_to_8bit(void *buf, const void *data, unsigned len)
{
	u16 *dst = buf;
	const u8 *src = data;

	while (len) {
		*dst++ = (u16)(*src++);
		len--;
	}
}

static void rspi_memory_from_8bit(void *buf, const void *data, unsigned len)
{
	u8 *dst = buf;
	const u16 *src = data;

	while (len) {
		*dst++ = (u8)*src++;
		len--;
	}
}

static int rspi_send_dma(struct rspi_data *rspi, struct spi_transfer *t)
{
	struct scatterlist sg;
	void *buf = NULL;
	struct dma_async_tx_descriptor *desc;
	unsigned len;
	int ret = 0;

	if (rspi->dma_width_16bit) {
		/*
		 * If DMAC bus width is 16-bit, the driver allocates a dummy
		 * buffer. And, the driver converts original data into the
		 * DMAC data as the following format:
		 *  original data: 1st byte, 2nd byte ...
		 *  DMAC data:     1st byte, dummy, 2nd byte, dummy ...
		 */
		len = t->len * 2;
		buf = kmalloc(len, GFP_KERNEL);
		if (!buf)
			return -ENOMEM;
		rspi_memory_to_8bit(buf, t->tx_buf, t->len);
	} else {
		len = t->len;
		buf = (void *)t->tx_buf;
	}

	if (!rspi_dma_map_sg(&sg, buf, len, rspi->chan_tx, DMA_TO_DEVICE)) {
		ret = -EFAULT;
		goto end_nomap;
	}
	desc = dmaengine_prep_slave_sg(rspi->chan_tx, &sg, 1, DMA_TO_DEVICE,
				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
	if (!desc) {
		ret = -EIO;
		goto end;
	}

	/*
	 * DMAC needs SPTIE, but if SPTIE is set, this IRQ routine will be
	 * called. So, this driver disables the IRQ while DMA transfer.
	 */
	disable_irq(rspi->irq);

	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_TXMD, RSPI_SPCR);
	rspi_enable_irq(rspi, SPCR_SPTIE);
	rspi->dma_callbacked = 0;

	desc->callback = rspi_dma_complete;
	desc->callback_param = rspi;
	dmaengine_submit(desc);
	dma_async_issue_pending(rspi->chan_tx);

	ret = wait_event_interruptible_timeout(rspi->wait,
					       rspi->dma_callbacked, HZ);
	if (ret > 0 && rspi->dma_callbacked)
		ret = 0;
	else if (!ret)
		ret = -ETIMEDOUT;
	rspi_disable_irq(rspi, SPCR_SPTIE);

	enable_irq(rspi->irq);

end:
	rspi_dma_unmap_sg(&sg, rspi->chan_tx, DMA_TO_DEVICE);
end_nomap:
	if (rspi->dma_width_16bit)
		kfree(buf);

	return ret;
}

static void rspi_receive_init(struct rspi_data *rspi)
{
	unsigned char spsr;

	spsr = rspi_read8(rspi, RSPI_SPSR);
	if (spsr & SPSR_SPRF)
		rspi_read16(rspi, RSPI_SPDR);	/* dummy read */
	if (spsr & SPSR_OVRF)
		rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF,
			    RSPI_SPCR);
}

static int rspi_receive_pio(struct rspi_data *rspi, struct spi_message *mesg,
			    struct spi_transfer *t)
{
	int remain = t->len;
	u8 *data;

	rspi_receive_init(rspi);

	data = (u8 *)t->rx_buf;
	while (remain > 0) {
		rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_TXMD,
			    RSPI_SPCR);

		if (rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE) < 0) {
			dev_err(&rspi->master->dev,
				"%s: tx empty timeout\n", __func__);
			return -ETIMEDOUT;
		}
		/* dummy write for generate clock */
		rspi_write16(rspi, 0x00, RSPI_SPDR);

		if (rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE) < 0) {
			dev_err(&rspi->master->dev,
				"%s: receive timeout\n", __func__);
			return -ETIMEDOUT;
		}
		/* SPDR allows 16 or 32-bit access only */
		*data = (u8)rspi_read16(rspi, RSPI_SPDR);

		data++;
		remain--;
	}

	return 0;
}

static int rspi_receive_dma(struct rspi_data *rspi, struct spi_transfer *t)
{
	struct scatterlist sg, sg_dummy;
	void *dummy = NULL, *rx_buf = NULL;
	struct dma_async_tx_descriptor *desc, *desc_dummy;
	unsigned len;
	int ret = 0;

	if (rspi->dma_width_16bit) {
		/*
		 * If DMAC bus width is 16-bit, the driver allocates a dummy
		 * buffer. And, finally the driver converts the DMAC data into
		 * actual data as the following format:
		 *  DMAC data:   1st byte, dummy, 2nd byte, dummy ...
		 *  actual data: 1st byte, 2nd byte ...
		 */
		len = t->len * 2;
		rx_buf = kmalloc(len, GFP_KERNEL);
		if (!rx_buf)
			return -ENOMEM;
	 } else {
		len = t->len;
		rx_buf = t->rx_buf;
	}

	/* prepare dummy transfer to generate SPI clocks */
	dummy = kzalloc(len, GFP_KERNEL);
	if (!dummy) {
		ret = -ENOMEM;
		goto end_nomap;
	}
	if (!rspi_dma_map_sg(&sg_dummy, dummy, len, rspi->chan_tx,
			     DMA_TO_DEVICE)) {
		ret = -EFAULT;
		goto end_nomap;
	}
	desc_dummy = dmaengine_prep_slave_sg(rspi->chan_tx, &sg_dummy, 1,
			DMA_TO_DEVICE, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
	if (!desc_dummy) {
		ret = -EIO;
		goto end_dummy_mapped;
	}

	/* prepare receive transfer */
	if (!rspi_dma_map_sg(&sg, rx_buf, len, rspi->chan_rx,
			     DMA_FROM_DEVICE)) {
		ret = -EFAULT;
		goto end_dummy_mapped;

	}
	desc = dmaengine_prep_slave_sg(rspi->chan_rx, &sg, 1, DMA_FROM_DEVICE,
				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
	if (!desc) {
		ret = -EIO;
		goto end;
	}

	rspi_receive_init(rspi);

	/*
	 * DMAC needs SPTIE, but if SPTIE is set, this IRQ routine will be
	 * called. So, this driver disables the IRQ while DMA transfer.
	 */
	disable_irq(rspi->irq);

	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_TXMD, RSPI_SPCR);
	rspi_enable_irq(rspi, SPCR_SPTIE | SPCR_SPRIE);
	rspi->dma_callbacked = 0;

	desc->callback = rspi_dma_complete;
	desc->callback_param = rspi;
	dmaengine_submit(desc);
	dma_async_issue_pending(rspi->chan_rx);

	desc_dummy->callback = NULL;	/* No callback */
	dmaengine_submit(desc_dummy);
	dma_async_issue_pending(rspi->chan_tx);

	ret = wait_event_interruptible_timeout(rspi->wait,
					       rspi->dma_callbacked, HZ);
	if (ret > 0 && rspi->dma_callbacked)
		ret = 0;
	else if (!ret)
		ret = -ETIMEDOUT;
	rspi_disable_irq(rspi, SPCR_SPTIE | SPCR_SPRIE);

	enable_irq(rspi->irq);

end:
	rspi_dma_unmap_sg(&sg, rspi->chan_rx, DMA_FROM_DEVICE);
end_dummy_mapped:
	rspi_dma_unmap_sg(&sg_dummy, rspi->chan_tx, DMA_TO_DEVICE);
end_nomap:
	if (rspi->dma_width_16bit) {
		if (!ret)
			rspi_memory_from_8bit(t->rx_buf, rx_buf, t->len);
		kfree(rx_buf);
	}
	kfree(dummy);

	return ret;
}

static int rspi_is_dma(struct rspi_data *rspi, struct spi_transfer *t)
{
	if (t->tx_buf && rspi->chan_tx)
		return 1;
	/* If the module receives data by DMAC, it also needs TX DMAC */
	if (t->rx_buf && rspi->chan_tx && rspi->chan_rx)
		return 1;

	return 0;
}

static void rspi_work(struct work_struct *work)
{
	struct rspi_data *rspi = container_of(work, struct rspi_data, ws);
	struct spi_message *mesg;
	struct spi_transfer *t;
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&rspi->lock, flags);
	while (!list_empty(&rspi->queue)) {
		mesg = list_entry(rspi->queue.next, struct spi_message, queue);
		list_del_init(&mesg->queue);
		spin_unlock_irqrestore(&rspi->lock, flags);

		rspi_assert_ssl(rspi);

		list_for_each_entry(t, &mesg->transfers, transfer_list) {
			if (t->tx_buf) {
				if (rspi_is_dma(rspi, t))
					ret = rspi_send_dma(rspi, t);
				else
					ret = rspi_send_pio(rspi, mesg, t);
				if (ret < 0)
					goto error;
			}
			if (t->rx_buf) {
				if (rspi_is_dma(rspi, t))
					ret = rspi_receive_dma(rspi, t);
				else
					ret = rspi_receive_pio(rspi, mesg, t);
				if (ret < 0)
					goto error;
			}
			mesg->actual_length += t->len;
		}
		rspi_negate_ssl(rspi);

		mesg->status = 0;
		mesg->complete(mesg->context);

		spin_lock_irqsave(&rspi->lock, flags);
	}

	return;

error:
	mesg->status = ret;
	mesg->complete(mesg->context);
}

static int rspi_setup(struct spi_device *spi)
{
	struct rspi_data *rspi = spi_master_get_devdata(spi->master);

	if (!spi->bits_per_word)
		spi->bits_per_word = 8;
	rspi->max_speed_hz = spi->max_speed_hz;

	rspi_set_config_register(rspi, 8);

	return 0;
}

static int rspi_transfer(struct spi_device *spi, struct spi_message *mesg)
{
	struct rspi_data *rspi = spi_master_get_devdata(spi->master);
	unsigned long flags;

	mesg->actual_length = 0;
	mesg->status = -EINPROGRESS;

	spin_lock_irqsave(&rspi->lock, flags);
	list_add_tail(&mesg->queue, &rspi->queue);
	schedule_work(&rspi->ws);
	spin_unlock_irqrestore(&rspi->lock, flags);

	return 0;
}

static void rspi_cleanup(struct spi_device *spi)
{
}

static irqreturn_t rspi_irq(int irq, void *_sr)
{
	struct rspi_data *rspi = (struct rspi_data *)_sr;
	unsigned long spsr;
	irqreturn_t ret = IRQ_NONE;
	unsigned char disable_irq = 0;

	rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
	if (spsr & SPSR_SPRF)
		disable_irq |= SPCR_SPRIE;
	if (spsr & SPSR_SPTEF)
		disable_irq |= SPCR_SPTIE;

	if (disable_irq) {
		ret = IRQ_HANDLED;
		rspi_disable_irq(rspi, disable_irq);
		wake_up(&rspi->wait);
	}

	return ret;
}

static int __devinit rspi_request_dma(struct rspi_data *rspi,
				      struct platform_device *pdev)
{
	struct rspi_plat_data *rspi_pd = pdev->dev.platform_data;
	dma_cap_mask_t mask;
	struct dma_slave_config cfg;
	int ret;

	if (!rspi_pd)
		return 0;	/* The driver assumes no error. */

	rspi->dma_width_16bit = rspi_pd->dma_width_16bit;

	/* If the module receives data by DMAC, it also needs TX DMAC */
	if (rspi_pd->dma_rx_id && rspi_pd->dma_tx_id) {
		dma_cap_zero(mask);
		dma_cap_set(DMA_SLAVE, mask);
		rspi->chan_rx = dma_request_channel(mask, shdma_chan_filter,
						    (void *)rspi_pd->dma_rx_id);
		if (rspi->chan_rx) {
			cfg.slave_id = rspi_pd->dma_rx_id;
			cfg.direction = DMA_DEV_TO_MEM;
			ret = dmaengine_slave_config(rspi->chan_rx, &cfg);
			if (!ret)
				dev_info(&pdev->dev, "Use DMA when rx.\n");
			else
				return ret;
		}
	}
	if (rspi_pd->dma_tx_id) {
		dma_cap_zero(mask);
		dma_cap_set(DMA_SLAVE, mask);
		rspi->chan_tx = dma_request_channel(mask, shdma_chan_filter,
						    (void *)rspi_pd->dma_tx_id);
		if (rspi->chan_tx) {
			cfg.slave_id = rspi_pd->dma_tx_id;
			cfg.direction = DMA_MEM_TO_DEV;
			ret = dmaengine_slave_config(rspi->chan_tx, &cfg);
			if (!ret)
				dev_info(&pdev->dev, "Use DMA when tx\n");
			else
				return ret;
		}
	}

	return 0;
}

static void __devexit rspi_release_dma(struct rspi_data *rspi)
{
	if (rspi->chan_tx)
		dma_release_channel(rspi->chan_tx);
	if (rspi->chan_rx)
		dma_release_channel(rspi->chan_rx);
}

static int __devexit rspi_remove(struct platform_device *pdev)
{
	struct rspi_data *rspi = dev_get_drvdata(&pdev->dev);

	spi_unregister_master(rspi->master);
	rspi_release_dma(rspi);
	free_irq(platform_get_irq(pdev, 0), rspi);
	clk_put(rspi->clk);
	iounmap(rspi->addr);
	spi_master_put(rspi->master);

	return 0;
}

static int __devinit rspi_probe(struct platform_device *pdev)
{
	struct resource *res;
	struct spi_master *master;
	struct rspi_data *rspi;
	int ret, irq;
	char clk_name[16];

	/* get base addr */
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (unlikely(res == NULL)) {
		dev_err(&pdev->dev, "invalid resource\n");
		return -EINVAL;
	}

	irq = platform_get_irq(pdev, 0);
	if (irq < 0) {
		dev_err(&pdev->dev, "platform_get_irq error\n");
		return -ENODEV;
	}

	master = spi_alloc_master(&pdev->dev, sizeof(struct rspi_data));
	if (master == NULL) {
		dev_err(&pdev->dev, "spi_alloc_master error.\n");
		return -ENOMEM;
	}

	rspi = spi_master_get_devdata(master);
	dev_set_drvdata(&pdev->dev, rspi);

	rspi->master = master;
	rspi->addr = ioremap(res->start, resource_size(res));
	if (rspi->addr == NULL) {
		dev_err(&pdev->dev, "ioremap error.\n");
		ret = -ENOMEM;
		goto error1;
	}

	snprintf(clk_name, sizeof(clk_name), "rspi%d", pdev->id);
	rspi->clk = clk_get(&pdev->dev, clk_name);
	if (IS_ERR(rspi->clk)) {
		dev_err(&pdev->dev, "cannot get clock\n");
		ret = PTR_ERR(rspi->clk);
		goto error2;
	}
	clk_enable(rspi->clk);

	INIT_LIST_HEAD(&rspi->queue);
	spin_lock_init(&rspi->lock);
	INIT_WORK(&rspi->ws, rspi_work);
	init_waitqueue_head(&rspi->wait);

	master->num_chipselect = 2;
	master->bus_num = pdev->id;
	master->setup = rspi_setup;
	master->transfer = rspi_transfer;
	master->cleanup = rspi_cleanup;

	ret = request_irq(irq, rspi_irq, 0, dev_name(&pdev->dev), rspi);
	if (ret < 0) {
		dev_err(&pdev->dev, "request_irq error\n");
		goto error3;
	}

	rspi->irq = irq;
	ret = rspi_request_dma(rspi, pdev);
	if (ret < 0) {
		dev_err(&pdev->dev, "rspi_request_dma failed.\n");
		goto error4;
	}

	ret = spi_register_master(master);
	if (ret < 0) {
		dev_err(&pdev->dev, "spi_register_master error.\n");
		goto error4;
	}

	dev_info(&pdev->dev, "probed\n");

	return 0;

error4:
	rspi_release_dma(rspi);
	free_irq(irq, rspi);
error3:
	clk_put(rspi->clk);
error2:
	iounmap(rspi->addr);
error1:
	spi_master_put(master);

	return ret;
}

static struct platform_driver rspi_driver = {
	.probe =	rspi_probe,
	.remove =	__devexit_p(rspi_remove),
	.driver		= {
		.name = "rspi",
		.owner	= THIS_MODULE,
	},
};
module_platform_driver(rspi_driver);

MODULE_DESCRIPTION("Renesas RSPI bus driver");
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Yoshihiro Shimoda");
MODULE_ALIAS("platform:rspi");