Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 | /* SPDX-License-Identifier: GPL-2.0 */ #ifndef MM_SLAB_H #define MM_SLAB_H #include <linux/reciprocal_div.h> #include <linux/list_lru.h> #include <linux/local_lock.h> #include <linux/random.h> #include <linux/kobject.h> #include <linux/sched/mm.h> #include <linux/memcontrol.h> #include <linux/kfence.h> #include <linux/kasan.h> /* * Internal slab definitions */ #ifdef CONFIG_64BIT # ifdef system_has_cmpxchg128 # define system_has_freelist_aba() system_has_cmpxchg128() # define try_cmpxchg_freelist try_cmpxchg128 # endif #define this_cpu_try_cmpxchg_freelist this_cpu_try_cmpxchg128 typedef u128 freelist_full_t; #else /* CONFIG_64BIT */ # ifdef system_has_cmpxchg64 # define system_has_freelist_aba() system_has_cmpxchg64() # define try_cmpxchg_freelist try_cmpxchg64 # endif #define this_cpu_try_cmpxchg_freelist this_cpu_try_cmpxchg64 typedef u64 freelist_full_t; #endif /* CONFIG_64BIT */ #if defined(system_has_freelist_aba) && !defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) #undef system_has_freelist_aba #endif /* * Freelist pointer and counter to cmpxchg together, avoids the typical ABA * problems with cmpxchg of just a pointer. */ typedef union { struct { void *freelist; unsigned long counter; }; freelist_full_t full; } freelist_aba_t; /* Reuses the bits in struct page */ struct slab { unsigned long __page_flags; struct kmem_cache *slab_cache; union { struct { union { struct list_head slab_list; #ifdef CONFIG_SLUB_CPU_PARTIAL struct { struct slab *next; int slabs; /* Nr of slabs left */ }; #endif }; /* Double-word boundary */ union { struct { void *freelist; /* first free object */ union { unsigned long counters; struct { unsigned inuse:16; unsigned objects:15; unsigned frozen:1; }; }; }; #ifdef system_has_freelist_aba freelist_aba_t freelist_counter; #endif }; }; struct rcu_head rcu_head; }; unsigned int __page_type; atomic_t __page_refcount; #ifdef CONFIG_SLAB_OBJ_EXT unsigned long obj_exts; #endif }; #define SLAB_MATCH(pg, sl) \ static_assert(offsetof(struct page, pg) == offsetof(struct slab, sl)) SLAB_MATCH(flags, __page_flags); SLAB_MATCH(compound_head, slab_cache); /* Ensure bit 0 is clear */ SLAB_MATCH(_refcount, __page_refcount); #ifdef CONFIG_MEMCG SLAB_MATCH(memcg_data, obj_exts); #elif defined(CONFIG_SLAB_OBJ_EXT) SLAB_MATCH(_unused_slab_obj_exts, obj_exts); #endif #undef SLAB_MATCH static_assert(sizeof(struct slab) <= sizeof(struct page)); #if defined(system_has_freelist_aba) static_assert(IS_ALIGNED(offsetof(struct slab, freelist), sizeof(freelist_aba_t))); #endif /** * folio_slab - Converts from folio to slab. * @folio: The folio. * * Currently struct slab is a different representation of a folio where * folio_test_slab() is true. * * Return: The slab which contains this folio. */ #define folio_slab(folio) (_Generic((folio), \ const struct folio *: (const struct slab *)(folio), \ struct folio *: (struct slab *)(folio))) /** * slab_folio - The folio allocated for a slab * @slab: The slab. * * Slabs are allocated as folios that contain the individual objects and are * using some fields in the first struct page of the folio - those fields are * now accessed by struct slab. It is occasionally necessary to convert back to * a folio in order to communicate with the rest of the mm. Please use this * helper function instead of casting yourself, as the implementation may change * in the future. */ #define slab_folio(s) (_Generic((s), \ const struct slab *: (const struct folio *)s, \ struct slab *: (struct folio *)s)) /** * page_slab - Converts from first struct page to slab. * @p: The first (either head of compound or single) page of slab. * * A temporary wrapper to convert struct page to struct slab in situations where * we know the page is the compound head, or single order-0 page. * * Long-term ideally everything would work with struct slab directly or go * through folio to struct slab. * * Return: The slab which contains this page */ #define page_slab(p) (_Generic((p), \ const struct page *: (const struct slab *)(p), \ struct page *: (struct slab *)(p))) /** * slab_page - The first struct page allocated for a slab * @slab: The slab. * * A convenience wrapper for converting slab to the first struct page of the * underlying folio, to communicate with code not yet converted to folio or * struct slab. */ #define slab_page(s) folio_page(slab_folio(s), 0) /* * If network-based swap is enabled, sl*b must keep track of whether pages * were allocated from pfmemalloc reserves. */ static inline bool slab_test_pfmemalloc(const struct slab *slab) { return folio_test_active(slab_folio(slab)); } static inline void slab_set_pfmemalloc(struct slab *slab) { folio_set_active(slab_folio(slab)); } static inline void slab_clear_pfmemalloc(struct slab *slab) { folio_clear_active(slab_folio(slab)); } static inline void __slab_clear_pfmemalloc(struct slab *slab) { __folio_clear_active(slab_folio(slab)); } static inline void *slab_address(const struct slab *slab) { return folio_address(slab_folio(slab)); } static inline int slab_nid(const struct slab *slab) { return folio_nid(slab_folio(slab)); } static inline pg_data_t *slab_pgdat(const struct slab *slab) { return folio_pgdat(slab_folio(slab)); } static inline struct slab *virt_to_slab(const void *addr) { struct folio *folio = virt_to_folio(addr); if (!folio_test_slab(folio)) return NULL; return folio_slab(folio); } static inline int slab_order(const struct slab *slab) { return folio_order(slab_folio(slab)); } static inline size_t slab_size(const struct slab *slab) { return PAGE_SIZE << slab_order(slab); } #ifdef CONFIG_SLUB_CPU_PARTIAL #define slub_percpu_partial(c) ((c)->partial) #define slub_set_percpu_partial(c, p) \ ({ \ slub_percpu_partial(c) = (p)->next; \ }) #define slub_percpu_partial_read_once(c) READ_ONCE(slub_percpu_partial(c)) #else #define slub_percpu_partial(c) NULL #define slub_set_percpu_partial(c, p) #define slub_percpu_partial_read_once(c) NULL #endif // CONFIG_SLUB_CPU_PARTIAL /* * Word size structure that can be atomically updated or read and that * contains both the order and the number of objects that a slab of the * given order would contain. */ struct kmem_cache_order_objects { unsigned int x; }; /* * Slab cache management. */ struct kmem_cache { #ifndef CONFIG_SLUB_TINY struct kmem_cache_cpu __percpu *cpu_slab; #endif /* Used for retrieving partial slabs, etc. */ slab_flags_t flags; unsigned long min_partial; unsigned int size; /* Object size including metadata */ unsigned int object_size; /* Object size without metadata */ struct reciprocal_value reciprocal_size; unsigned int offset; /* Free pointer offset */ #ifdef CONFIG_SLUB_CPU_PARTIAL /* Number of per cpu partial objects to keep around */ unsigned int cpu_partial; /* Number of per cpu partial slabs to keep around */ unsigned int cpu_partial_slabs; #endif struct kmem_cache_order_objects oo; /* Allocation and freeing of slabs */ struct kmem_cache_order_objects min; gfp_t allocflags; /* gfp flags to use on each alloc */ int refcount; /* Refcount for slab cache destroy */ void (*ctor)(void *object); /* Object constructor */ unsigned int inuse; /* Offset to metadata */ unsigned int align; /* Alignment */ unsigned int red_left_pad; /* Left redzone padding size */ const char *name; /* Name (only for display!) */ struct list_head list; /* List of slab caches */ #ifdef CONFIG_SYSFS struct kobject kobj; /* For sysfs */ #endif #ifdef CONFIG_SLAB_FREELIST_HARDENED unsigned long random; #endif #ifdef CONFIG_NUMA /* * Defragmentation by allocating from a remote node. */ unsigned int remote_node_defrag_ratio; #endif #ifdef CONFIG_SLAB_FREELIST_RANDOM unsigned int *random_seq; #endif #ifdef CONFIG_KASAN_GENERIC struct kasan_cache kasan_info; #endif #ifdef CONFIG_HARDENED_USERCOPY unsigned int useroffset; /* Usercopy region offset */ unsigned int usersize; /* Usercopy region size */ #endif struct kmem_cache_node *node[MAX_NUMNODES]; }; #if defined(CONFIG_SYSFS) && !defined(CONFIG_SLUB_TINY) #define SLAB_SUPPORTS_SYSFS void sysfs_slab_unlink(struct kmem_cache *s); void sysfs_slab_release(struct kmem_cache *s); #else static inline void sysfs_slab_unlink(struct kmem_cache *s) { } static inline void sysfs_slab_release(struct kmem_cache *s) { } #endif void *fixup_red_left(struct kmem_cache *s, void *p); static inline void *nearest_obj(struct kmem_cache *cache, const struct slab *slab, void *x) { void *object = x - (x - slab_address(slab)) % cache->size; void *last_object = slab_address(slab) + (slab->objects - 1) * cache->size; void *result = (unlikely(object > last_object)) ? last_object : object; result = fixup_red_left(cache, result); return result; } /* Determine object index from a given position */ static inline unsigned int __obj_to_index(const struct kmem_cache *cache, void *addr, void *obj) { return reciprocal_divide(kasan_reset_tag(obj) - addr, cache->reciprocal_size); } static inline unsigned int obj_to_index(const struct kmem_cache *cache, const struct slab *slab, void *obj) { if (is_kfence_address(obj)) return 0; return __obj_to_index(cache, slab_address(slab), obj); } static inline int objs_per_slab(const struct kmem_cache *cache, const struct slab *slab) { return slab->objects; } /* * State of the slab allocator. * * This is used to describe the states of the allocator during bootup. * Allocators use this to gradually bootstrap themselves. Most allocators * have the problem that the structures used for managing slab caches are * allocated from slab caches themselves. */ enum slab_state { DOWN, /* No slab functionality yet */ PARTIAL, /* SLUB: kmem_cache_node available */ UP, /* Slab caches usable but not all extras yet */ FULL /* Everything is working */ }; extern enum slab_state slab_state; /* The slab cache mutex protects the management structures during changes */ extern struct mutex slab_mutex; /* The list of all slab caches on the system */ extern struct list_head slab_caches; /* The slab cache that manages slab cache information */ extern struct kmem_cache *kmem_cache; /* A table of kmalloc cache names and sizes */ extern const struct kmalloc_info_struct { const char *name[NR_KMALLOC_TYPES]; unsigned int size; } kmalloc_info[]; /* Kmalloc array related functions */ void setup_kmalloc_cache_index_table(void); void create_kmalloc_caches(void); extern u8 kmalloc_size_index[24]; static inline unsigned int size_index_elem(unsigned int bytes) { return (bytes - 1) / 8; } /* * Find the kmem_cache structure that serves a given size of * allocation * * This assumes size is larger than zero and not larger than * KMALLOC_MAX_CACHE_SIZE and the caller must check that. */ static inline struct kmem_cache * kmalloc_slab(size_t size, kmem_buckets *b, gfp_t flags, unsigned long caller) { unsigned int index; if (!b) b = &kmalloc_caches[kmalloc_type(flags, caller)]; if (size <= 192) index = kmalloc_size_index[size_index_elem(size)]; else index = fls(size - 1); return (*b)[index]; } gfp_t kmalloc_fix_flags(gfp_t flags); /* Functions provided by the slab allocators */ int __kmem_cache_create(struct kmem_cache *, slab_flags_t flags); void __init kmem_cache_init(void); extern void create_boot_cache(struct kmem_cache *, const char *name, unsigned int size, slab_flags_t flags, unsigned int useroffset, unsigned int usersize); int slab_unmergeable(struct kmem_cache *s); struct kmem_cache *find_mergeable(unsigned size, unsigned align, slab_flags_t flags, const char *name, void (*ctor)(void *)); struct kmem_cache * __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, slab_flags_t flags, void (*ctor)(void *)); slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name); static inline bool is_kmalloc_cache(struct kmem_cache *s) { return (s->flags & SLAB_KMALLOC); } /* Legal flag mask for kmem_cache_create(), for various configurations */ #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | \ SLAB_CACHE_DMA32 | SLAB_PANIC | \ SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS ) #ifdef CONFIG_SLUB_DEBUG #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ SLAB_TRACE | SLAB_CONSISTENCY_CHECKS) #else #define SLAB_DEBUG_FLAGS (0) #endif #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \ SLAB_TEMPORARY | SLAB_ACCOUNT | \ SLAB_NO_USER_FLAGS | SLAB_KMALLOC | SLAB_NO_MERGE) /* Common flags available with current configuration */ #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS) /* Common flags permitted for kmem_cache_create */ #define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \ SLAB_RED_ZONE | \ SLAB_POISON | \ SLAB_STORE_USER | \ SLAB_TRACE | \ SLAB_CONSISTENCY_CHECKS | \ SLAB_NOLEAKTRACE | \ SLAB_RECLAIM_ACCOUNT | \ SLAB_TEMPORARY | \ SLAB_ACCOUNT | \ SLAB_KMALLOC | \ SLAB_NO_MERGE | \ SLAB_NO_USER_FLAGS) bool __kmem_cache_empty(struct kmem_cache *); int __kmem_cache_shutdown(struct kmem_cache *); void __kmem_cache_release(struct kmem_cache *); int __kmem_cache_shrink(struct kmem_cache *); void slab_kmem_cache_release(struct kmem_cache *); struct seq_file; struct file; struct slabinfo { unsigned long active_objs; unsigned long num_objs; unsigned long active_slabs; unsigned long num_slabs; unsigned long shared_avail; unsigned int limit; unsigned int batchcount; unsigned int shared; unsigned int objects_per_slab; unsigned int cache_order; }; void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo); #ifdef CONFIG_SLUB_DEBUG #ifdef CONFIG_SLUB_DEBUG_ON DECLARE_STATIC_KEY_TRUE(slub_debug_enabled); #else DECLARE_STATIC_KEY_FALSE(slub_debug_enabled); #endif extern void print_tracking(struct kmem_cache *s, void *object); long validate_slab_cache(struct kmem_cache *s); static inline bool __slub_debug_enabled(void) { return static_branch_unlikely(&slub_debug_enabled); } #else static inline void print_tracking(struct kmem_cache *s, void *object) { } static inline bool __slub_debug_enabled(void) { return false; } #endif /* * Returns true if any of the specified slab_debug flags is enabled for the * cache. Use only for flags parsed by setup_slub_debug() as it also enables * the static key. */ static inline bool kmem_cache_debug_flags(struct kmem_cache *s, slab_flags_t flags) { if (IS_ENABLED(CONFIG_SLUB_DEBUG)) VM_WARN_ON_ONCE(!(flags & SLAB_DEBUG_FLAGS)); if (__slub_debug_enabled()) return s->flags & flags; return false; } #ifdef CONFIG_SLAB_OBJ_EXT /* * slab_obj_exts - get the pointer to the slab object extension vector * associated with a slab. * @slab: a pointer to the slab struct * * Returns a pointer to the object extension vector associated with the slab, * or NULL if no such vector has been associated yet. */ static inline struct slabobj_ext *slab_obj_exts(struct slab *slab) { unsigned long obj_exts = READ_ONCE(slab->obj_exts); #ifdef CONFIG_MEMCG VM_BUG_ON_PAGE(obj_exts && !(obj_exts & MEMCG_DATA_OBJEXTS), slab_page(slab)); VM_BUG_ON_PAGE(obj_exts & MEMCG_DATA_KMEM, slab_page(slab)); #endif return (struct slabobj_ext *)(obj_exts & ~OBJEXTS_FLAGS_MASK); } int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s, gfp_t gfp, bool new_slab); #else /* CONFIG_SLAB_OBJ_EXT */ static inline struct slabobj_ext *slab_obj_exts(struct slab *slab) { return NULL; } #endif /* CONFIG_SLAB_OBJ_EXT */ static inline enum node_stat_item cache_vmstat_idx(struct kmem_cache *s) { return (s->flags & SLAB_RECLAIM_ACCOUNT) ? NR_SLAB_RECLAIMABLE_B : NR_SLAB_UNRECLAIMABLE_B; } #ifdef CONFIG_MEMCG bool __memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru, gfp_t flags, size_t size, void **p); void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p, int objects, struct slabobj_ext *obj_exts); #endif size_t __ksize(const void *objp); static inline size_t slab_ksize(const struct kmem_cache *s) { #ifdef CONFIG_SLUB_DEBUG /* * Debugging requires use of the padding between object * and whatever may come after it. */ if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) return s->object_size; #endif if (s->flags & SLAB_KASAN) return s->object_size; /* * If we have the need to store the freelist pointer * back there or track user information then we can * only use the space before that information. */ if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER)) return s->inuse; /* * Else we can use all the padding etc for the allocation */ return s->size; } #ifdef CONFIG_SLUB_DEBUG void dump_unreclaimable_slab(void); #else static inline void dump_unreclaimable_slab(void) { } #endif void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr); #ifdef CONFIG_SLAB_FREELIST_RANDOM int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count, gfp_t gfp); void cache_random_seq_destroy(struct kmem_cache *cachep); #else static inline int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count, gfp_t gfp) { return 0; } static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { } #endif /* CONFIG_SLAB_FREELIST_RANDOM */ static inline bool slab_want_init_on_alloc(gfp_t flags, struct kmem_cache *c) { if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, &init_on_alloc)) { if (c->ctor) return false; if (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) return flags & __GFP_ZERO; return true; } return flags & __GFP_ZERO; } static inline bool slab_want_init_on_free(struct kmem_cache *c) { if (static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON, &init_on_free)) return !(c->ctor || (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON))); return false; } #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG) void debugfs_slab_release(struct kmem_cache *); #else static inline void debugfs_slab_release(struct kmem_cache *s) { } #endif #ifdef CONFIG_PRINTK #define KS_ADDRS_COUNT 16 struct kmem_obj_info { void *kp_ptr; struct slab *kp_slab; void *kp_objp; unsigned long kp_data_offset; struct kmem_cache *kp_slab_cache; void *kp_ret; void *kp_stack[KS_ADDRS_COUNT]; void *kp_free_stack[KS_ADDRS_COUNT]; }; void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab); #endif void __check_heap_object(const void *ptr, unsigned long n, const struct slab *slab, bool to_user); #ifdef CONFIG_SLUB_DEBUG void skip_orig_size_check(struct kmem_cache *s, const void *object); #endif #endif /* MM_SLAB_H */ |