Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 | #ifndef MM_SLAB_H #define MM_SLAB_H /* * Internal slab definitions */ #ifdef CONFIG_SLOB /* * Common fields provided in kmem_cache by all slab allocators * This struct is either used directly by the allocator (SLOB) * or the allocator must include definitions for all fields * provided in kmem_cache_common in their definition of kmem_cache. * * Once we can do anonymous structs (C11 standard) we could put a * anonymous struct definition in these allocators so that the * separate allocations in the kmem_cache structure of SLAB and * SLUB is no longer needed. */ struct kmem_cache { unsigned int object_size;/* The original size of the object */ unsigned int size; /* The aligned/padded/added on size */ unsigned int align; /* Alignment as calculated */ unsigned long flags; /* Active flags on the slab */ const char *name; /* Slab name for sysfs */ int refcount; /* Use counter */ void (*ctor)(void *); /* Called on object slot creation */ struct list_head list; /* List of all slab caches on the system */ }; #endif /* CONFIG_SLOB */ #ifdef CONFIG_SLAB #include <linux/slab_def.h> #endif #ifdef CONFIG_SLUB #include <linux/slub_def.h> #endif #include <linux/memcontrol.h> /* * State of the slab allocator. * * This is used to describe the states of the allocator during bootup. * Allocators use this to gradually bootstrap themselves. Most allocators * have the problem that the structures used for managing slab caches are * allocated from slab caches themselves. */ enum slab_state { DOWN, /* No slab functionality yet */ PARTIAL, /* SLUB: kmem_cache_node available */ PARTIAL_NODE, /* SLAB: kmalloc size for node struct available */ UP, /* Slab caches usable but not all extras yet */ FULL /* Everything is working */ }; extern enum slab_state slab_state; /* The slab cache mutex protects the management structures during changes */ extern struct mutex slab_mutex; /* The list of all slab caches on the system */ extern struct list_head slab_caches; /* The slab cache that manages slab cache information */ extern struct kmem_cache *kmem_cache; unsigned long calculate_alignment(unsigned long flags, unsigned long align, unsigned long size); #ifndef CONFIG_SLOB /* Kmalloc array related functions */ void create_kmalloc_caches(unsigned long); /* Find the kmalloc slab corresponding for a certain size */ struct kmem_cache *kmalloc_slab(size_t, gfp_t); #endif /* Functions provided by the slab allocators */ extern int __kmem_cache_create(struct kmem_cache *, unsigned long flags); extern struct kmem_cache *create_kmalloc_cache(const char *name, size_t size, unsigned long flags); extern void create_boot_cache(struct kmem_cache *, const char *name, size_t size, unsigned long flags); int slab_unmergeable(struct kmem_cache *s); struct kmem_cache *find_mergeable(size_t size, size_t align, unsigned long flags, const char *name, void (*ctor)(void *)); #ifndef CONFIG_SLOB struct kmem_cache * __kmem_cache_alias(const char *name, size_t size, size_t align, unsigned long flags, void (*ctor)(void *)); unsigned long kmem_cache_flags(unsigned long object_size, unsigned long flags, const char *name, void (*ctor)(void *)); #else static inline struct kmem_cache * __kmem_cache_alias(const char *name, size_t size, size_t align, unsigned long flags, void (*ctor)(void *)) { return NULL; } static inline unsigned long kmem_cache_flags(unsigned long object_size, unsigned long flags, const char *name, void (*ctor)(void *)) { return flags; } #endif /* Legal flag mask for kmem_cache_create(), for various configurations */ #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | SLAB_PANIC | \ SLAB_DESTROY_BY_RCU | SLAB_DEBUG_OBJECTS ) #if defined(CONFIG_DEBUG_SLAB) #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) #elif defined(CONFIG_SLUB_DEBUG) #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ SLAB_TRACE | SLAB_DEBUG_FREE) #else #define SLAB_DEBUG_FLAGS (0) #endif #if defined(CONFIG_SLAB) #define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \ SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | SLAB_NOTRACK) #elif defined(CONFIG_SLUB) #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \ SLAB_TEMPORARY | SLAB_NOTRACK) #else #define SLAB_CACHE_FLAGS (0) #endif #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS) int __kmem_cache_shutdown(struct kmem_cache *); int __kmem_cache_shrink(struct kmem_cache *, bool); void slab_kmem_cache_release(struct kmem_cache *); struct seq_file; struct file; struct slabinfo { unsigned long active_objs; unsigned long num_objs; unsigned long active_slabs; unsigned long num_slabs; unsigned long shared_avail; unsigned int limit; unsigned int batchcount; unsigned int shared; unsigned int objects_per_slab; unsigned int cache_order; }; void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo); void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s); ssize_t slabinfo_write(struct file *file, const char __user *buffer, size_t count, loff_t *ppos); #ifdef CONFIG_MEMCG_KMEM /* * Iterate over all memcg caches of the given root cache. The caller must hold * slab_mutex. */ #define for_each_memcg_cache(iter, root) \ list_for_each_entry(iter, &(root)->memcg_params.list, \ memcg_params.list) #define for_each_memcg_cache_safe(iter, tmp, root) \ list_for_each_entry_safe(iter, tmp, &(root)->memcg_params.list, \ memcg_params.list) static inline bool is_root_cache(struct kmem_cache *s) { return s->memcg_params.is_root_cache; } static inline bool slab_equal_or_root(struct kmem_cache *s, struct kmem_cache *p) { return p == s || p == s->memcg_params.root_cache; } /* * We use suffixes to the name in memcg because we can't have caches * created in the system with the same name. But when we print them * locally, better refer to them with the base name */ static inline const char *cache_name(struct kmem_cache *s) { if (!is_root_cache(s)) s = s->memcg_params.root_cache; return s->name; } /* * Note, we protect with RCU only the memcg_caches array, not per-memcg caches. * That said the caller must assure the memcg's cache won't go away by either * taking a css reference to the owner cgroup, or holding the slab_mutex. */ static inline struct kmem_cache * cache_from_memcg_idx(struct kmem_cache *s, int idx) { struct kmem_cache *cachep; struct memcg_cache_array *arr; rcu_read_lock(); arr = rcu_dereference(s->memcg_params.memcg_caches); /* * Make sure we will access the up-to-date value. The code updating * memcg_caches issues a write barrier to match this (see * memcg_create_kmem_cache()). */ cachep = lockless_dereference(arr->entries[idx]); rcu_read_unlock(); return cachep; } static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s) { if (is_root_cache(s)) return s; return s->memcg_params.root_cache; } static __always_inline int memcg_charge_slab(struct kmem_cache *s, gfp_t gfp, int order) { if (!memcg_kmem_enabled()) return 0; if (is_root_cache(s)) return 0; return memcg_charge_kmem(s->memcg_params.memcg, gfp, 1 << order); } static __always_inline void memcg_uncharge_slab(struct kmem_cache *s, int order) { if (!memcg_kmem_enabled()) return; if (is_root_cache(s)) return; memcg_uncharge_kmem(s->memcg_params.memcg, 1 << order); } extern void slab_init_memcg_params(struct kmem_cache *); #else /* !CONFIG_MEMCG_KMEM */ #define for_each_memcg_cache(iter, root) \ for ((void)(iter), (void)(root); 0; ) #define for_each_memcg_cache_safe(iter, tmp, root) \ for ((void)(iter), (void)(tmp), (void)(root); 0; ) static inline bool is_root_cache(struct kmem_cache *s) { return true; } static inline bool slab_equal_or_root(struct kmem_cache *s, struct kmem_cache *p) { return true; } static inline const char *cache_name(struct kmem_cache *s) { return s->name; } static inline struct kmem_cache * cache_from_memcg_idx(struct kmem_cache *s, int idx) { return NULL; } static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s) { return s; } static inline int memcg_charge_slab(struct kmem_cache *s, gfp_t gfp, int order) { return 0; } static inline void memcg_uncharge_slab(struct kmem_cache *s, int order) { } static inline void slab_init_memcg_params(struct kmem_cache *s) { } #endif /* CONFIG_MEMCG_KMEM */ static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x) { struct kmem_cache *cachep; struct page *page; /* * When kmemcg is not being used, both assignments should return the * same value. but we don't want to pay the assignment price in that * case. If it is not compiled in, the compiler should be smart enough * to not do even the assignment. In that case, slab_equal_or_root * will also be a constant. */ if (!memcg_kmem_enabled() && !unlikely(s->flags & SLAB_DEBUG_FREE)) return s; page = virt_to_head_page(x); cachep = page->slab_cache; if (slab_equal_or_root(cachep, s)) return cachep; pr_err("%s: Wrong slab cache. %s but object is from %s\n", __func__, cachep->name, s->name); WARN_ON_ONCE(1); return s; } #ifndef CONFIG_SLOB /* * The slab lists for all objects. */ struct kmem_cache_node { spinlock_t list_lock; #ifdef CONFIG_SLAB struct list_head slabs_partial; /* partial list first, better asm code */ struct list_head slabs_full; struct list_head slabs_free; unsigned long free_objects; unsigned int free_limit; unsigned int colour_next; /* Per-node cache coloring */ struct array_cache *shared; /* shared per node */ struct alien_cache **alien; /* on other nodes */ unsigned long next_reap; /* updated without locking */ int free_touched; /* updated without locking */ #endif #ifdef CONFIG_SLUB unsigned long nr_partial; struct list_head partial; #ifdef CONFIG_SLUB_DEBUG atomic_long_t nr_slabs; atomic_long_t total_objects; struct list_head full; #endif #endif }; static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) { return s->node[node]; } /* * Iterator over all nodes. The body will be executed for each node that has * a kmem_cache_node structure allocated (which is true for all online nodes) */ #define for_each_kmem_cache_node(__s, __node, __n) \ for (__node = 0; __node < nr_node_ids; __node++) \ if ((__n = get_node(__s, __node))) #endif void *slab_start(struct seq_file *m, loff_t *pos); void *slab_next(struct seq_file *m, void *p, loff_t *pos); void slab_stop(struct seq_file *m, void *p); int memcg_slab_show(struct seq_file *m, void *p); #endif /* MM_SLAB_H */ |