Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 | /* SPDX-License-Identifier: GPL-2.0 */ #ifndef MM_SLAB_H #define MM_SLAB_H /* * Internal slab definitions */ #ifdef CONFIG_SLOB /* * Common fields provided in kmem_cache by all slab allocators * This struct is either used directly by the allocator (SLOB) * or the allocator must include definitions for all fields * provided in kmem_cache_common in their definition of kmem_cache. * * Once we can do anonymous structs (C11 standard) we could put a * anonymous struct definition in these allocators so that the * separate allocations in the kmem_cache structure of SLAB and * SLUB is no longer needed. */ struct kmem_cache { unsigned int object_size;/* The original size of the object */ unsigned int size; /* The aligned/padded/added on size */ unsigned int align; /* Alignment as calculated */ slab_flags_t flags; /* Active flags on the slab */ unsigned int useroffset;/* Usercopy region offset */ unsigned int usersize; /* Usercopy region size */ const char *name; /* Slab name for sysfs */ int refcount; /* Use counter */ void (*ctor)(void *); /* Called on object slot creation */ struct list_head list; /* List of all slab caches on the system */ }; #else /* !CONFIG_SLOB */ struct memcg_cache_array { struct rcu_head rcu; struct kmem_cache *entries[0]; }; /* * This is the main placeholder for memcg-related information in kmem caches. * Both the root cache and the child caches will have it. For the root cache, * this will hold a dynamically allocated array large enough to hold * information about the currently limited memcgs in the system. To allow the * array to be accessed without taking any locks, on relocation we free the old * version only after a grace period. * * Root and child caches hold different metadata. * * @root_cache: Common to root and child caches. NULL for root, pointer to * the root cache for children. * * The following fields are specific to root caches. * * @memcg_caches: kmemcg ID indexed table of child caches. This table is * used to index child cachces during allocation and cleared * early during shutdown. * * @root_caches_node: List node for slab_root_caches list. * * @children: List of all child caches. While the child caches are also * reachable through @memcg_caches, a child cache remains on * this list until it is actually destroyed. * * The following fields are specific to child caches. * * @memcg: Pointer to the memcg this cache belongs to. * * @children_node: List node for @root_cache->children list. * * @kmem_caches_node: List node for @memcg->kmem_caches list. */ struct memcg_cache_params { struct kmem_cache *root_cache; union { struct { struct memcg_cache_array __rcu *memcg_caches; struct list_head __root_caches_node; struct list_head children; bool dying; }; struct { struct mem_cgroup *memcg; struct list_head children_node; struct list_head kmem_caches_node; struct percpu_ref refcnt; void (*work_fn)(struct kmem_cache *); union { struct rcu_head rcu_head; struct work_struct work; }; }; }; }; #endif /* CONFIG_SLOB */ #ifdef CONFIG_SLAB #include <linux/slab_def.h> #endif #ifdef CONFIG_SLUB #include <linux/slub_def.h> #endif #include <linux/memcontrol.h> #include <linux/fault-inject.h> #include <linux/kasan.h> #include <linux/kmemleak.h> #include <linux/random.h> #include <linux/sched/mm.h> /* * State of the slab allocator. * * This is used to describe the states of the allocator during bootup. * Allocators use this to gradually bootstrap themselves. Most allocators * have the problem that the structures used for managing slab caches are * allocated from slab caches themselves. */ enum slab_state { DOWN, /* No slab functionality yet */ PARTIAL, /* SLUB: kmem_cache_node available */ PARTIAL_NODE, /* SLAB: kmalloc size for node struct available */ UP, /* Slab caches usable but not all extras yet */ FULL /* Everything is working */ }; extern enum slab_state slab_state; /* The slab cache mutex protects the management structures during changes */ extern struct mutex slab_mutex; /* The list of all slab caches on the system */ extern struct list_head slab_caches; /* The slab cache that manages slab cache information */ extern struct kmem_cache *kmem_cache; /* A table of kmalloc cache names and sizes */ extern const struct kmalloc_info_struct { const char *name[NR_KMALLOC_TYPES]; unsigned int size; } kmalloc_info[]; #ifndef CONFIG_SLOB /* Kmalloc array related functions */ void setup_kmalloc_cache_index_table(void); void create_kmalloc_caches(slab_flags_t); /* Find the kmalloc slab corresponding for a certain size */ struct kmem_cache *kmalloc_slab(size_t, gfp_t); #endif /* Functions provided by the slab allocators */ int __kmem_cache_create(struct kmem_cache *, slab_flags_t flags); struct kmem_cache *create_kmalloc_cache(const char *name, unsigned int size, slab_flags_t flags, unsigned int useroffset, unsigned int usersize); extern void create_boot_cache(struct kmem_cache *, const char *name, unsigned int size, slab_flags_t flags, unsigned int useroffset, unsigned int usersize); int slab_unmergeable(struct kmem_cache *s); struct kmem_cache *find_mergeable(unsigned size, unsigned align, slab_flags_t flags, const char *name, void (*ctor)(void *)); #ifndef CONFIG_SLOB struct kmem_cache * __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, slab_flags_t flags, void (*ctor)(void *)); slab_flags_t kmem_cache_flags(unsigned int object_size, slab_flags_t flags, const char *name, void (*ctor)(void *)); #else static inline struct kmem_cache * __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, slab_flags_t flags, void (*ctor)(void *)) { return NULL; } static inline slab_flags_t kmem_cache_flags(unsigned int object_size, slab_flags_t flags, const char *name, void (*ctor)(void *)) { return flags; } #endif /* Legal flag mask for kmem_cache_create(), for various configurations */ #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | \ SLAB_CACHE_DMA32 | SLAB_PANIC | \ SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS ) #if defined(CONFIG_DEBUG_SLAB) #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) #elif defined(CONFIG_SLUB_DEBUG) #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ SLAB_TRACE | SLAB_CONSISTENCY_CHECKS) #else #define SLAB_DEBUG_FLAGS (0) #endif #if defined(CONFIG_SLAB) #define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \ SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \ SLAB_ACCOUNT) #elif defined(CONFIG_SLUB) #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \ SLAB_TEMPORARY | SLAB_ACCOUNT) #else #define SLAB_CACHE_FLAGS (0) #endif /* Common flags available with current configuration */ #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS) /* Common flags permitted for kmem_cache_create */ #define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \ SLAB_RED_ZONE | \ SLAB_POISON | \ SLAB_STORE_USER | \ SLAB_TRACE | \ SLAB_CONSISTENCY_CHECKS | \ SLAB_MEM_SPREAD | \ SLAB_NOLEAKTRACE | \ SLAB_RECLAIM_ACCOUNT | \ SLAB_TEMPORARY | \ SLAB_ACCOUNT) bool __kmem_cache_empty(struct kmem_cache *); int __kmem_cache_shutdown(struct kmem_cache *); void __kmem_cache_release(struct kmem_cache *); int __kmem_cache_shrink(struct kmem_cache *); void __kmemcg_cache_deactivate(struct kmem_cache *s); void __kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s); void slab_kmem_cache_release(struct kmem_cache *); void kmem_cache_shrink_all(struct kmem_cache *s); struct seq_file; struct file; struct slabinfo { unsigned long active_objs; unsigned long num_objs; unsigned long active_slabs; unsigned long num_slabs; unsigned long shared_avail; unsigned int limit; unsigned int batchcount; unsigned int shared; unsigned int objects_per_slab; unsigned int cache_order; }; void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo); void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s); ssize_t slabinfo_write(struct file *file, const char __user *buffer, size_t count, loff_t *ppos); /* * Generic implementation of bulk operations * These are useful for situations in which the allocator cannot * perform optimizations. In that case segments of the object listed * may be allocated or freed using these operations. */ void __kmem_cache_free_bulk(struct kmem_cache *, size_t, void **); int __kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **); static inline int cache_vmstat_idx(struct kmem_cache *s) { return (s->flags & SLAB_RECLAIM_ACCOUNT) ? NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE; } #ifdef CONFIG_MEMCG_KMEM /* List of all root caches. */ extern struct list_head slab_root_caches; #define root_caches_node memcg_params.__root_caches_node /* * Iterate over all memcg caches of the given root cache. The caller must hold * slab_mutex. */ #define for_each_memcg_cache(iter, root) \ list_for_each_entry(iter, &(root)->memcg_params.children, \ memcg_params.children_node) static inline bool is_root_cache(struct kmem_cache *s) { return !s->memcg_params.root_cache; } static inline bool slab_equal_or_root(struct kmem_cache *s, struct kmem_cache *p) { return p == s || p == s->memcg_params.root_cache; } /* * We use suffixes to the name in memcg because we can't have caches * created in the system with the same name. But when we print them * locally, better refer to them with the base name */ static inline const char *cache_name(struct kmem_cache *s) { if (!is_root_cache(s)) s = s->memcg_params.root_cache; return s->name; } static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s) { if (is_root_cache(s)) return s; return s->memcg_params.root_cache; } /* * Expects a pointer to a slab page. Please note, that PageSlab() check * isn't sufficient, as it returns true also for tail compound slab pages, * which do not have slab_cache pointer set. * So this function assumes that the page can pass PageSlab() && !PageTail() * check. * * The kmem_cache can be reparented asynchronously. The caller must ensure * the memcg lifetime, e.g. by taking rcu_read_lock() or cgroup_mutex. */ static inline struct mem_cgroup *memcg_from_slab_page(struct page *page) { struct kmem_cache *s; s = READ_ONCE(page->slab_cache); if (s && !is_root_cache(s)) return READ_ONCE(s->memcg_params.memcg); return NULL; } /* * Charge the slab page belonging to the non-root kmem_cache. * Can be called for non-root kmem_caches only. */ static __always_inline int memcg_charge_slab(struct page *page, gfp_t gfp, int order, struct kmem_cache *s) { int nr_pages = 1 << order; struct mem_cgroup *memcg; struct lruvec *lruvec; int ret; rcu_read_lock(); memcg = READ_ONCE(s->memcg_params.memcg); while (memcg && !css_tryget_online(&memcg->css)) memcg = parent_mem_cgroup(memcg); rcu_read_unlock(); if (unlikely(!memcg || mem_cgroup_is_root(memcg))) { mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s), nr_pages); percpu_ref_get_many(&s->memcg_params.refcnt, nr_pages); return 0; } ret = memcg_kmem_charge(memcg, gfp, nr_pages); if (ret) goto out; lruvec = mem_cgroup_lruvec(memcg, page_pgdat(page)); mod_lruvec_state(lruvec, cache_vmstat_idx(s), nr_pages); /* transer try_charge() page references to kmem_cache */ percpu_ref_get_many(&s->memcg_params.refcnt, nr_pages); css_put_many(&memcg->css, nr_pages); out: css_put(&memcg->css); return ret; } /* * Uncharge a slab page belonging to a non-root kmem_cache. * Can be called for non-root kmem_caches only. */ static __always_inline void memcg_uncharge_slab(struct page *page, int order, struct kmem_cache *s) { int nr_pages = 1 << order; struct mem_cgroup *memcg; struct lruvec *lruvec; rcu_read_lock(); memcg = READ_ONCE(s->memcg_params.memcg); if (likely(!mem_cgroup_is_root(memcg))) { lruvec = mem_cgroup_lruvec(memcg, page_pgdat(page)); mod_lruvec_state(lruvec, cache_vmstat_idx(s), -nr_pages); memcg_kmem_uncharge(memcg, nr_pages); } else { mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s), -nr_pages); } rcu_read_unlock(); percpu_ref_put_many(&s->memcg_params.refcnt, nr_pages); } extern void slab_init_memcg_params(struct kmem_cache *); extern void memcg_link_cache(struct kmem_cache *s, struct mem_cgroup *memcg); #else /* CONFIG_MEMCG_KMEM */ /* If !memcg, all caches are root. */ #define slab_root_caches slab_caches #define root_caches_node list #define for_each_memcg_cache(iter, root) \ for ((void)(iter), (void)(root); 0; ) static inline bool is_root_cache(struct kmem_cache *s) { return true; } static inline bool slab_equal_or_root(struct kmem_cache *s, struct kmem_cache *p) { return s == p; } static inline const char *cache_name(struct kmem_cache *s) { return s->name; } static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s) { return s; } static inline struct mem_cgroup *memcg_from_slab_page(struct page *page) { return NULL; } static inline int memcg_charge_slab(struct page *page, gfp_t gfp, int order, struct kmem_cache *s) { return 0; } static inline void memcg_uncharge_slab(struct page *page, int order, struct kmem_cache *s) { } static inline void slab_init_memcg_params(struct kmem_cache *s) { } static inline void memcg_link_cache(struct kmem_cache *s, struct mem_cgroup *memcg) { } #endif /* CONFIG_MEMCG_KMEM */ static inline struct kmem_cache *virt_to_cache(const void *obj) { struct page *page; page = virt_to_head_page(obj); if (WARN_ONCE(!PageSlab(page), "%s: Object is not a Slab page!\n", __func__)) return NULL; return page->slab_cache; } static __always_inline int charge_slab_page(struct page *page, gfp_t gfp, int order, struct kmem_cache *s) { if (is_root_cache(s)) { mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s), 1 << order); return 0; } return memcg_charge_slab(page, gfp, order, s); } static __always_inline void uncharge_slab_page(struct page *page, int order, struct kmem_cache *s) { if (is_root_cache(s)) { mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s), -(1 << order)); return; } memcg_uncharge_slab(page, order, s); } static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x) { struct kmem_cache *cachep; /* * When kmemcg is not being used, both assignments should return the * same value. but we don't want to pay the assignment price in that * case. If it is not compiled in, the compiler should be smart enough * to not do even the assignment. In that case, slab_equal_or_root * will also be a constant. */ if (!memcg_kmem_enabled() && !IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) && !unlikely(s->flags & SLAB_CONSISTENCY_CHECKS)) return s; cachep = virt_to_cache(x); WARN_ONCE(cachep && !slab_equal_or_root(cachep, s), "%s: Wrong slab cache. %s but object is from %s\n", __func__, s->name, cachep->name); return cachep; } static inline size_t slab_ksize(const struct kmem_cache *s) { #ifndef CONFIG_SLUB return s->object_size; #else /* CONFIG_SLUB */ # ifdef CONFIG_SLUB_DEBUG /* * Debugging requires use of the padding between object * and whatever may come after it. */ if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) return s->object_size; # endif if (s->flags & SLAB_KASAN) return s->object_size; /* * If we have the need to store the freelist pointer * back there or track user information then we can * only use the space before that information. */ if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER)) return s->inuse; /* * Else we can use all the padding etc for the allocation */ return s->size; #endif } static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags) { flags &= gfp_allowed_mask; fs_reclaim_acquire(flags); fs_reclaim_release(flags); might_sleep_if(gfpflags_allow_blocking(flags)); if (should_failslab(s, flags)) return NULL; if (memcg_kmem_enabled() && ((flags & __GFP_ACCOUNT) || (s->flags & SLAB_ACCOUNT))) return memcg_kmem_get_cache(s); return s; } static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, size_t size, void **p) { size_t i; flags &= gfp_allowed_mask; for (i = 0; i < size; i++) { p[i] = kasan_slab_alloc(s, p[i], flags); /* As p[i] might get tagged, call kmemleak hook after KASAN. */ kmemleak_alloc_recursive(p[i], s->object_size, 1, s->flags, flags); } if (memcg_kmem_enabled()) memcg_kmem_put_cache(s); } #ifndef CONFIG_SLOB /* * The slab lists for all objects. */ struct kmem_cache_node { spinlock_t list_lock; #ifdef CONFIG_SLAB struct list_head slabs_partial; /* partial list first, better asm code */ struct list_head slabs_full; struct list_head slabs_free; unsigned long total_slabs; /* length of all slab lists */ unsigned long free_slabs; /* length of free slab list only */ unsigned long free_objects; unsigned int free_limit; unsigned int colour_next; /* Per-node cache coloring */ struct array_cache *shared; /* shared per node */ struct alien_cache **alien; /* on other nodes */ unsigned long next_reap; /* updated without locking */ int free_touched; /* updated without locking */ #endif #ifdef CONFIG_SLUB unsigned long nr_partial; struct list_head partial; #ifdef CONFIG_SLUB_DEBUG atomic_long_t nr_slabs; atomic_long_t total_objects; struct list_head full; #endif #endif }; static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) { return s->node[node]; } /* * Iterator over all nodes. The body will be executed for each node that has * a kmem_cache_node structure allocated (which is true for all online nodes) */ #define for_each_kmem_cache_node(__s, __node, __n) \ for (__node = 0; __node < nr_node_ids; __node++) \ if ((__n = get_node(__s, __node))) #endif void *slab_start(struct seq_file *m, loff_t *pos); void *slab_next(struct seq_file *m, void *p, loff_t *pos); void slab_stop(struct seq_file *m, void *p); void *memcg_slab_start(struct seq_file *m, loff_t *pos); void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos); void memcg_slab_stop(struct seq_file *m, void *p); int memcg_slab_show(struct seq_file *m, void *p); #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG) void dump_unreclaimable_slab(void); #else static inline void dump_unreclaimable_slab(void) { } #endif void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr); #ifdef CONFIG_SLAB_FREELIST_RANDOM int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count, gfp_t gfp); void cache_random_seq_destroy(struct kmem_cache *cachep); #else static inline int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count, gfp_t gfp) { return 0; } static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { } #endif /* CONFIG_SLAB_FREELIST_RANDOM */ static inline bool slab_want_init_on_alloc(gfp_t flags, struct kmem_cache *c) { if (static_branch_unlikely(&init_on_alloc)) { if (c->ctor) return false; if (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) return flags & __GFP_ZERO; return true; } return flags & __GFP_ZERO; } static inline bool slab_want_init_on_free(struct kmem_cache *c) { if (static_branch_unlikely(&init_on_free)) return !(c->ctor || (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON))); return false; } #endif /* MM_SLAB_H */ |