Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 | /* * linux/arch/arm/mm/dma-mapping.c * * Copyright (C) 2000-2004 Russell King * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * DMA uncached mapping support. */ #include <linux/module.h> #include <linux/mm.h> #include <linux/gfp.h> #include <linux/errno.h> #include <linux/list.h> #include <linux/init.h> #include <linux/device.h> #include <linux/dma-mapping.h> #include <linux/highmem.h> #include <linux/slab.h> #include <asm/memory.h> #include <asm/highmem.h> #include <asm/cacheflush.h> #include <asm/tlbflush.h> #include <asm/sizes.h> #include <asm/mach/arch.h> #include "mm.h" static u64 get_coherent_dma_mask(struct device *dev) { u64 mask = (u64)arm_dma_limit; if (dev) { mask = dev->coherent_dma_mask; /* * Sanity check the DMA mask - it must be non-zero, and * must be able to be satisfied by a DMA allocation. */ if (mask == 0) { dev_warn(dev, "coherent DMA mask is unset\n"); return 0; } if ((~mask) & (u64)arm_dma_limit) { dev_warn(dev, "coherent DMA mask %#llx is smaller " "than system GFP_DMA mask %#llx\n", mask, (u64)arm_dma_limit); return 0; } } return mask; } /* * Allocate a DMA buffer for 'dev' of size 'size' using the * specified gfp mask. Note that 'size' must be page aligned. */ static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp) { unsigned long order = get_order(size); struct page *page, *p, *e; void *ptr; u64 mask = get_coherent_dma_mask(dev); #ifdef CONFIG_DMA_API_DEBUG u64 limit = (mask + 1) & ~mask; if (limit && size >= limit) { dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n", size, mask); return NULL; } #endif if (!mask) return NULL; if (mask < 0xffffffffULL) gfp |= GFP_DMA; page = alloc_pages(gfp, order); if (!page) return NULL; /* * Now split the huge page and free the excess pages */ split_page(page, order); for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++) __free_page(p); /* * Ensure that the allocated pages are zeroed, and that any data * lurking in the kernel direct-mapped region is invalidated. */ ptr = page_address(page); memset(ptr, 0, size); dmac_flush_range(ptr, ptr + size); outer_flush_range(__pa(ptr), __pa(ptr) + size); return page; } /* * Free a DMA buffer. 'size' must be page aligned. */ static void __dma_free_buffer(struct page *page, size_t size) { struct page *e = page + (size >> PAGE_SHIFT); while (page < e) { __free_page(page); page++; } } #ifdef CONFIG_MMU #define CONSISTENT_OFFSET(x) (((unsigned long)(x) - consistent_base) >> PAGE_SHIFT) #define CONSISTENT_PTE_INDEX(x) (((unsigned long)(x) - consistent_base) >> PMD_SHIFT) /* * These are the page tables (2MB each) covering uncached, DMA consistent allocations */ static pte_t **consistent_pte; #define DEFAULT_CONSISTENT_DMA_SIZE SZ_2M unsigned long consistent_base = CONSISTENT_END - DEFAULT_CONSISTENT_DMA_SIZE; void __init init_consistent_dma_size(unsigned long size) { unsigned long base = CONSISTENT_END - ALIGN(size, SZ_2M); BUG_ON(consistent_pte); /* Check we're called before DMA region init */ BUG_ON(base < VMALLOC_END); /* Grow region to accommodate specified size */ if (base < consistent_base) consistent_base = base; } #include "vmregion.h" static struct arm_vmregion_head consistent_head = { .vm_lock = __SPIN_LOCK_UNLOCKED(&consistent_head.vm_lock), .vm_list = LIST_HEAD_INIT(consistent_head.vm_list), .vm_end = CONSISTENT_END, }; #ifdef CONFIG_HUGETLB_PAGE #error ARM Coherent DMA allocator does not (yet) support huge TLB #endif /* * Initialise the consistent memory allocation. */ static int __init consistent_init(void) { int ret = 0; pgd_t *pgd; pud_t *pud; pmd_t *pmd; pte_t *pte; int i = 0; unsigned long base = consistent_base; unsigned long num_ptes = (CONSISTENT_END - base) >> PMD_SHIFT; consistent_pte = kmalloc(num_ptes * sizeof(pte_t), GFP_KERNEL); if (!consistent_pte) { pr_err("%s: no memory\n", __func__); return -ENOMEM; } pr_debug("DMA memory: 0x%08lx - 0x%08lx:\n", base, CONSISTENT_END); consistent_head.vm_start = base; do { pgd = pgd_offset(&init_mm, base); pud = pud_alloc(&init_mm, pgd, base); if (!pud) { printk(KERN_ERR "%s: no pud tables\n", __func__); ret = -ENOMEM; break; } pmd = pmd_alloc(&init_mm, pud, base); if (!pmd) { printk(KERN_ERR "%s: no pmd tables\n", __func__); ret = -ENOMEM; break; } WARN_ON(!pmd_none(*pmd)); pte = pte_alloc_kernel(pmd, base); if (!pte) { printk(KERN_ERR "%s: no pte tables\n", __func__); ret = -ENOMEM; break; } consistent_pte[i++] = pte; base += PMD_SIZE; } while (base < CONSISTENT_END); return ret; } core_initcall(consistent_init); static void * __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot) { struct arm_vmregion *c; size_t align; int bit; if (!consistent_pte) { printk(KERN_ERR "%s: not initialised\n", __func__); dump_stack(); return NULL; } /* * Align the virtual region allocation - maximum alignment is * a section size, minimum is a page size. This helps reduce * fragmentation of the DMA space, and also prevents allocations * smaller than a section from crossing a section boundary. */ bit = fls(size - 1); if (bit > SECTION_SHIFT) bit = SECTION_SHIFT; align = 1 << bit; /* * Allocate a virtual address in the consistent mapping region. */ c = arm_vmregion_alloc(&consistent_head, align, size, gfp & ~(__GFP_DMA | __GFP_HIGHMEM)); if (c) { pte_t *pte; int idx = CONSISTENT_PTE_INDEX(c->vm_start); u32 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1); pte = consistent_pte[idx] + off; c->vm_pages = page; do { BUG_ON(!pte_none(*pte)); set_pte_ext(pte, mk_pte(page, prot), 0); page++; pte++; off++; if (off >= PTRS_PER_PTE) { off = 0; pte = consistent_pte[++idx]; } } while (size -= PAGE_SIZE); dsb(); return (void *)c->vm_start; } return NULL; } static void __dma_free_remap(void *cpu_addr, size_t size) { struct arm_vmregion *c; unsigned long addr; pte_t *ptep; int idx; u32 off; c = arm_vmregion_find_remove(&consistent_head, (unsigned long)cpu_addr); if (!c) { printk(KERN_ERR "%s: trying to free invalid coherent area: %p\n", __func__, cpu_addr); dump_stack(); return; } if ((c->vm_end - c->vm_start) != size) { printk(KERN_ERR "%s: freeing wrong coherent size (%ld != %d)\n", __func__, c->vm_end - c->vm_start, size); dump_stack(); size = c->vm_end - c->vm_start; } idx = CONSISTENT_PTE_INDEX(c->vm_start); off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1); ptep = consistent_pte[idx] + off; addr = c->vm_start; do { pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep); ptep++; addr += PAGE_SIZE; off++; if (off >= PTRS_PER_PTE) { off = 0; ptep = consistent_pte[++idx]; } if (pte_none(pte) || !pte_present(pte)) printk(KERN_CRIT "%s: bad page in kernel page table\n", __func__); } while (size -= PAGE_SIZE); flush_tlb_kernel_range(c->vm_start, c->vm_end); arm_vmregion_free(&consistent_head, c); } #else /* !CONFIG_MMU */ #define __dma_alloc_remap(page, size, gfp, prot) page_address(page) #define __dma_free_remap(addr, size) do { } while (0) #endif /* CONFIG_MMU */ static void * __dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp, pgprot_t prot) { struct page *page; void *addr; /* * Following is a work-around (a.k.a. hack) to prevent pages * with __GFP_COMP being passed to split_page() which cannot * handle them. The real problem is that this flag probably * should be 0 on ARM as it is not supported on this * platform; see CONFIG_HUGETLBFS. */ gfp &= ~(__GFP_COMP); *handle = ~0; size = PAGE_ALIGN(size); page = __dma_alloc_buffer(dev, size, gfp); if (!page) return NULL; if (!arch_is_coherent()) addr = __dma_alloc_remap(page, size, gfp, prot); else addr = page_address(page); if (addr) *handle = pfn_to_dma(dev, page_to_pfn(page)); else __dma_free_buffer(page, size); return addr; } /* * Allocate DMA-coherent memory space and return both the kernel remapped * virtual and bus address for that space. */ void * dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp) { void *memory; if (dma_alloc_from_coherent(dev, size, handle, &memory)) return memory; return __dma_alloc(dev, size, handle, gfp, pgprot_dmacoherent(PAGE_KERNEL)); } EXPORT_SYMBOL(dma_alloc_coherent); /* * Allocate a writecombining region, in much the same way as * dma_alloc_coherent above. */ void * dma_alloc_writecombine(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp) { return __dma_alloc(dev, size, handle, gfp, pgprot_writecombine(PAGE_KERNEL)); } EXPORT_SYMBOL(dma_alloc_writecombine); static int dma_mmap(struct device *dev, struct vm_area_struct *vma, void *cpu_addr, dma_addr_t dma_addr, size_t size) { int ret = -ENXIO; #ifdef CONFIG_MMU unsigned long user_size, kern_size; struct arm_vmregion *c; user_size = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; c = arm_vmregion_find(&consistent_head, (unsigned long)cpu_addr); if (c) { unsigned long off = vma->vm_pgoff; kern_size = (c->vm_end - c->vm_start) >> PAGE_SHIFT; if (off < kern_size && user_size <= (kern_size - off)) { ret = remap_pfn_range(vma, vma->vm_start, page_to_pfn(c->vm_pages) + off, user_size << PAGE_SHIFT, vma->vm_page_prot); } } #endif /* CONFIG_MMU */ return ret; } int dma_mmap_coherent(struct device *dev, struct vm_area_struct *vma, void *cpu_addr, dma_addr_t dma_addr, size_t size) { vma->vm_page_prot = pgprot_dmacoherent(vma->vm_page_prot); return dma_mmap(dev, vma, cpu_addr, dma_addr, size); } EXPORT_SYMBOL(dma_mmap_coherent); int dma_mmap_writecombine(struct device *dev, struct vm_area_struct *vma, void *cpu_addr, dma_addr_t dma_addr, size_t size) { vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot); return dma_mmap(dev, vma, cpu_addr, dma_addr, size); } EXPORT_SYMBOL(dma_mmap_writecombine); /* * free a page as defined by the above mapping. * Must not be called with IRQs disabled. */ void dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t handle) { WARN_ON(irqs_disabled()); if (dma_release_from_coherent(dev, get_order(size), cpu_addr)) return; size = PAGE_ALIGN(size); if (!arch_is_coherent()) __dma_free_remap(cpu_addr, size); __dma_free_buffer(pfn_to_page(dma_to_pfn(dev, handle)), size); } EXPORT_SYMBOL(dma_free_coherent); /* * Make an area consistent for devices. * Note: Drivers should NOT use this function directly, as it will break * platforms with CONFIG_DMABOUNCE. * Use the driver DMA support - see dma-mapping.h (dma_sync_*) */ void ___dma_single_cpu_to_dev(const void *kaddr, size_t size, enum dma_data_direction dir) { unsigned long paddr; BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1)); dmac_map_area(kaddr, size, dir); paddr = __pa(kaddr); if (dir == DMA_FROM_DEVICE) { outer_inv_range(paddr, paddr + size); } else { outer_clean_range(paddr, paddr + size); } /* FIXME: non-speculating: flush on bidirectional mappings? */ } EXPORT_SYMBOL(___dma_single_cpu_to_dev); void ___dma_single_dev_to_cpu(const void *kaddr, size_t size, enum dma_data_direction dir) { BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1)); /* FIXME: non-speculating: not required */ /* don't bother invalidating if DMA to device */ if (dir != DMA_TO_DEVICE) { unsigned long paddr = __pa(kaddr); outer_inv_range(paddr, paddr + size); } dmac_unmap_area(kaddr, size, dir); } EXPORT_SYMBOL(___dma_single_dev_to_cpu); static void dma_cache_maint_page(struct page *page, unsigned long offset, size_t size, enum dma_data_direction dir, void (*op)(const void *, size_t, int)) { unsigned long pfn; size_t left = size; pfn = page_to_pfn(page) + offset / PAGE_SIZE; offset %= PAGE_SIZE; /* * A single sg entry may refer to multiple physically contiguous * pages. But we still need to process highmem pages individually. * If highmem is not configured then the bulk of this loop gets * optimized out. */ do { size_t len = left; void *vaddr; page = pfn_to_page(pfn); if (PageHighMem(page)) { if (len + offset > PAGE_SIZE) len = PAGE_SIZE - offset; vaddr = kmap_high_get(page); if (vaddr) { vaddr += offset; op(vaddr, len, dir); kunmap_high(page); } else if (cache_is_vipt()) { /* unmapped pages might still be cached */ vaddr = kmap_atomic(page); op(vaddr + offset, len, dir); kunmap_atomic(vaddr); } } else { vaddr = page_address(page) + offset; op(vaddr, len, dir); } offset = 0; pfn++; left -= len; } while (left); } void ___dma_page_cpu_to_dev(struct page *page, unsigned long off, size_t size, enum dma_data_direction dir) { unsigned long paddr; dma_cache_maint_page(page, off, size, dir, dmac_map_area); paddr = page_to_phys(page) + off; if (dir == DMA_FROM_DEVICE) { outer_inv_range(paddr, paddr + size); } else { outer_clean_range(paddr, paddr + size); } /* FIXME: non-speculating: flush on bidirectional mappings? */ } EXPORT_SYMBOL(___dma_page_cpu_to_dev); void ___dma_page_dev_to_cpu(struct page *page, unsigned long off, size_t size, enum dma_data_direction dir) { unsigned long paddr = page_to_phys(page) + off; /* FIXME: non-speculating: not required */ /* don't bother invalidating if DMA to device */ if (dir != DMA_TO_DEVICE) outer_inv_range(paddr, paddr + size); dma_cache_maint_page(page, off, size, dir, dmac_unmap_area); /* * Mark the D-cache clean for this page to avoid extra flushing. */ if (dir != DMA_TO_DEVICE && off == 0 && size >= PAGE_SIZE) set_bit(PG_dcache_clean, &page->flags); } EXPORT_SYMBOL(___dma_page_dev_to_cpu); /** * dma_map_sg - map a set of SG buffers for streaming mode DMA * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices * @sg: list of buffers * @nents: number of buffers to map * @dir: DMA transfer direction * * Map a set of buffers described by scatterlist in streaming mode for DMA. * This is the scatter-gather version of the dma_map_single interface. * Here the scatter gather list elements are each tagged with the * appropriate dma address and length. They are obtained via * sg_dma_{address,length}. * * Device ownership issues as mentioned for dma_map_single are the same * here. */ int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, enum dma_data_direction dir) { struct scatterlist *s; int i, j; BUG_ON(!valid_dma_direction(dir)); for_each_sg(sg, s, nents, i) { s->dma_address = __dma_map_page(dev, sg_page(s), s->offset, s->length, dir); if (dma_mapping_error(dev, s->dma_address)) goto bad_mapping; } debug_dma_map_sg(dev, sg, nents, nents, dir); return nents; bad_mapping: for_each_sg(sg, s, i, j) __dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir); return 0; } EXPORT_SYMBOL(dma_map_sg); /** * dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices * @sg: list of buffers * @nents: number of buffers to unmap (same as was passed to dma_map_sg) * @dir: DMA transfer direction (same as was passed to dma_map_sg) * * Unmap a set of streaming mode DMA translations. Again, CPU access * rules concerning calls here are the same as for dma_unmap_single(). */ void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, enum dma_data_direction dir) { struct scatterlist *s; int i; debug_dma_unmap_sg(dev, sg, nents, dir); for_each_sg(sg, s, nents, i) __dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir); } EXPORT_SYMBOL(dma_unmap_sg); /** * dma_sync_sg_for_cpu * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices * @sg: list of buffers * @nents: number of buffers to map (returned from dma_map_sg) * @dir: DMA transfer direction (same as was passed to dma_map_sg) */ void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, int nents, enum dma_data_direction dir) { struct scatterlist *s; int i; for_each_sg(sg, s, nents, i) { if (!dmabounce_sync_for_cpu(dev, sg_dma_address(s), 0, sg_dma_len(s), dir)) continue; __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir); } debug_dma_sync_sg_for_cpu(dev, sg, nents, dir); } EXPORT_SYMBOL(dma_sync_sg_for_cpu); /** * dma_sync_sg_for_device * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices * @sg: list of buffers * @nents: number of buffers to map (returned from dma_map_sg) * @dir: DMA transfer direction (same as was passed to dma_map_sg) */ void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, int nents, enum dma_data_direction dir) { struct scatterlist *s; int i; for_each_sg(sg, s, nents, i) { if (!dmabounce_sync_for_device(dev, sg_dma_address(s), 0, sg_dma_len(s), dir)) continue; __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir); } debug_dma_sync_sg_for_device(dev, sg, nents, dir); } EXPORT_SYMBOL(dma_sync_sg_for_device); /* * Return whether the given device DMA address mask can be supported * properly. For example, if your device can only drive the low 24-bits * during bus mastering, then you would pass 0x00ffffff as the mask * to this function. */ int dma_supported(struct device *dev, u64 mask) { if (mask < (u64)arm_dma_limit) return 0; return 1; } EXPORT_SYMBOL(dma_supported); int dma_set_mask(struct device *dev, u64 dma_mask) { if (!dev->dma_mask || !dma_supported(dev, dma_mask)) return -EIO; #ifndef CONFIG_DMABOUNCE *dev->dma_mask = dma_mask; #endif return 0; } EXPORT_SYMBOL(dma_set_mask); #define PREALLOC_DMA_DEBUG_ENTRIES 4096 static int __init dma_debug_do_init(void) { dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES); return 0; } fs_initcall(dma_debug_do_init); |