Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
// SPDX-License-Identifier: GPL-2.0-only
/*
 *  linux/arch/arm/mm/dma-mapping.c
 *
 *  Copyright (C) 2000-2004 Russell King
 *
 *  DMA uncached mapping support.
 */
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/genalloc.h>
#include <linux/gfp.h>
#include <linux/errno.h>
#include <linux/list.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/dma-direct.h>
#include <linux/dma-map-ops.h>
#include <linux/highmem.h>
#include <linux/memblock.h>
#include <linux/slab.h>
#include <linux/iommu.h>
#include <linux/io.h>
#include <linux/vmalloc.h>
#include <linux/sizes.h>
#include <linux/cma.h>

#include <asm/page.h>
#include <asm/highmem.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/mach/arch.h>
#include <asm/dma-iommu.h>
#include <asm/mach/map.h>
#include <asm/system_info.h>
#include <asm/xen/xen-ops.h>

#include "dma.h"
#include "mm.h"

struct arm_dma_alloc_args {
	struct device *dev;
	size_t size;
	gfp_t gfp;
	pgprot_t prot;
	const void *caller;
	bool want_vaddr;
	int coherent_flag;
};

struct arm_dma_free_args {
	struct device *dev;
	size_t size;
	void *cpu_addr;
	struct page *page;
	bool want_vaddr;
};

#define NORMAL	    0
#define COHERENT    1

struct arm_dma_allocator {
	void *(*alloc)(struct arm_dma_alloc_args *args,
		       struct page **ret_page);
	void (*free)(struct arm_dma_free_args *args);
};

struct arm_dma_buffer {
	struct list_head list;
	void *virt;
	struct arm_dma_allocator *allocator;
};

static LIST_HEAD(arm_dma_bufs);
static DEFINE_SPINLOCK(arm_dma_bufs_lock);

static struct arm_dma_buffer *arm_dma_buffer_find(void *virt)
{
	struct arm_dma_buffer *buf, *found = NULL;
	unsigned long flags;

	spin_lock_irqsave(&arm_dma_bufs_lock, flags);
	list_for_each_entry(buf, &arm_dma_bufs, list) {
		if (buf->virt == virt) {
			list_del(&buf->list);
			found = buf;
			break;
		}
	}
	spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
	return found;
}

/*
 * The DMA API is built upon the notion of "buffer ownership".  A buffer
 * is either exclusively owned by the CPU (and therefore may be accessed
 * by it) or exclusively owned by the DMA device.  These helper functions
 * represent the transitions between these two ownership states.
 *
 * Note, however, that on later ARMs, this notion does not work due to
 * speculative prefetches.  We model our approach on the assumption that
 * the CPU does do speculative prefetches, which means we clean caches
 * before transfers and delay cache invalidation until transfer completion.
 *
 */

static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag)
{
	/*
	 * Ensure that the allocated pages are zeroed, and that any data
	 * lurking in the kernel direct-mapped region is invalidated.
	 */
	if (PageHighMem(page)) {
		phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
		phys_addr_t end = base + size;
		while (size > 0) {
			void *ptr = kmap_atomic(page);
			memset(ptr, 0, PAGE_SIZE);
			if (coherent_flag != COHERENT)
				dmac_flush_range(ptr, ptr + PAGE_SIZE);
			kunmap_atomic(ptr);
			page++;
			size -= PAGE_SIZE;
		}
		if (coherent_flag != COHERENT)
			outer_flush_range(base, end);
	} else {
		void *ptr = page_address(page);
		memset(ptr, 0, size);
		if (coherent_flag != COHERENT) {
			dmac_flush_range(ptr, ptr + size);
			outer_flush_range(__pa(ptr), __pa(ptr) + size);
		}
	}
}

/*
 * Allocate a DMA buffer for 'dev' of size 'size' using the
 * specified gfp mask.  Note that 'size' must be page aligned.
 */
static struct page *__dma_alloc_buffer(struct device *dev, size_t size,
				       gfp_t gfp, int coherent_flag)
{
	unsigned long order = get_order(size);
	struct page *page, *p, *e;

	page = alloc_pages(gfp, order);
	if (!page)
		return NULL;

	/*
	 * Now split the huge page and free the excess pages
	 */
	split_page(page, order);
	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
		__free_page(p);

	__dma_clear_buffer(page, size, coherent_flag);

	return page;
}

/*
 * Free a DMA buffer.  'size' must be page aligned.
 */
static void __dma_free_buffer(struct page *page, size_t size)
{
	struct page *e = page + (size >> PAGE_SHIFT);

	while (page < e) {
		__free_page(page);
		page++;
	}
}

static void *__alloc_from_contiguous(struct device *dev, size_t size,
				     pgprot_t prot, struct page **ret_page,
				     const void *caller, bool want_vaddr,
				     int coherent_flag, gfp_t gfp);

static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
				 pgprot_t prot, struct page **ret_page,
				 const void *caller, bool want_vaddr);

#define DEFAULT_DMA_COHERENT_POOL_SIZE	SZ_256K
static struct gen_pool *atomic_pool __ro_after_init;

static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE;

static int __init early_coherent_pool(char *p)
{
	atomic_pool_size = memparse(p, &p);
	return 0;
}
early_param("coherent_pool", early_coherent_pool);

/*
 * Initialise the coherent pool for atomic allocations.
 */
static int __init atomic_pool_init(void)
{
	pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
	gfp_t gfp = GFP_KERNEL | GFP_DMA;
	struct page *page;
	void *ptr;

	atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
	if (!atomic_pool)
		goto out;
	/*
	 * The atomic pool is only used for non-coherent allocations
	 * so we must pass NORMAL for coherent_flag.
	 */
	if (dev_get_cma_area(NULL))
		ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
				      &page, atomic_pool_init, true, NORMAL,
				      GFP_KERNEL);
	else
		ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
					   &page, atomic_pool_init, true);
	if (ptr) {
		int ret;

		ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
					page_to_phys(page),
					atomic_pool_size, -1);
		if (ret)
			goto destroy_genpool;

		gen_pool_set_algo(atomic_pool,
				gen_pool_first_fit_order_align,
				NULL);
		pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n",
		       atomic_pool_size / 1024);
		return 0;
	}

destroy_genpool:
	gen_pool_destroy(atomic_pool);
	atomic_pool = NULL;
out:
	pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
	       atomic_pool_size / 1024);
	return -ENOMEM;
}
/*
 * CMA is activated by core_initcall, so we must be called after it.
 */
postcore_initcall(atomic_pool_init);

#ifdef CONFIG_CMA_AREAS
struct dma_contig_early_reserve {
	phys_addr_t base;
	unsigned long size;
};

static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;

static int dma_mmu_remap_num __initdata;

#ifdef CONFIG_DMA_CMA
void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
{
	dma_mmu_remap[dma_mmu_remap_num].base = base;
	dma_mmu_remap[dma_mmu_remap_num].size = size;
	dma_mmu_remap_num++;
}
#endif

void __init dma_contiguous_remap(void)
{
	int i;
	for (i = 0; i < dma_mmu_remap_num; i++) {
		phys_addr_t start = dma_mmu_remap[i].base;
		phys_addr_t end = start + dma_mmu_remap[i].size;
		struct map_desc map;
		unsigned long addr;

		if (end > arm_lowmem_limit)
			end = arm_lowmem_limit;
		if (start >= end)
			continue;

		map.pfn = __phys_to_pfn(start);
		map.virtual = __phys_to_virt(start);
		map.length = end - start;
		map.type = MT_MEMORY_DMA_READY;

		/*
		 * Clear previous low-memory mapping to ensure that the
		 * TLB does not see any conflicting entries, then flush
		 * the TLB of the old entries before creating new mappings.
		 *
		 * This ensures that any speculatively loaded TLB entries
		 * (even though they may be rare) can not cause any problems,
		 * and ensures that this code is architecturally compliant.
		 */
		for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
		     addr += PMD_SIZE)
			pmd_clear(pmd_off_k(addr));

		flush_tlb_kernel_range(__phys_to_virt(start),
				       __phys_to_virt(end));

		iotable_init(&map, 1);
	}
}
#endif

static int __dma_update_pte(pte_t *pte, unsigned long addr, void *data)
{
	struct page *page = virt_to_page((void *)addr);
	pgprot_t prot = *(pgprot_t *)data;

	set_pte_ext(pte, mk_pte(page, prot), 0);
	return 0;
}

static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
{
	unsigned long start = (unsigned long) page_address(page);
	unsigned end = start + size;

	apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
	flush_tlb_kernel_range(start, end);
}

static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
				 pgprot_t prot, struct page **ret_page,
				 const void *caller, bool want_vaddr)
{
	struct page *page;
	void *ptr = NULL;
	/*
	 * __alloc_remap_buffer is only called when the device is
	 * non-coherent
	 */
	page = __dma_alloc_buffer(dev, size, gfp, NORMAL);
	if (!page)
		return NULL;
	if (!want_vaddr)
		goto out;

	ptr = dma_common_contiguous_remap(page, size, prot, caller);
	if (!ptr) {
		__dma_free_buffer(page, size);
		return NULL;
	}

 out:
	*ret_page = page;
	return ptr;
}

static void *__alloc_from_pool(size_t size, struct page **ret_page)
{
	unsigned long val;
	void *ptr = NULL;

	if (!atomic_pool) {
		WARN(1, "coherent pool not initialised!\n");
		return NULL;
	}

	val = gen_pool_alloc(atomic_pool, size);
	if (val) {
		phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);

		*ret_page = phys_to_page(phys);
		ptr = (void *)val;
	}

	return ptr;
}

static bool __in_atomic_pool(void *start, size_t size)
{
	return gen_pool_has_addr(atomic_pool, (unsigned long)start, size);
}

static int __free_from_pool(void *start, size_t size)
{
	if (!__in_atomic_pool(start, size))
		return 0;

	gen_pool_free(atomic_pool, (unsigned long)start, size);

	return 1;
}

static void *__alloc_from_contiguous(struct device *dev, size_t size,
				     pgprot_t prot, struct page **ret_page,
				     const void *caller, bool want_vaddr,
				     int coherent_flag, gfp_t gfp)
{
	unsigned long order = get_order(size);
	size_t count = size >> PAGE_SHIFT;
	struct page *page;
	void *ptr = NULL;

	page = dma_alloc_from_contiguous(dev, count, order, gfp & __GFP_NOWARN);
	if (!page)
		return NULL;

	__dma_clear_buffer(page, size, coherent_flag);

	if (!want_vaddr)
		goto out;

	if (PageHighMem(page)) {
		ptr = dma_common_contiguous_remap(page, size, prot, caller);
		if (!ptr) {
			dma_release_from_contiguous(dev, page, count);
			return NULL;
		}
	} else {
		__dma_remap(page, size, prot);
		ptr = page_address(page);
	}

 out:
	*ret_page = page;
	return ptr;
}

static void __free_from_contiguous(struct device *dev, struct page *page,
				   void *cpu_addr, size_t size, bool want_vaddr)
{
	if (want_vaddr) {
		if (PageHighMem(page))
			dma_common_free_remap(cpu_addr, size);
		else
			__dma_remap(page, size, PAGE_KERNEL);
	}
	dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
}

static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot)
{
	prot = (attrs & DMA_ATTR_WRITE_COMBINE) ?
			pgprot_writecombine(prot) :
			pgprot_dmacoherent(prot);
	return prot;
}

static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
				   struct page **ret_page)
{
	struct page *page;
	/* __alloc_simple_buffer is only called when the device is coherent */
	page = __dma_alloc_buffer(dev, size, gfp, COHERENT);
	if (!page)
		return NULL;

	*ret_page = page;
	return page_address(page);
}

static void *simple_allocator_alloc(struct arm_dma_alloc_args *args,
				    struct page **ret_page)
{
	return __alloc_simple_buffer(args->dev, args->size, args->gfp,
				     ret_page);
}

static void simple_allocator_free(struct arm_dma_free_args *args)
{
	__dma_free_buffer(args->page, args->size);
}

static struct arm_dma_allocator simple_allocator = {
	.alloc = simple_allocator_alloc,
	.free = simple_allocator_free,
};

static void *cma_allocator_alloc(struct arm_dma_alloc_args *args,
				 struct page **ret_page)
{
	return __alloc_from_contiguous(args->dev, args->size, args->prot,
				       ret_page, args->caller,
				       args->want_vaddr, args->coherent_flag,
				       args->gfp);
}

static void cma_allocator_free(struct arm_dma_free_args *args)
{
	__free_from_contiguous(args->dev, args->page, args->cpu_addr,
			       args->size, args->want_vaddr);
}

static struct arm_dma_allocator cma_allocator = {
	.alloc = cma_allocator_alloc,
	.free = cma_allocator_free,
};

static void *pool_allocator_alloc(struct arm_dma_alloc_args *args,
				  struct page **ret_page)
{
	return __alloc_from_pool(args->size, ret_page);
}

static void pool_allocator_free(struct arm_dma_free_args *args)
{
	__free_from_pool(args->cpu_addr, args->size);
}

static struct arm_dma_allocator pool_allocator = {
	.alloc = pool_allocator_alloc,
	.free = pool_allocator_free,
};

static void *remap_allocator_alloc(struct arm_dma_alloc_args *args,
				   struct page **ret_page)
{
	return __alloc_remap_buffer(args->dev, args->size, args->gfp,
				    args->prot, ret_page, args->caller,
				    args->want_vaddr);
}

static void remap_allocator_free(struct arm_dma_free_args *args)
{
	if (args->want_vaddr)
		dma_common_free_remap(args->cpu_addr, args->size);

	__dma_free_buffer(args->page, args->size);
}

static struct arm_dma_allocator remap_allocator = {
	.alloc = remap_allocator_alloc,
	.free = remap_allocator_free,
};

static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
			 gfp_t gfp, pgprot_t prot, bool is_coherent,
			 unsigned long attrs, const void *caller)
{
	u64 mask = min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
	struct page *page = NULL;
	void *addr;
	bool allowblock, cma;
	struct arm_dma_buffer *buf;
	struct arm_dma_alloc_args args = {
		.dev = dev,
		.size = PAGE_ALIGN(size),
		.gfp = gfp,
		.prot = prot,
		.caller = caller,
		.want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
		.coherent_flag = is_coherent ? COHERENT : NORMAL,
	};

#ifdef CONFIG_DMA_API_DEBUG
	u64 limit = (mask + 1) & ~mask;
	if (limit && size >= limit) {
		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
			size, mask);
		return NULL;
	}
#endif

	buf = kzalloc(sizeof(*buf),
		      gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM));
	if (!buf)
		return NULL;

	if (mask < 0xffffffffULL)
		gfp |= GFP_DMA;

	args.gfp = gfp;

	*handle = DMA_MAPPING_ERROR;
	allowblock = gfpflags_allow_blocking(gfp);
	cma = allowblock ? dev_get_cma_area(dev) : NULL;

	if (cma)
		buf->allocator = &cma_allocator;
	else if (is_coherent)
		buf->allocator = &simple_allocator;
	else if (allowblock)
		buf->allocator = &remap_allocator;
	else
		buf->allocator = &pool_allocator;

	addr = buf->allocator->alloc(&args, &page);

	if (page) {
		unsigned long flags;

		*handle = phys_to_dma(dev, page_to_phys(page));
		buf->virt = args.want_vaddr ? addr : page;

		spin_lock_irqsave(&arm_dma_bufs_lock, flags);
		list_add(&buf->list, &arm_dma_bufs);
		spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
	} else {
		kfree(buf);
	}

	return args.want_vaddr ? addr : page;
}

/*
 * Free a buffer as defined by the above mapping.
 */
static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
			   dma_addr_t handle, unsigned long attrs,
			   bool is_coherent)
{
	struct page *page = phys_to_page(dma_to_phys(dev, handle));
	struct arm_dma_buffer *buf;
	struct arm_dma_free_args args = {
		.dev = dev,
		.size = PAGE_ALIGN(size),
		.cpu_addr = cpu_addr,
		.page = page,
		.want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
	};

	buf = arm_dma_buffer_find(cpu_addr);
	if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr))
		return;

	buf->allocator->free(&args);
	kfree(buf);
}

static void dma_cache_maint_page(struct page *page, unsigned long offset,
	size_t size, enum dma_data_direction dir,
	void (*op)(const void *, size_t, int))
{
	unsigned long pfn;
	size_t left = size;

	pfn = page_to_pfn(page) + offset / PAGE_SIZE;
	offset %= PAGE_SIZE;

	/*
	 * A single sg entry may refer to multiple physically contiguous
	 * pages.  But we still need to process highmem pages individually.
	 * If highmem is not configured then the bulk of this loop gets
	 * optimized out.
	 */
	do {
		size_t len = left;
		void *vaddr;

		page = pfn_to_page(pfn);

		if (PageHighMem(page)) {
			if (len + offset > PAGE_SIZE)
				len = PAGE_SIZE - offset;

			if (cache_is_vipt_nonaliasing()) {
				vaddr = kmap_atomic(page);
				op(vaddr + offset, len, dir);
				kunmap_atomic(vaddr);
			} else {
				vaddr = kmap_high_get(page);
				if (vaddr) {
					op(vaddr + offset, len, dir);
					kunmap_high(page);
				}
			}
		} else {
			vaddr = page_address(page) + offset;
			op(vaddr, len, dir);
		}
		offset = 0;
		pfn++;
		left -= len;
	} while (left);
}

/*
 * Make an area consistent for devices.
 * Note: Drivers should NOT use this function directly.
 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
 */
static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
	size_t size, enum dma_data_direction dir)
{
	phys_addr_t paddr;

	dma_cache_maint_page(page, off, size, dir, dmac_map_area);

	paddr = page_to_phys(page) + off;
	if (dir == DMA_FROM_DEVICE) {
		outer_inv_range(paddr, paddr + size);
	} else {
		outer_clean_range(paddr, paddr + size);
	}
	/* FIXME: non-speculating: flush on bidirectional mappings? */
}

static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
	size_t size, enum dma_data_direction dir)
{
	phys_addr_t paddr = page_to_phys(page) + off;

	/* FIXME: non-speculating: not required */
	/* in any case, don't bother invalidating if DMA to device */
	if (dir != DMA_TO_DEVICE) {
		outer_inv_range(paddr, paddr + size);

		dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
	}

	/*
	 * Mark the D-cache clean for these pages to avoid extra flushing.
	 */
	if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
		struct folio *folio = pfn_folio(paddr / PAGE_SIZE);
		size_t offset = offset_in_folio(folio, paddr);

		for (;;) {
			size_t sz = folio_size(folio) - offset;

			if (size < sz)
				break;
			if (!offset)
				set_bit(PG_dcache_clean, &folio->flags);
			offset = 0;
			size -= sz;
			if (!size)
				break;
			folio = folio_next(folio);
		}
	}
}

#ifdef CONFIG_ARM_DMA_USE_IOMMU

static int __dma_info_to_prot(enum dma_data_direction dir, unsigned long attrs)
{
	int prot = 0;

	if (attrs & DMA_ATTR_PRIVILEGED)
		prot |= IOMMU_PRIV;

	switch (dir) {
	case DMA_BIDIRECTIONAL:
		return prot | IOMMU_READ | IOMMU_WRITE;
	case DMA_TO_DEVICE:
		return prot | IOMMU_READ;
	case DMA_FROM_DEVICE:
		return prot | IOMMU_WRITE;
	default:
		return prot;
	}
}

/* IOMMU */

static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);

static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
				      size_t size)
{
	unsigned int order = get_order(size);
	unsigned int align = 0;
	unsigned int count, start;
	size_t mapping_size = mapping->bits << PAGE_SHIFT;
	unsigned long flags;
	dma_addr_t iova;
	int i;

	if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
		order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;

	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
	align = (1 << order) - 1;

	spin_lock_irqsave(&mapping->lock, flags);
	for (i = 0; i < mapping->nr_bitmaps; i++) {
		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
				mapping->bits, 0, count, align);

		if (start > mapping->bits)
			continue;

		bitmap_set(mapping->bitmaps[i], start, count);
		break;
	}

	/*
	 * No unused range found. Try to extend the existing mapping
	 * and perform a second attempt to reserve an IO virtual
	 * address range of size bytes.
	 */
	if (i == mapping->nr_bitmaps) {
		if (extend_iommu_mapping(mapping)) {
			spin_unlock_irqrestore(&mapping->lock, flags);
			return DMA_MAPPING_ERROR;
		}

		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
				mapping->bits, 0, count, align);

		if (start > mapping->bits) {
			spin_unlock_irqrestore(&mapping->lock, flags);
			return DMA_MAPPING_ERROR;
		}

		bitmap_set(mapping->bitmaps[i], start, count);
	}
	spin_unlock_irqrestore(&mapping->lock, flags);

	iova = mapping->base + (mapping_size * i);
	iova += start << PAGE_SHIFT;

	return iova;
}

static inline void __free_iova(struct dma_iommu_mapping *mapping,
			       dma_addr_t addr, size_t size)
{
	unsigned int start, count;
	size_t mapping_size = mapping->bits << PAGE_SHIFT;
	unsigned long flags;
	dma_addr_t bitmap_base;
	u32 bitmap_index;

	if (!size)
		return;

	bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
	BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);

	bitmap_base = mapping->base + mapping_size * bitmap_index;

	start = (addr - bitmap_base) >>	PAGE_SHIFT;

	if (addr + size > bitmap_base + mapping_size) {
		/*
		 * The address range to be freed reaches into the iova
		 * range of the next bitmap. This should not happen as
		 * we don't allow this in __alloc_iova (at the
		 * moment).
		 */
		BUG();
	} else
		count = size >> PAGE_SHIFT;

	spin_lock_irqsave(&mapping->lock, flags);
	bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
	spin_unlock_irqrestore(&mapping->lock, flags);
}

/* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
static const int iommu_order_array[] = { 9, 8, 4, 0 };

static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
					  gfp_t gfp, unsigned long attrs,
					  int coherent_flag)
{
	struct page **pages;
	int count = size >> PAGE_SHIFT;
	int array_size = count * sizeof(struct page *);
	int i = 0;
	int order_idx = 0;

	if (array_size <= PAGE_SIZE)
		pages = kzalloc(array_size, GFP_KERNEL);
	else
		pages = vzalloc(array_size);
	if (!pages)
		return NULL;

	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS)
	{
		unsigned long order = get_order(size);
		struct page *page;

		page = dma_alloc_from_contiguous(dev, count, order,
						 gfp & __GFP_NOWARN);
		if (!page)
			goto error;

		__dma_clear_buffer(page, size, coherent_flag);

		for (i = 0; i < count; i++)
			pages[i] = page + i;

		return pages;
	}

	/* Go straight to 4K chunks if caller says it's OK. */
	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
		order_idx = ARRAY_SIZE(iommu_order_array) - 1;

	/*
	 * IOMMU can map any pages, so himem can also be used here
	 */
	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;

	while (count) {
		int j, order;

		order = iommu_order_array[order_idx];

		/* Drop down when we get small */
		if (__fls(count) < order) {
			order_idx++;
			continue;
		}

		if (order) {
			/* See if it's easy to allocate a high-order chunk */
			pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);

			/* Go down a notch at first sign of pressure */
			if (!pages[i]) {
				order_idx++;
				continue;
			}
		} else {
			pages[i] = alloc_pages(gfp, 0);
			if (!pages[i])
				goto error;
		}

		if (order) {
			split_page(pages[i], order);
			j = 1 << order;
			while (--j)
				pages[i + j] = pages[i] + j;
		}

		__dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag);
		i += 1 << order;
		count -= 1 << order;
	}

	return pages;
error:
	while (i--)
		if (pages[i])
			__free_pages(pages[i], 0);
	kvfree(pages);
	return NULL;
}

static int __iommu_free_buffer(struct device *dev, struct page **pages,
			       size_t size, unsigned long attrs)
{
	int count = size >> PAGE_SHIFT;
	int i;

	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
		dma_release_from_contiguous(dev, pages[0], count);
	} else {
		for (i = 0; i < count; i++)
			if (pages[i])
				__free_pages(pages[i], 0);
	}

	kvfree(pages);
	return 0;
}

/*
 * Create a mapping in device IO address space for specified pages
 */
static dma_addr_t
__iommu_create_mapping(struct device *dev, struct page **pages, size_t size,
		       unsigned long attrs)
{
	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
	dma_addr_t dma_addr, iova;
	int i;

	dma_addr = __alloc_iova(mapping, size);
	if (dma_addr == DMA_MAPPING_ERROR)
		return dma_addr;

	iova = dma_addr;
	for (i = 0; i < count; ) {
		int ret;

		unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
		phys_addr_t phys = page_to_phys(pages[i]);
		unsigned int len, j;

		for (j = i + 1; j < count; j++, next_pfn++)
			if (page_to_pfn(pages[j]) != next_pfn)
				break;

		len = (j - i) << PAGE_SHIFT;
		ret = iommu_map(mapping->domain, iova, phys, len,
				__dma_info_to_prot(DMA_BIDIRECTIONAL, attrs),
				GFP_KERNEL);
		if (ret < 0)
			goto fail;
		iova += len;
		i = j;
	}
	return dma_addr;
fail:
	iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
	__free_iova(mapping, dma_addr, size);
	return DMA_MAPPING_ERROR;
}

static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
{
	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);

	/*
	 * add optional in-page offset from iova to size and align
	 * result to page size
	 */
	size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
	iova &= PAGE_MASK;

	iommu_unmap(mapping->domain, iova, size);
	__free_iova(mapping, iova, size);
	return 0;
}

static struct page **__atomic_get_pages(void *addr)
{
	struct page *page;
	phys_addr_t phys;

	phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
	page = phys_to_page(phys);

	return (struct page **)page;
}

static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs)
{
	if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
		return __atomic_get_pages(cpu_addr);

	if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
		return cpu_addr;

	return dma_common_find_pages(cpu_addr);
}

static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp,
				  dma_addr_t *handle, int coherent_flag,
				  unsigned long attrs)
{
	struct page *page;
	void *addr;

	if (coherent_flag  == COHERENT)
		addr = __alloc_simple_buffer(dev, size, gfp, &page);
	else
		addr = __alloc_from_pool(size, &page);
	if (!addr)
		return NULL;

	*handle = __iommu_create_mapping(dev, &page, size, attrs);
	if (*handle == DMA_MAPPING_ERROR)
		goto err_mapping;

	return addr;

err_mapping:
	__free_from_pool(addr, size);
	return NULL;
}

static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
			dma_addr_t handle, size_t size, int coherent_flag)
{
	__iommu_remove_mapping(dev, handle, size);
	if (coherent_flag == COHERENT)
		__dma_free_buffer(virt_to_page(cpu_addr), size);
	else
		__free_from_pool(cpu_addr, size);
}

static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
	    dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
{
	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
	struct page **pages;
	void *addr = NULL;
	int coherent_flag = dev->dma_coherent ? COHERENT : NORMAL;

	*handle = DMA_MAPPING_ERROR;
	size = PAGE_ALIGN(size);

	if (coherent_flag  == COHERENT || !gfpflags_allow_blocking(gfp))
		return __iommu_alloc_simple(dev, size, gfp, handle,
					    coherent_flag, attrs);

	pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag);
	if (!pages)
		return NULL;

	*handle = __iommu_create_mapping(dev, pages, size, attrs);
	if (*handle == DMA_MAPPING_ERROR)
		goto err_buffer;

	if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
		return pages;

	addr = dma_common_pages_remap(pages, size, prot,
				   __builtin_return_address(0));
	if (!addr)
		goto err_mapping;

	return addr;

err_mapping:
	__iommu_remove_mapping(dev, *handle, size);
err_buffer:
	__iommu_free_buffer(dev, pages, size, attrs);
	return NULL;
}

static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
		    void *cpu_addr, dma_addr_t dma_addr, size_t size,
		    unsigned long attrs)
{
	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
	int err;

	if (!pages)
		return -ENXIO;

	if (vma->vm_pgoff >= nr_pages)
		return -ENXIO;

	if (!dev->dma_coherent)
		vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);

	err = vm_map_pages(vma, pages, nr_pages);
	if (err)
		pr_err("Remapping memory failed: %d\n", err);

	return err;
}

/*
 * free a page as defined by the above mapping.
 * Must not be called with IRQs disabled.
 */
static void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
	dma_addr_t handle, unsigned long attrs)
{
	int coherent_flag = dev->dma_coherent ? COHERENT : NORMAL;
	struct page **pages;
	size = PAGE_ALIGN(size);

	if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) {
		__iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag);
		return;
	}

	pages = __iommu_get_pages(cpu_addr, attrs);
	if (!pages) {
		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
		return;
	}

	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0)
		dma_common_free_remap(cpu_addr, size);

	__iommu_remove_mapping(dev, handle, size);
	__iommu_free_buffer(dev, pages, size, attrs);
}

static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
				 void *cpu_addr, dma_addr_t dma_addr,
				 size_t size, unsigned long attrs)
{
	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
	struct page **pages = __iommu_get_pages(cpu_addr, attrs);

	if (!pages)
		return -ENXIO;

	return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
					 GFP_KERNEL);
}

/*
 * Map a part of the scatter-gather list into contiguous io address space
 */
static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
			  size_t size, dma_addr_t *handle,
			  enum dma_data_direction dir, unsigned long attrs)
{
	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
	dma_addr_t iova, iova_base;
	int ret = 0;
	unsigned int count;
	struct scatterlist *s;
	int prot;

	size = PAGE_ALIGN(size);
	*handle = DMA_MAPPING_ERROR;

	iova_base = iova = __alloc_iova(mapping, size);
	if (iova == DMA_MAPPING_ERROR)
		return -ENOMEM;

	for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
		phys_addr_t phys = page_to_phys(sg_page(s));
		unsigned int len = PAGE_ALIGN(s->offset + s->length);

		if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);

		prot = __dma_info_to_prot(dir, attrs);

		ret = iommu_map(mapping->domain, iova, phys, len, prot,
				GFP_KERNEL);
		if (ret < 0)
			goto fail;
		count += len >> PAGE_SHIFT;
		iova += len;
	}
	*handle = iova_base;

	return 0;
fail:
	iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
	__free_iova(mapping, iova_base, size);
	return ret;
}

/**
 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
 * @dev: valid struct device pointer
 * @sg: list of buffers
 * @nents: number of buffers to map
 * @dir: DMA transfer direction
 *
 * Map a set of buffers described by scatterlist in streaming mode for DMA.
 * The scatter gather list elements are merged together (if possible) and
 * tagged with the appropriate dma address and length. They are obtained via
 * sg_dma_{address,length}.
 */
static int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
		int nents, enum dma_data_direction dir, unsigned long attrs)
{
	struct scatterlist *s = sg, *dma = sg, *start = sg;
	int i, count = 0, ret;
	unsigned int offset = s->offset;
	unsigned int size = s->offset + s->length;
	unsigned int max = dma_get_max_seg_size(dev);

	for (i = 1; i < nents; i++) {
		s = sg_next(s);

		s->dma_length = 0;

		if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
			ret = __map_sg_chunk(dev, start, size,
					     &dma->dma_address, dir, attrs);
			if (ret < 0)
				goto bad_mapping;

			dma->dma_address += offset;
			dma->dma_length = size - offset;

			size = offset = s->offset;
			start = s;
			dma = sg_next(dma);
			count += 1;
		}
		size += s->length;
	}
	ret = __map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs);
	if (ret < 0)
		goto bad_mapping;

	dma->dma_address += offset;
	dma->dma_length = size - offset;

	return count+1;

bad_mapping:
	for_each_sg(sg, s, count, i)
		__iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
	if (ret == -ENOMEM)
		return ret;
	return -EINVAL;
}

/**
 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
 * @dev: valid struct device pointer
 * @sg: list of buffers
 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 *
 * Unmap a set of streaming mode DMA translations.  Again, CPU access
 * rules concerning calls here are the same as for dma_unmap_single().
 */
static void arm_iommu_unmap_sg(struct device *dev,
			       struct scatterlist *sg, int nents,
			       enum dma_data_direction dir,
			       unsigned long attrs)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sg, s, nents, i) {
		if (sg_dma_len(s))
			__iommu_remove_mapping(dev, sg_dma_address(s),
					       sg_dma_len(s));
		if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
			__dma_page_dev_to_cpu(sg_page(s), s->offset,
					      s->length, dir);
	}
}

/**
 * arm_iommu_sync_sg_for_cpu
 * @dev: valid struct device pointer
 * @sg: list of buffers
 * @nents: number of buffers to map (returned from dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 */
static void arm_iommu_sync_sg_for_cpu(struct device *dev,
			struct scatterlist *sg,
			int nents, enum dma_data_direction dir)
{
	struct scatterlist *s;
	int i;

	if (dev->dma_coherent)
		return;

	for_each_sg(sg, s, nents, i)
		__dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);

}

/**
 * arm_iommu_sync_sg_for_device
 * @dev: valid struct device pointer
 * @sg: list of buffers
 * @nents: number of buffers to map (returned from dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 */
static void arm_iommu_sync_sg_for_device(struct device *dev,
			struct scatterlist *sg,
			int nents, enum dma_data_direction dir)
{
	struct scatterlist *s;
	int i;

	if (dev->dma_coherent)
		return;

	for_each_sg(sg, s, nents, i)
		__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
}

/**
 * arm_iommu_map_page
 * @dev: valid struct device pointer
 * @page: page that buffer resides in
 * @offset: offset into page for start of buffer
 * @size: size of buffer to map
 * @dir: DMA transfer direction
 *
 * IOMMU aware version of arm_dma_map_page()
 */
static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
	     unsigned long offset, size_t size, enum dma_data_direction dir,
	     unsigned long attrs)
{
	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
	dma_addr_t dma_addr;
	int ret, prot, len = PAGE_ALIGN(size + offset);

	if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
		__dma_page_cpu_to_dev(page, offset, size, dir);

	dma_addr = __alloc_iova(mapping, len);
	if (dma_addr == DMA_MAPPING_ERROR)
		return dma_addr;

	prot = __dma_info_to_prot(dir, attrs);

	ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len,
			prot, GFP_KERNEL);
	if (ret < 0)
		goto fail;

	return dma_addr + offset;
fail:
	__free_iova(mapping, dma_addr, len);
	return DMA_MAPPING_ERROR;
}

/**
 * arm_iommu_unmap_page
 * @dev: valid struct device pointer
 * @handle: DMA address of buffer
 * @size: size of buffer (same as passed to dma_map_page)
 * @dir: DMA transfer direction (same as passed to dma_map_page)
 *
 * IOMMU aware version of arm_dma_unmap_page()
 */
static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
		size_t size, enum dma_data_direction dir, unsigned long attrs)
{
	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
	dma_addr_t iova = handle & PAGE_MASK;
	struct page *page;
	int offset = handle & ~PAGE_MASK;
	int len = PAGE_ALIGN(size + offset);

	if (!iova)
		return;

	if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) {
		page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
		__dma_page_dev_to_cpu(page, offset, size, dir);
	}

	iommu_unmap(mapping->domain, iova, len);
	__free_iova(mapping, iova, len);
}

/**
 * arm_iommu_map_resource - map a device resource for DMA
 * @dev: valid struct device pointer
 * @phys_addr: physical address of resource
 * @size: size of resource to map
 * @dir: DMA transfer direction
 */
static dma_addr_t arm_iommu_map_resource(struct device *dev,
		phys_addr_t phys_addr, size_t size,
		enum dma_data_direction dir, unsigned long attrs)
{
	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
	dma_addr_t dma_addr;
	int ret, prot;
	phys_addr_t addr = phys_addr & PAGE_MASK;
	unsigned int offset = phys_addr & ~PAGE_MASK;
	size_t len = PAGE_ALIGN(size + offset);

	dma_addr = __alloc_iova(mapping, len);
	if (dma_addr == DMA_MAPPING_ERROR)
		return dma_addr;

	prot = __dma_info_to_prot(dir, attrs) | IOMMU_MMIO;

	ret = iommu_map(mapping->domain, dma_addr, addr, len, prot, GFP_KERNEL);
	if (ret < 0)
		goto fail;

	return dma_addr + offset;
fail:
	__free_iova(mapping, dma_addr, len);
	return DMA_MAPPING_ERROR;
}

/**
 * arm_iommu_unmap_resource - unmap a device DMA resource
 * @dev: valid struct device pointer
 * @dma_handle: DMA address to resource
 * @size: size of resource to map
 * @dir: DMA transfer direction
 */
static void arm_iommu_unmap_resource(struct device *dev, dma_addr_t dma_handle,
		size_t size, enum dma_data_direction dir,
		unsigned long attrs)
{
	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
	dma_addr_t iova = dma_handle & PAGE_MASK;
	unsigned int offset = dma_handle & ~PAGE_MASK;
	size_t len = PAGE_ALIGN(size + offset);

	if (!iova)
		return;

	iommu_unmap(mapping->domain, iova, len);
	__free_iova(mapping, iova, len);
}

static void arm_iommu_sync_single_for_cpu(struct device *dev,
		dma_addr_t handle, size_t size, enum dma_data_direction dir)
{
	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
	dma_addr_t iova = handle & PAGE_MASK;
	struct page *page;
	unsigned int offset = handle & ~PAGE_MASK;

	if (dev->dma_coherent || !iova)
		return;

	page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
	__dma_page_dev_to_cpu(page, offset, size, dir);
}

static void arm_iommu_sync_single_for_device(struct device *dev,
		dma_addr_t handle, size_t size, enum dma_data_direction dir)
{
	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
	dma_addr_t iova = handle & PAGE_MASK;
	struct page *page;
	unsigned int offset = handle & ~PAGE_MASK;

	if (dev->dma_coherent || !iova)
		return;

	page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
	__dma_page_cpu_to_dev(page, offset, size, dir);
}

static const struct dma_map_ops iommu_ops = {
	.alloc		= arm_iommu_alloc_attrs,
	.free		= arm_iommu_free_attrs,
	.mmap		= arm_iommu_mmap_attrs,
	.get_sgtable	= arm_iommu_get_sgtable,

	.map_page		= arm_iommu_map_page,
	.unmap_page		= arm_iommu_unmap_page,
	.sync_single_for_cpu	= arm_iommu_sync_single_for_cpu,
	.sync_single_for_device	= arm_iommu_sync_single_for_device,

	.map_sg			= arm_iommu_map_sg,
	.unmap_sg		= arm_iommu_unmap_sg,
	.sync_sg_for_cpu	= arm_iommu_sync_sg_for_cpu,
	.sync_sg_for_device	= arm_iommu_sync_sg_for_device,

	.map_resource		= arm_iommu_map_resource,
	.unmap_resource		= arm_iommu_unmap_resource,
};

/**
 * arm_iommu_create_mapping
 * @bus: pointer to the bus holding the client device (for IOMMU calls)
 * @base: start address of the valid IO address space
 * @size: maximum size of the valid IO address space
 *
 * Creates a mapping structure which holds information about used/unused
 * IO address ranges, which is required to perform memory allocation and
 * mapping with IOMMU aware functions.
 *
 * The client device need to be attached to the mapping with
 * arm_iommu_attach_device function.
 */
struct dma_iommu_mapping *
arm_iommu_create_mapping(const struct bus_type *bus, dma_addr_t base, u64 size)
{
	unsigned int bits = size >> PAGE_SHIFT;
	unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
	struct dma_iommu_mapping *mapping;
	int extensions = 1;
	int err = -ENOMEM;

	/* currently only 32-bit DMA address space is supported */
	if (size > DMA_BIT_MASK(32) + 1)
		return ERR_PTR(-ERANGE);

	if (!bitmap_size)
		return ERR_PTR(-EINVAL);

	if (bitmap_size > PAGE_SIZE) {
		extensions = bitmap_size / PAGE_SIZE;
		bitmap_size = PAGE_SIZE;
	}

	mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
	if (!mapping)
		goto err;

	mapping->bitmap_size = bitmap_size;
	mapping->bitmaps = kcalloc(extensions, sizeof(unsigned long *),
				   GFP_KERNEL);
	if (!mapping->bitmaps)
		goto err2;

	mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
	if (!mapping->bitmaps[0])
		goto err3;

	mapping->nr_bitmaps = 1;
	mapping->extensions = extensions;
	mapping->base = base;
	mapping->bits = BITS_PER_BYTE * bitmap_size;

	spin_lock_init(&mapping->lock);

	mapping->domain = iommu_domain_alloc(bus);
	if (!mapping->domain)
		goto err4;

	kref_init(&mapping->kref);
	return mapping;
err4:
	kfree(mapping->bitmaps[0]);
err3:
	kfree(mapping->bitmaps);
err2:
	kfree(mapping);
err:
	return ERR_PTR(err);
}
EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);

static void release_iommu_mapping(struct kref *kref)
{
	int i;
	struct dma_iommu_mapping *mapping =
		container_of(kref, struct dma_iommu_mapping, kref);

	iommu_domain_free(mapping->domain);
	for (i = 0; i < mapping->nr_bitmaps; i++)
		kfree(mapping->bitmaps[i]);
	kfree(mapping->bitmaps);
	kfree(mapping);
}

static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
{
	int next_bitmap;

	if (mapping->nr_bitmaps >= mapping->extensions)
		return -EINVAL;

	next_bitmap = mapping->nr_bitmaps;
	mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
						GFP_ATOMIC);
	if (!mapping->bitmaps[next_bitmap])
		return -ENOMEM;

	mapping->nr_bitmaps++;

	return 0;
}

void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
{
	if (mapping)
		kref_put(&mapping->kref, release_iommu_mapping);
}
EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);

static int __arm_iommu_attach_device(struct device *dev,
				     struct dma_iommu_mapping *mapping)
{
	int err;

	err = iommu_attach_device(mapping->domain, dev);
	if (err)
		return err;

	kref_get(&mapping->kref);
	to_dma_iommu_mapping(dev) = mapping;

	pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
	return 0;
}

/**
 * arm_iommu_attach_device
 * @dev: valid struct device pointer
 * @mapping: io address space mapping structure (returned from
 *	arm_iommu_create_mapping)
 *
 * Attaches specified io address space mapping to the provided device.
 * This replaces the dma operations (dma_map_ops pointer) with the
 * IOMMU aware version.
 *
 * More than one client might be attached to the same io address space
 * mapping.
 */
int arm_iommu_attach_device(struct device *dev,
			    struct dma_iommu_mapping *mapping)
{
	int err;

	err = __arm_iommu_attach_device(dev, mapping);
	if (err)
		return err;

	set_dma_ops(dev, &iommu_ops);
	return 0;
}
EXPORT_SYMBOL_GPL(arm_iommu_attach_device);

/**
 * arm_iommu_detach_device
 * @dev: valid struct device pointer
 *
 * Detaches the provided device from a previously attached map.
 * This overwrites the dma_ops pointer with appropriate non-IOMMU ops.
 */
void arm_iommu_detach_device(struct device *dev)
{
	struct dma_iommu_mapping *mapping;

	mapping = to_dma_iommu_mapping(dev);
	if (!mapping) {
		dev_warn(dev, "Not attached\n");
		return;
	}

	iommu_detach_device(mapping->domain, dev);
	kref_put(&mapping->kref, release_iommu_mapping);
	to_dma_iommu_mapping(dev) = NULL;
	set_dma_ops(dev, NULL);

	pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
}
EXPORT_SYMBOL_GPL(arm_iommu_detach_device);

static void arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
				    const struct iommu_ops *iommu, bool coherent)
{
	struct dma_iommu_mapping *mapping;

	mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
	if (IS_ERR(mapping)) {
		pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
				size, dev_name(dev));
		return;
	}

	if (__arm_iommu_attach_device(dev, mapping)) {
		pr_warn("Failed to attached device %s to IOMMU_mapping\n",
				dev_name(dev));
		arm_iommu_release_mapping(mapping);
		return;
	}

	set_dma_ops(dev, &iommu_ops);
}

static void arm_teardown_iommu_dma_ops(struct device *dev)
{
	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);

	if (!mapping)
		return;

	arm_iommu_detach_device(dev);
	arm_iommu_release_mapping(mapping);
}

#else

static void arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
				    const struct iommu_ops *iommu, bool coherent)
{
}

static void arm_teardown_iommu_dma_ops(struct device *dev) { }

#endif	/* CONFIG_ARM_DMA_USE_IOMMU */

void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
			const struct iommu_ops *iommu, bool coherent)
{
	/*
	 * Due to legacy code that sets the ->dma_coherent flag from a bus
	 * notifier we can't just assign coherent to the ->dma_coherent flag
	 * here, but instead have to make sure we only set but never clear it
	 * for now.
	 */
	if (coherent)
		dev->dma_coherent = true;

	/*
	 * Don't override the dma_ops if they have already been set. Ideally
	 * this should be the only location where dma_ops are set, remove this
	 * check when all other callers of set_dma_ops will have disappeared.
	 */
	if (dev->dma_ops)
		return;

	if (iommu)
		arm_setup_iommu_dma_ops(dev, dma_base, size, iommu, coherent);

	xen_setup_dma_ops(dev);
	dev->archdata.dma_ops_setup = true;
}

void arch_teardown_dma_ops(struct device *dev)
{
	if (!dev->archdata.dma_ops_setup)
		return;

	arm_teardown_iommu_dma_ops(dev);
	/* Let arch_setup_dma_ops() start again from scratch upon re-probe */
	set_dma_ops(dev, NULL);
}

void arch_sync_dma_for_device(phys_addr_t paddr, size_t size,
		enum dma_data_direction dir)
{
	__dma_page_cpu_to_dev(phys_to_page(paddr), paddr & (PAGE_SIZE - 1),
			      size, dir);
}

void arch_sync_dma_for_cpu(phys_addr_t paddr, size_t size,
		enum dma_data_direction dir)
{
	__dma_page_dev_to_cpu(phys_to_page(paddr), paddr & (PAGE_SIZE - 1),
			      size, dir);
}

void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
		gfp_t gfp, unsigned long attrs)
{
	return __dma_alloc(dev, size, dma_handle, gfp,
			   __get_dma_pgprot(attrs, PAGE_KERNEL), false,
			   attrs, __builtin_return_address(0));
}

void arch_dma_free(struct device *dev, size_t size, void *cpu_addr,
		dma_addr_t dma_handle, unsigned long attrs)
{
	__arm_dma_free(dev, size, cpu_addr, dma_handle, attrs, false);
}