Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
/*
 *  linux/arch/arm/mm/dma-mapping.c
 *
 *  Copyright (C) 2000-2004 Russell King
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 *  DMA uncached mapping support.
 */
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/gfp.h>
#include <linux/errno.h>
#include <linux/list.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/highmem.h>

#include <asm/memory.h>
#include <asm/highmem.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/sizes.h>

static u64 get_coherent_dma_mask(struct device *dev)
{
	u64 mask = ISA_DMA_THRESHOLD;

	if (dev) {
		mask = dev->coherent_dma_mask;

		/*
		 * Sanity check the DMA mask - it must be non-zero, and
		 * must be able to be satisfied by a DMA allocation.
		 */
		if (mask == 0) {
			dev_warn(dev, "coherent DMA mask is unset\n");
			return 0;
		}

		if ((~mask) & ISA_DMA_THRESHOLD) {
			dev_warn(dev, "coherent DMA mask %#llx is smaller "
				 "than system GFP_DMA mask %#llx\n",
				 mask, (unsigned long long)ISA_DMA_THRESHOLD);
			return 0;
		}
	}

	return mask;
}

/*
 * Allocate a DMA buffer for 'dev' of size 'size' using the
 * specified gfp mask.  Note that 'size' must be page aligned.
 */
static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
{
	unsigned long order = get_order(size);
	struct page *page, *p, *e;
	void *ptr;
	u64 mask = get_coherent_dma_mask(dev);

#ifdef CONFIG_DMA_API_DEBUG
	u64 limit = (mask + 1) & ~mask;
	if (limit && size >= limit) {
		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
			size, mask);
		return NULL;
	}
#endif

	if (!mask)
		return NULL;

	if (mask < 0xffffffffULL)
		gfp |= GFP_DMA;

	page = alloc_pages(gfp, order);
	if (!page)
		return NULL;

	/*
	 * Now split the huge page and free the excess pages
	 */
	split_page(page, order);
	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
		__free_page(p);

	/*
	 * Ensure that the allocated pages are zeroed, and that any data
	 * lurking in the kernel direct-mapped region is invalidated.
	 */
	ptr = page_address(page);
	memset(ptr, 0, size);
	dmac_flush_range(ptr, ptr + size);
	outer_flush_range(__pa(ptr), __pa(ptr) + size);

	return page;
}

/*
 * Free a DMA buffer.  'size' must be page aligned.
 */
static void __dma_free_buffer(struct page *page, size_t size)
{
	struct page *e = page + (size >> PAGE_SHIFT);

	while (page < e) {
		__free_page(page);
		page++;
	}
}

#ifdef CONFIG_MMU
/* Sanity check size */
#if (CONSISTENT_DMA_SIZE % SZ_2M)
#error "CONSISTENT_DMA_SIZE must be multiple of 2MiB"
#endif

#define CONSISTENT_OFFSET(x)	(((unsigned long)(x) - CONSISTENT_BASE) >> PAGE_SHIFT)
#define CONSISTENT_PTE_INDEX(x) (((unsigned long)(x) - CONSISTENT_BASE) >> PGDIR_SHIFT)
#define NUM_CONSISTENT_PTES (CONSISTENT_DMA_SIZE >> PGDIR_SHIFT)

/*
 * These are the page tables (2MB each) covering uncached, DMA consistent allocations
 */
static pte_t *consistent_pte[NUM_CONSISTENT_PTES];

#include "vmregion.h"

static struct arm_vmregion_head consistent_head = {
	.vm_lock	= __SPIN_LOCK_UNLOCKED(&consistent_head.vm_lock),
	.vm_list	= LIST_HEAD_INIT(consistent_head.vm_list),
	.vm_start	= CONSISTENT_BASE,
	.vm_end		= CONSISTENT_END,
};

#ifdef CONFIG_HUGETLB_PAGE
#error ARM Coherent DMA allocator does not (yet) support huge TLB
#endif

/*
 * Initialise the consistent memory allocation.
 */
static int __init consistent_init(void)
{
	int ret = 0;
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;
	int i = 0;
	u32 base = CONSISTENT_BASE;

	do {
		pgd = pgd_offset(&init_mm, base);

		pud = pud_alloc(&init_mm, pgd, base);
		if (!pud) {
			printk(KERN_ERR "%s: no pud tables\n", __func__);
			ret = -ENOMEM;
			break;
		}

		pmd = pmd_alloc(&init_mm, pud, base);
		if (!pmd) {
			printk(KERN_ERR "%s: no pmd tables\n", __func__);
			ret = -ENOMEM;
			break;
		}
		WARN_ON(!pmd_none(*pmd));

		pte = pte_alloc_kernel(pmd, base);
		if (!pte) {
			printk(KERN_ERR "%s: no pte tables\n", __func__);
			ret = -ENOMEM;
			break;
		}

		consistent_pte[i++] = pte;
		base += (1 << PGDIR_SHIFT);
	} while (base < CONSISTENT_END);

	return ret;
}

core_initcall(consistent_init);

static void *
__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot)
{
	struct arm_vmregion *c;
	size_t align;
	int bit;

	if (!consistent_pte[0]) {
		printk(KERN_ERR "%s: not initialised\n", __func__);
		dump_stack();
		return NULL;
	}

	/*
	 * Align the virtual region allocation - maximum alignment is
	 * a section size, minimum is a page size.  This helps reduce
	 * fragmentation of the DMA space, and also prevents allocations
	 * smaller than a section from crossing a section boundary.
	 */
	bit = fls(size - 1);
	if (bit > SECTION_SHIFT)
		bit = SECTION_SHIFT;
	align = 1 << bit;

	/*
	 * Allocate a virtual address in the consistent mapping region.
	 */
	c = arm_vmregion_alloc(&consistent_head, align, size,
			    gfp & ~(__GFP_DMA | __GFP_HIGHMEM));
	if (c) {
		pte_t *pte;
		int idx = CONSISTENT_PTE_INDEX(c->vm_start);
		u32 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);

		pte = consistent_pte[idx] + off;
		c->vm_pages = page;

		do {
			BUG_ON(!pte_none(*pte));

			set_pte_ext(pte, mk_pte(page, prot), 0);
			page++;
			pte++;
			off++;
			if (off >= PTRS_PER_PTE) {
				off = 0;
				pte = consistent_pte[++idx];
			}
		} while (size -= PAGE_SIZE);

		dsb();

		return (void *)c->vm_start;
	}
	return NULL;
}

static void __dma_free_remap(void *cpu_addr, size_t size)
{
	struct arm_vmregion *c;
	unsigned long addr;
	pte_t *ptep;
	int idx;
	u32 off;

	c = arm_vmregion_find_remove(&consistent_head, (unsigned long)cpu_addr);
	if (!c) {
		printk(KERN_ERR "%s: trying to free invalid coherent area: %p\n",
		       __func__, cpu_addr);
		dump_stack();
		return;
	}

	if ((c->vm_end - c->vm_start) != size) {
		printk(KERN_ERR "%s: freeing wrong coherent size (%ld != %d)\n",
		       __func__, c->vm_end - c->vm_start, size);
		dump_stack();
		size = c->vm_end - c->vm_start;
	}

	idx = CONSISTENT_PTE_INDEX(c->vm_start);
	off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
	ptep = consistent_pte[idx] + off;
	addr = c->vm_start;
	do {
		pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep);

		ptep++;
		addr += PAGE_SIZE;
		off++;
		if (off >= PTRS_PER_PTE) {
			off = 0;
			ptep = consistent_pte[++idx];
		}

		if (pte_none(pte) || !pte_present(pte))
			printk(KERN_CRIT "%s: bad page in kernel page table\n",
			       __func__);
	} while (size -= PAGE_SIZE);

	flush_tlb_kernel_range(c->vm_start, c->vm_end);

	arm_vmregion_free(&consistent_head, c);
}

#else	/* !CONFIG_MMU */

#define __dma_alloc_remap(page, size, gfp, prot)	page_address(page)
#define __dma_free_remap(addr, size)			do { } while (0)

#endif	/* CONFIG_MMU */

static void *
__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp,
	    pgprot_t prot)
{
	struct page *page;
	void *addr;

	*handle = ~0;
	size = PAGE_ALIGN(size);

	page = __dma_alloc_buffer(dev, size, gfp);
	if (!page)
		return NULL;

	if (!arch_is_coherent())
		addr = __dma_alloc_remap(page, size, gfp, prot);
	else
		addr = page_address(page);

	if (addr)
		*handle = pfn_to_dma(dev, page_to_pfn(page));
	else
		__dma_free_buffer(page, size);

	return addr;
}

/*
 * Allocate DMA-coherent memory space and return both the kernel remapped
 * virtual and bus address for that space.
 */
void *
dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
{
	void *memory;

	if (dma_alloc_from_coherent(dev, size, handle, &memory))
		return memory;

	return __dma_alloc(dev, size, handle, gfp,
			   pgprot_dmacoherent(pgprot_kernel));
}
EXPORT_SYMBOL(dma_alloc_coherent);

/*
 * Allocate a writecombining region, in much the same way as
 * dma_alloc_coherent above.
 */
void *
dma_alloc_writecombine(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
{
	return __dma_alloc(dev, size, handle, gfp,
			   pgprot_writecombine(pgprot_kernel));
}
EXPORT_SYMBOL(dma_alloc_writecombine);

static int dma_mmap(struct device *dev, struct vm_area_struct *vma,
		    void *cpu_addr, dma_addr_t dma_addr, size_t size)
{
	int ret = -ENXIO;
#ifdef CONFIG_MMU
	unsigned long user_size, kern_size;
	struct arm_vmregion *c;

	user_size = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;

	c = arm_vmregion_find(&consistent_head, (unsigned long)cpu_addr);
	if (c) {
		unsigned long off = vma->vm_pgoff;

		kern_size = (c->vm_end - c->vm_start) >> PAGE_SHIFT;

		if (off < kern_size &&
		    user_size <= (kern_size - off)) {
			ret = remap_pfn_range(vma, vma->vm_start,
					      page_to_pfn(c->vm_pages) + off,
					      user_size << PAGE_SHIFT,
					      vma->vm_page_prot);
		}
	}
#endif	/* CONFIG_MMU */

	return ret;
}

int dma_mmap_coherent(struct device *dev, struct vm_area_struct *vma,
		      void *cpu_addr, dma_addr_t dma_addr, size_t size)
{
	vma->vm_page_prot = pgprot_dmacoherent(vma->vm_page_prot);
	return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
}
EXPORT_SYMBOL(dma_mmap_coherent);

int dma_mmap_writecombine(struct device *dev, struct vm_area_struct *vma,
			  void *cpu_addr, dma_addr_t dma_addr, size_t size)
{
	vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
	return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
}
EXPORT_SYMBOL(dma_mmap_writecombine);

/*
 * free a page as defined by the above mapping.
 * Must not be called with IRQs disabled.
 */
void dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t handle)
{
	WARN_ON(irqs_disabled());

	if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
		return;

	size = PAGE_ALIGN(size);

	if (!arch_is_coherent())
		__dma_free_remap(cpu_addr, size);

	__dma_free_buffer(pfn_to_page(dma_to_pfn(dev, handle)), size);
}
EXPORT_SYMBOL(dma_free_coherent);

/*
 * Make an area consistent for devices.
 * Note: Drivers should NOT use this function directly, as it will break
 * platforms with CONFIG_DMABOUNCE.
 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
 */
void ___dma_single_cpu_to_dev(const void *kaddr, size_t size,
	enum dma_data_direction dir)
{
	unsigned long paddr;

	BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1));

	dmac_map_area(kaddr, size, dir);

	paddr = __pa(kaddr);
	if (dir == DMA_FROM_DEVICE) {
		outer_inv_range(paddr, paddr + size);
	} else {
		outer_clean_range(paddr, paddr + size);
	}
	/* FIXME: non-speculating: flush on bidirectional mappings? */
}
EXPORT_SYMBOL(___dma_single_cpu_to_dev);

void ___dma_single_dev_to_cpu(const void *kaddr, size_t size,
	enum dma_data_direction dir)
{
	BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1));

	/* FIXME: non-speculating: not required */
	/* don't bother invalidating if DMA to device */
	if (dir != DMA_TO_DEVICE) {
		unsigned long paddr = __pa(kaddr);
		outer_inv_range(paddr, paddr + size);
	}

	dmac_unmap_area(kaddr, size, dir);
}
EXPORT_SYMBOL(___dma_single_dev_to_cpu);

static void dma_cache_maint_page(struct page *page, unsigned long offset,
	size_t size, enum dma_data_direction dir,
	void (*op)(const void *, size_t, int))
{
	/*
	 * A single sg entry may refer to multiple physically contiguous
	 * pages.  But we still need to process highmem pages individually.
	 * If highmem is not configured then the bulk of this loop gets
	 * optimized out.
	 */
	size_t left = size;
	do {
		size_t len = left;
		void *vaddr;

		if (PageHighMem(page)) {
			if (len + offset > PAGE_SIZE) {
				if (offset >= PAGE_SIZE) {
					page += offset / PAGE_SIZE;
					offset %= PAGE_SIZE;
				}
				len = PAGE_SIZE - offset;
			}
			vaddr = kmap_high_get(page);
			if (vaddr) {
				vaddr += offset;
				op(vaddr, len, dir);
				kunmap_high(page);
			} else if (cache_is_vipt()) {
				/* unmapped pages might still be cached */
				vaddr = kmap_atomic(page);
				op(vaddr + offset, len, dir);
				kunmap_atomic(vaddr);
			}
		} else {
			vaddr = page_address(page) + offset;
			op(vaddr, len, dir);
		}
		offset = 0;
		page++;
		left -= len;
	} while (left);
}

void ___dma_page_cpu_to_dev(struct page *page, unsigned long off,
	size_t size, enum dma_data_direction dir)
{
	unsigned long paddr;

	dma_cache_maint_page(page, off, size, dir, dmac_map_area);

	paddr = page_to_phys(page) + off;
	if (dir == DMA_FROM_DEVICE) {
		outer_inv_range(paddr, paddr + size);
	} else {
		outer_clean_range(paddr, paddr + size);
	}
	/* FIXME: non-speculating: flush on bidirectional mappings? */
}
EXPORT_SYMBOL(___dma_page_cpu_to_dev);

void ___dma_page_dev_to_cpu(struct page *page, unsigned long off,
	size_t size, enum dma_data_direction dir)
{
	unsigned long paddr = page_to_phys(page) + off;

	/* FIXME: non-speculating: not required */
	/* don't bother invalidating if DMA to device */
	if (dir != DMA_TO_DEVICE)
		outer_inv_range(paddr, paddr + size);

	dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);

	/*
	 * Mark the D-cache clean for this page to avoid extra flushing.
	 */
	if (dir != DMA_TO_DEVICE && off == 0 && size >= PAGE_SIZE)
		set_bit(PG_dcache_clean, &page->flags);
}
EXPORT_SYMBOL(___dma_page_dev_to_cpu);

/**
 * dma_map_sg - map a set of SG buffers for streaming mode DMA
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @sg: list of buffers
 * @nents: number of buffers to map
 * @dir: DMA transfer direction
 *
 * Map a set of buffers described by scatterlist in streaming mode for DMA.
 * This is the scatter-gather version of the dma_map_single interface.
 * Here the scatter gather list elements are each tagged with the
 * appropriate dma address and length.  They are obtained via
 * sg_dma_{address,length}.
 *
 * Device ownership issues as mentioned for dma_map_single are the same
 * here.
 */
int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
		enum dma_data_direction dir)
{
	struct scatterlist *s;
	int i, j;

	BUG_ON(!valid_dma_direction(dir));

	for_each_sg(sg, s, nents, i) {
		s->dma_address = __dma_map_page(dev, sg_page(s), s->offset,
						s->length, dir);
		if (dma_mapping_error(dev, s->dma_address))
			goto bad_mapping;
	}
	debug_dma_map_sg(dev, sg, nents, nents, dir);
	return nents;

 bad_mapping:
	for_each_sg(sg, s, i, j)
		__dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
	return 0;
}
EXPORT_SYMBOL(dma_map_sg);

/**
 * dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @sg: list of buffers
 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 *
 * Unmap a set of streaming mode DMA translations.  Again, CPU access
 * rules concerning calls here are the same as for dma_unmap_single().
 */
void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
		enum dma_data_direction dir)
{
	struct scatterlist *s;
	int i;

	debug_dma_unmap_sg(dev, sg, nents, dir);

	for_each_sg(sg, s, nents, i)
		__dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
}
EXPORT_SYMBOL(dma_unmap_sg);

/**
 * dma_sync_sg_for_cpu
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @sg: list of buffers
 * @nents: number of buffers to map (returned from dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 */
void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
			int nents, enum dma_data_direction dir)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sg, s, nents, i) {
		if (!dmabounce_sync_for_cpu(dev, sg_dma_address(s), 0,
					    sg_dma_len(s), dir))
			continue;

		__dma_page_dev_to_cpu(sg_page(s), s->offset,
				      s->length, dir);
	}

	debug_dma_sync_sg_for_cpu(dev, sg, nents, dir);
}
EXPORT_SYMBOL(dma_sync_sg_for_cpu);

/**
 * dma_sync_sg_for_device
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @sg: list of buffers
 * @nents: number of buffers to map (returned from dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 */
void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
			int nents, enum dma_data_direction dir)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sg, s, nents, i) {
		if (!dmabounce_sync_for_device(dev, sg_dma_address(s), 0,
					sg_dma_len(s), dir))
			continue;

		__dma_page_cpu_to_dev(sg_page(s), s->offset,
				      s->length, dir);
	}

	debug_dma_sync_sg_for_device(dev, sg, nents, dir);
}
EXPORT_SYMBOL(dma_sync_sg_for_device);

#define PREALLOC_DMA_DEBUG_ENTRIES	4096

static int __init dma_debug_do_init(void)
{
	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
	return 0;
}
fs_initcall(dma_debug_do_init);