Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
/*
 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public Licens
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
 *
 */
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mempool.h>
#include <linux/workqueue.h>
#include <scsi/sg.h>		/* for struct sg_iovec */

#include <trace/events/block.h>

/*
 * Test patch to inline a certain number of bi_io_vec's inside the bio
 * itself, to shrink a bio data allocation from two mempool calls to one
 */
#define BIO_INLINE_VECS		4

static mempool_t *bio_split_pool __read_mostly;

/*
 * if you change this list, also change bvec_alloc or things will
 * break badly! cannot be bigger than what you can fit into an
 * unsigned short
 */
#define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
	BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
};
#undef BV

/*
 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
 * IO code that does not need private memory pools.
 */
struct bio_set *fs_bio_set;

/*
 * Our slab pool management
 */
struct bio_slab {
	struct kmem_cache *slab;
	unsigned int slab_ref;
	unsigned int slab_size;
	char name[8];
};
static DEFINE_MUTEX(bio_slab_lock);
static struct bio_slab *bio_slabs;
static unsigned int bio_slab_nr, bio_slab_max;

static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
{
	unsigned int sz = sizeof(struct bio) + extra_size;
	struct kmem_cache *slab = NULL;
	struct bio_slab *bslab;
	unsigned int i, entry = -1;

	mutex_lock(&bio_slab_lock);

	i = 0;
	while (i < bio_slab_nr) {
		bslab = &bio_slabs[i];

		if (!bslab->slab && entry == -1)
			entry = i;
		else if (bslab->slab_size == sz) {
			slab = bslab->slab;
			bslab->slab_ref++;
			break;
		}
		i++;
	}

	if (slab)
		goto out_unlock;

	if (bio_slab_nr == bio_slab_max && entry == -1) {
		bio_slab_max <<= 1;
		bio_slabs = krealloc(bio_slabs,
				     bio_slab_max * sizeof(struct bio_slab),
				     GFP_KERNEL);
		if (!bio_slabs)
			goto out_unlock;
	}
	if (entry == -1)
		entry = bio_slab_nr++;

	bslab = &bio_slabs[entry];

	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
	slab = kmem_cache_create(bslab->name, sz, 0, SLAB_HWCACHE_ALIGN, NULL);
	if (!slab)
		goto out_unlock;

	printk("bio: create slab <%s> at %d\n", bslab->name, entry);
	bslab->slab = slab;
	bslab->slab_ref = 1;
	bslab->slab_size = sz;
out_unlock:
	mutex_unlock(&bio_slab_lock);
	return slab;
}

static void bio_put_slab(struct bio_set *bs)
{
	struct bio_slab *bslab = NULL;
	unsigned int i;

	mutex_lock(&bio_slab_lock);

	for (i = 0; i < bio_slab_nr; i++) {
		if (bs->bio_slab == bio_slabs[i].slab) {
			bslab = &bio_slabs[i];
			break;
		}
	}

	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
		goto out;

	WARN_ON(!bslab->slab_ref);

	if (--bslab->slab_ref)
		goto out;

	kmem_cache_destroy(bslab->slab);
	bslab->slab = NULL;

out:
	mutex_unlock(&bio_slab_lock);
}

unsigned int bvec_nr_vecs(unsigned short idx)
{
	return bvec_slabs[idx].nr_vecs;
}

void bvec_free_bs(struct bio_set *bs, struct bio_vec *bv, unsigned int idx)
{
	BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);

	if (idx == BIOVEC_MAX_IDX)
		mempool_free(bv, bs->bvec_pool);
	else {
		struct biovec_slab *bvs = bvec_slabs + idx;

		kmem_cache_free(bvs->slab, bv);
	}
}

struct bio_vec *bvec_alloc_bs(gfp_t gfp_mask, int nr, unsigned long *idx,
			      struct bio_set *bs)
{
	struct bio_vec *bvl;

	/*
	 * see comment near bvec_array define!
	 */
	switch (nr) {
	case 1:
		*idx = 0;
		break;
	case 2 ... 4:
		*idx = 1;
		break;
	case 5 ... 16:
		*idx = 2;
		break;
	case 17 ... 64:
		*idx = 3;
		break;
	case 65 ... 128:
		*idx = 4;
		break;
	case 129 ... BIO_MAX_PAGES:
		*idx = 5;
		break;
	default:
		return NULL;
	}

	/*
	 * idx now points to the pool we want to allocate from. only the
	 * 1-vec entry pool is mempool backed.
	 */
	if (*idx == BIOVEC_MAX_IDX) {
fallback:
		bvl = mempool_alloc(bs->bvec_pool, gfp_mask);
	} else {
		struct biovec_slab *bvs = bvec_slabs + *idx;
		gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO);

		/*
		 * Make this allocation restricted and don't dump info on
		 * allocation failures, since we'll fallback to the mempool
		 * in case of failure.
		 */
		__gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;

		/*
		 * Try a slab allocation. If this fails and __GFP_WAIT
		 * is set, retry with the 1-entry mempool
		 */
		bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
		if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) {
			*idx = BIOVEC_MAX_IDX;
			goto fallback;
		}
	}

	return bvl;
}

void bio_free(struct bio *bio, struct bio_set *bs)
{
	void *p;

	if (bio_has_allocated_vec(bio))
		bvec_free_bs(bs, bio->bi_io_vec, BIO_POOL_IDX(bio));

	if (bio_integrity(bio))
		bio_integrity_free(bio, bs);

	/*
	 * If we have front padding, adjust the bio pointer before freeing
	 */
	p = bio;
	if (bs->front_pad)
		p -= bs->front_pad;

	mempool_free(p, bs->bio_pool);
}
EXPORT_SYMBOL(bio_free);

void bio_init(struct bio *bio)
{
	memset(bio, 0, sizeof(*bio));
	bio->bi_flags = 1 << BIO_UPTODATE;
	bio->bi_comp_cpu = -1;
	atomic_set(&bio->bi_cnt, 1);
}
EXPORT_SYMBOL(bio_init);

/**
 * bio_alloc_bioset - allocate a bio for I/O
 * @gfp_mask:   the GFP_ mask given to the slab allocator
 * @nr_iovecs:	number of iovecs to pre-allocate
 * @bs:		the bio_set to allocate from.
 *
 * Description:
 *   bio_alloc_bioset will try its own mempool to satisfy the allocation.
 *   If %__GFP_WAIT is set then we will block on the internal pool waiting
 *   for a &struct bio to become free.
 *
 *   Note that the caller must set ->bi_destructor on successful return
 *   of a bio, to do the appropriate freeing of the bio once the reference
 *   count drops to zero.
 **/
struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
{
	unsigned long idx = BIO_POOL_NONE;
	struct bio_vec *bvl = NULL;
	struct bio *bio;
	void *p;

	p = mempool_alloc(bs->bio_pool, gfp_mask);
	if (unlikely(!p))
		return NULL;
	bio = p + bs->front_pad;

	bio_init(bio);

	if (unlikely(!nr_iovecs))
		goto out_set;

	if (nr_iovecs <= BIO_INLINE_VECS) {
		bvl = bio->bi_inline_vecs;
		nr_iovecs = BIO_INLINE_VECS;
	} else {
		bvl = bvec_alloc_bs(gfp_mask, nr_iovecs, &idx, bs);
		if (unlikely(!bvl))
			goto err_free;

		nr_iovecs = bvec_nr_vecs(idx);
	}
out_set:
	bio->bi_flags |= idx << BIO_POOL_OFFSET;
	bio->bi_max_vecs = nr_iovecs;
	bio->bi_io_vec = bvl;
	return bio;

err_free:
	mempool_free(p, bs->bio_pool);
	return NULL;
}
EXPORT_SYMBOL(bio_alloc_bioset);

static void bio_fs_destructor(struct bio *bio)
{
	bio_free(bio, fs_bio_set);
}

/**
 *	bio_alloc - allocate a new bio, memory pool backed
 *	@gfp_mask: allocation mask to use
 *	@nr_iovecs: number of iovecs
 *
 *	bio_alloc will allocate a bio and associated bio_vec array that can hold
 *	at least @nr_iovecs entries. Allocations will be done from the
 *	fs_bio_set. Also see @bio_alloc_bioset and @bio_kmalloc.
 *
 *	If %__GFP_WAIT is set, then bio_alloc will always be able to allocate
 *	a bio. This is due to the mempool guarantees. To make this work, callers
 *	must never allocate more than 1 bio at a time from this pool. Callers
 *	that need to allocate more than 1 bio must always submit the previously
 *	allocated bio for IO before attempting to allocate a new one. Failure to
 *	do so can cause livelocks under memory pressure.
 *
 *	RETURNS:
 *	Pointer to new bio on success, NULL on failure.
 */
struct bio *bio_alloc(gfp_t gfp_mask, int nr_iovecs)
{
	struct bio *bio = bio_alloc_bioset(gfp_mask, nr_iovecs, fs_bio_set);

	if (bio)
		bio->bi_destructor = bio_fs_destructor;

	return bio;
}
EXPORT_SYMBOL(bio_alloc);

static void bio_kmalloc_destructor(struct bio *bio)
{
	if (bio_integrity(bio))
		bio_integrity_free(bio, fs_bio_set);
	kfree(bio);
}

/**
 * bio_kmalloc - allocate a bio for I/O using kmalloc()
 * @gfp_mask:   the GFP_ mask given to the slab allocator
 * @nr_iovecs:	number of iovecs to pre-allocate
 *
 * Description:
 *   Allocate a new bio with @nr_iovecs bvecs.  If @gfp_mask contains
 *   %__GFP_WAIT, the allocation is guaranteed to succeed.
 *
 **/
struct bio *bio_kmalloc(gfp_t gfp_mask, int nr_iovecs)
{
	struct bio *bio;

	if (nr_iovecs > UIO_MAXIOV)
		return NULL;

	bio = kmalloc(sizeof(struct bio) + nr_iovecs * sizeof(struct bio_vec),
		      gfp_mask);
	if (unlikely(!bio))
		return NULL;

	bio_init(bio);
	bio->bi_flags |= BIO_POOL_NONE << BIO_POOL_OFFSET;
	bio->bi_max_vecs = nr_iovecs;
	bio->bi_io_vec = bio->bi_inline_vecs;
	bio->bi_destructor = bio_kmalloc_destructor;

	return bio;
}
EXPORT_SYMBOL(bio_kmalloc);

void zero_fill_bio(struct bio *bio)
{
	unsigned long flags;
	struct bio_vec *bv;
	int i;

	bio_for_each_segment(bv, bio, i) {
		char *data = bvec_kmap_irq(bv, &flags);
		memset(data, 0, bv->bv_len);
		flush_dcache_page(bv->bv_page);
		bvec_kunmap_irq(data, &flags);
	}
}
EXPORT_SYMBOL(zero_fill_bio);

/**
 * bio_put - release a reference to a bio
 * @bio:   bio to release reference to
 *
 * Description:
 *   Put a reference to a &struct bio, either one you have gotten with
 *   bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
 **/
void bio_put(struct bio *bio)
{
	BIO_BUG_ON(!atomic_read(&bio->bi_cnt));

	/*
	 * last put frees it
	 */
	if (atomic_dec_and_test(&bio->bi_cnt)) {
		bio->bi_next = NULL;
		bio->bi_destructor(bio);
	}
}
EXPORT_SYMBOL(bio_put);

inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
{
	if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
		blk_recount_segments(q, bio);

	return bio->bi_phys_segments;
}
EXPORT_SYMBOL(bio_phys_segments);

/**
 * 	__bio_clone	-	clone a bio
 * 	@bio: destination bio
 * 	@bio_src: bio to clone
 *
 *	Clone a &bio. Caller will own the returned bio, but not
 *	the actual data it points to. Reference count of returned
 * 	bio will be one.
 */
void __bio_clone(struct bio *bio, struct bio *bio_src)
{
	memcpy(bio->bi_io_vec, bio_src->bi_io_vec,
		bio_src->bi_max_vecs * sizeof(struct bio_vec));

	/*
	 * most users will be overriding ->bi_bdev with a new target,
	 * so we don't set nor calculate new physical/hw segment counts here
	 */
	bio->bi_sector = bio_src->bi_sector;
	bio->bi_bdev = bio_src->bi_bdev;
	bio->bi_flags |= 1 << BIO_CLONED;
	bio->bi_rw = bio_src->bi_rw;
	bio->bi_vcnt = bio_src->bi_vcnt;
	bio->bi_size = bio_src->bi_size;
	bio->bi_idx = bio_src->bi_idx;
}
EXPORT_SYMBOL(__bio_clone);

/**
 *	bio_clone	-	clone a bio
 *	@bio: bio to clone
 *	@gfp_mask: allocation priority
 *
 * 	Like __bio_clone, only also allocates the returned bio
 */
struct bio *bio_clone(struct bio *bio, gfp_t gfp_mask)
{
	struct bio *b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, fs_bio_set);

	if (!b)
		return NULL;

	b->bi_destructor = bio_fs_destructor;
	__bio_clone(b, bio);

	if (bio_integrity(bio)) {
		int ret;

		ret = bio_integrity_clone(b, bio, gfp_mask, fs_bio_set);

		if (ret < 0) {
			bio_put(b);
			return NULL;
		}
	}

	return b;
}
EXPORT_SYMBOL(bio_clone);

/**
 *	bio_get_nr_vecs		- return approx number of vecs
 *	@bdev:  I/O target
 *
 *	Return the approximate number of pages we can send to this target.
 *	There's no guarantee that you will be able to fit this number of pages
 *	into a bio, it does not account for dynamic restrictions that vary
 *	on offset.
 */
int bio_get_nr_vecs(struct block_device *bdev)
{
	struct request_queue *q = bdev_get_queue(bdev);
	int nr_pages;

	nr_pages = ((queue_max_sectors(q) << 9) + PAGE_SIZE - 1) >> PAGE_SHIFT;
	if (nr_pages > queue_max_segments(q))
		nr_pages = queue_max_segments(q);

	return nr_pages;
}
EXPORT_SYMBOL(bio_get_nr_vecs);

static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
			  *page, unsigned int len, unsigned int offset,
			  unsigned short max_sectors)
{
	int retried_segments = 0;
	struct bio_vec *bvec;

	/*
	 * cloned bio must not modify vec list
	 */
	if (unlikely(bio_flagged(bio, BIO_CLONED)))
		return 0;

	if (((bio->bi_size + len) >> 9) > max_sectors)
		return 0;

	/*
	 * For filesystems with a blocksize smaller than the pagesize
	 * we will often be called with the same page as last time and
	 * a consecutive offset.  Optimize this special case.
	 */
	if (bio->bi_vcnt > 0) {
		struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];

		if (page == prev->bv_page &&
		    offset == prev->bv_offset + prev->bv_len) {
			unsigned int prev_bv_len = prev->bv_len;
			prev->bv_len += len;

			if (q->merge_bvec_fn) {
				struct bvec_merge_data bvm = {
					/* prev_bvec is already charged in
					   bi_size, discharge it in order to
					   simulate merging updated prev_bvec
					   as new bvec. */
					.bi_bdev = bio->bi_bdev,
					.bi_sector = bio->bi_sector,
					.bi_size = bio->bi_size - prev_bv_len,
					.bi_rw = bio->bi_rw,
				};

				if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) {
					prev->bv_len -= len;
					return 0;
				}
			}

			goto done;
		}
	}

	if (bio->bi_vcnt >= bio->bi_max_vecs)
		return 0;

	/*
	 * we might lose a segment or two here, but rather that than
	 * make this too complex.
	 */

	while (bio->bi_phys_segments >= queue_max_segments(q)) {

		if (retried_segments)
			return 0;

		retried_segments = 1;
		blk_recount_segments(q, bio);
	}

	/*
	 * setup the new entry, we might clear it again later if we
	 * cannot add the page
	 */
	bvec = &bio->bi_io_vec[bio->bi_vcnt];
	bvec->bv_page = page;
	bvec->bv_len = len;
	bvec->bv_offset = offset;

	/*
	 * if queue has other restrictions (eg varying max sector size
	 * depending on offset), it can specify a merge_bvec_fn in the
	 * queue to get further control
	 */
	if (q->merge_bvec_fn) {
		struct bvec_merge_data bvm = {
			.bi_bdev = bio->bi_bdev,
			.bi_sector = bio->bi_sector,
			.bi_size = bio->bi_size,
			.bi_rw = bio->bi_rw,
		};

		/*
		 * merge_bvec_fn() returns number of bytes it can accept
		 * at this offset
		 */
		if (q->merge_bvec_fn(q, &bvm, bvec) < bvec->bv_len) {
			bvec->bv_page = NULL;
			bvec->bv_len = 0;
			bvec->bv_offset = 0;
			return 0;
		}
	}

	/* If we may be able to merge these biovecs, force a recount */
	if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
		bio->bi_flags &= ~(1 << BIO_SEG_VALID);

	bio->bi_vcnt++;
	bio->bi_phys_segments++;
 done:
	bio->bi_size += len;
	return len;
}

/**
 *	bio_add_pc_page	-	attempt to add page to bio
 *	@q: the target queue
 *	@bio: destination bio
 *	@page: page to add
 *	@len: vec entry length
 *	@offset: vec entry offset
 *
 *	Attempt to add a page to the bio_vec maplist. This can fail for a
 *	number of reasons, such as the bio being full or target block
 *	device limitations. The target block device must allow bio's
 *      smaller than PAGE_SIZE, so it is always possible to add a single
 *      page to an empty bio. This should only be used by REQ_PC bios.
 */
int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
		    unsigned int len, unsigned int offset)
{
	return __bio_add_page(q, bio, page, len, offset,
			      queue_max_hw_sectors(q));
}
EXPORT_SYMBOL(bio_add_pc_page);

/**
 *	bio_add_page	-	attempt to add page to bio
 *	@bio: destination bio
 *	@page: page to add
 *	@len: vec entry length
 *	@offset: vec entry offset
 *
 *	Attempt to add a page to the bio_vec maplist. This can fail for a
 *	number of reasons, such as the bio being full or target block
 *	device limitations. The target block device must allow bio's
 *      smaller than PAGE_SIZE, so it is always possible to add a single
 *      page to an empty bio.
 */
int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
		 unsigned int offset)
{
	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
	return __bio_add_page(q, bio, page, len, offset, queue_max_sectors(q));
}
EXPORT_SYMBOL(bio_add_page);

struct bio_map_data {
	struct bio_vec *iovecs;
	struct sg_iovec *sgvecs;
	int nr_sgvecs;
	int is_our_pages;
};

static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio,
			     struct sg_iovec *iov, int iov_count,
			     int is_our_pages)
{
	memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt);
	memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count);
	bmd->nr_sgvecs = iov_count;
	bmd->is_our_pages = is_our_pages;
	bio->bi_private = bmd;
}

static void bio_free_map_data(struct bio_map_data *bmd)
{
	kfree(bmd->iovecs);
	kfree(bmd->sgvecs);
	kfree(bmd);
}

static struct bio_map_data *bio_alloc_map_data(int nr_segs, int iov_count,
					       gfp_t gfp_mask)
{
	struct bio_map_data *bmd;

	if (iov_count > UIO_MAXIOV)
		return NULL;

	bmd = kmalloc(sizeof(*bmd), gfp_mask);
	if (!bmd)
		return NULL;

	bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, gfp_mask);
	if (!bmd->iovecs) {
		kfree(bmd);
		return NULL;
	}

	bmd->sgvecs = kmalloc(sizeof(struct sg_iovec) * iov_count, gfp_mask);
	if (bmd->sgvecs)
		return bmd;

	kfree(bmd->iovecs);
	kfree(bmd);
	return NULL;
}

static int __bio_copy_iov(struct bio *bio, struct bio_vec *iovecs,
			  struct sg_iovec *iov, int iov_count,
			  int to_user, int from_user, int do_free_page)
{
	int ret = 0, i;
	struct bio_vec *bvec;
	int iov_idx = 0;
	unsigned int iov_off = 0;

	__bio_for_each_segment(bvec, bio, i, 0) {
		char *bv_addr = page_address(bvec->bv_page);
		unsigned int bv_len = iovecs[i].bv_len;

		while (bv_len && iov_idx < iov_count) {
			unsigned int bytes;
			char __user *iov_addr;

			bytes = min_t(unsigned int,
				      iov[iov_idx].iov_len - iov_off, bv_len);
			iov_addr = iov[iov_idx].iov_base + iov_off;

			if (!ret) {
				if (to_user)
					ret = copy_to_user(iov_addr, bv_addr,
							   bytes);

				if (from_user)
					ret = copy_from_user(bv_addr, iov_addr,
							     bytes);

				if (ret)
					ret = -EFAULT;
			}

			bv_len -= bytes;
			bv_addr += bytes;
			iov_addr += bytes;
			iov_off += bytes;

			if (iov[iov_idx].iov_len == iov_off) {
				iov_idx++;
				iov_off = 0;
			}
		}

		if (do_free_page)
			__free_page(bvec->bv_page);
	}

	return ret;
}

/**
 *	bio_uncopy_user	-	finish previously mapped bio
 *	@bio: bio being terminated
 *
 *	Free pages allocated from bio_copy_user() and write back data
 *	to user space in case of a read.
 */
int bio_uncopy_user(struct bio *bio)
{
	struct bio_map_data *bmd = bio->bi_private;
	int ret = 0;

	if (!bio_flagged(bio, BIO_NULL_MAPPED))
		ret = __bio_copy_iov(bio, bmd->iovecs, bmd->sgvecs,
				     bmd->nr_sgvecs, bio_data_dir(bio) == READ,
				     0, bmd->is_our_pages);
	bio_free_map_data(bmd);
	bio_put(bio);
	return ret;
}
EXPORT_SYMBOL(bio_uncopy_user);

/**
 *	bio_copy_user_iov	-	copy user data to bio
 *	@q: destination block queue
 *	@map_data: pointer to the rq_map_data holding pages (if necessary)
 *	@iov:	the iovec.
 *	@iov_count: number of elements in the iovec
 *	@write_to_vm: bool indicating writing to pages or not
 *	@gfp_mask: memory allocation flags
 *
 *	Prepares and returns a bio for indirect user io, bouncing data
 *	to/from kernel pages as necessary. Must be paired with
 *	call bio_uncopy_user() on io completion.
 */
struct bio *bio_copy_user_iov(struct request_queue *q,
			      struct rq_map_data *map_data,
			      struct sg_iovec *iov, int iov_count,
			      int write_to_vm, gfp_t gfp_mask)
{
	struct bio_map_data *bmd;
	struct bio_vec *bvec;
	struct page *page;
	struct bio *bio;
	int i, ret;
	int nr_pages = 0;
	unsigned int len = 0;
	unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0;

	for (i = 0; i < iov_count; i++) {
		unsigned long uaddr;
		unsigned long end;
		unsigned long start;

		uaddr = (unsigned long)iov[i].iov_base;
		end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
		start = uaddr >> PAGE_SHIFT;

		/*
		 * Overflow, abort
		 */
		if (end < start)
			return ERR_PTR(-EINVAL);

		nr_pages += end - start;
		len += iov[i].iov_len;
	}

	if (offset)
		nr_pages++;

	bmd = bio_alloc_map_data(nr_pages, iov_count, gfp_mask);
	if (!bmd)
		return ERR_PTR(-ENOMEM);

	ret = -ENOMEM;
	bio = bio_kmalloc(gfp_mask, nr_pages);
	if (!bio)
		goto out_bmd;

	bio->bi_rw |= (!write_to_vm << BIO_RW);

	ret = 0;

	if (map_data) {
		nr_pages = 1 << map_data->page_order;
		i = map_data->offset / PAGE_SIZE;
	}
	while (len) {
		unsigned int bytes = PAGE_SIZE;

		bytes -= offset;

		if (bytes > len)
			bytes = len;

		if (map_data) {
			if (i == map_data->nr_entries * nr_pages) {
				ret = -ENOMEM;
				break;
			}

			page = map_data->pages[i / nr_pages];
			page += (i % nr_pages);

			i++;
		} else {
			page = alloc_page(q->bounce_gfp | gfp_mask);
			if (!page) {
				ret = -ENOMEM;
				break;
			}
		}

		if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
			break;

		len -= bytes;
		offset = 0;
	}

	if (ret)
		goto cleanup;

	/*
	 * success
	 */
	if ((!write_to_vm && (!map_data || !map_data->null_mapped)) ||
	    (map_data && map_data->from_user)) {
		ret = __bio_copy_iov(bio, bio->bi_io_vec, iov, iov_count, 0, 1, 0);
		if (ret)
			goto cleanup;
	}

	bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1);
	return bio;
cleanup:
	if (!map_data)
		bio_for_each_segment(bvec, bio, i)
			__free_page(bvec->bv_page);

	bio_put(bio);
out_bmd:
	bio_free_map_data(bmd);
	return ERR_PTR(ret);
}

/**
 *	bio_copy_user	-	copy user data to bio
 *	@q: destination block queue
 *	@map_data: pointer to the rq_map_data holding pages (if necessary)
 *	@uaddr: start of user address
 *	@len: length in bytes
 *	@write_to_vm: bool indicating writing to pages or not
 *	@gfp_mask: memory allocation flags
 *
 *	Prepares and returns a bio for indirect user io, bouncing data
 *	to/from kernel pages as necessary. Must be paired with
 *	call bio_uncopy_user() on io completion.
 */
struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data,
			  unsigned long uaddr, unsigned int len,
			  int write_to_vm, gfp_t gfp_mask)
{
	struct sg_iovec iov;

	iov.iov_base = (void __user *)uaddr;
	iov.iov_len = len;

	return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask);
}
EXPORT_SYMBOL(bio_copy_user);

static struct bio *__bio_map_user_iov(struct request_queue *q,
				      struct block_device *bdev,
				      struct sg_iovec *iov, int iov_count,
				      int write_to_vm, gfp_t gfp_mask)
{
	int i, j;
	int nr_pages = 0;
	struct page **pages;
	struct bio *bio;
	int cur_page = 0;
	int ret, offset;

	for (i = 0; i < iov_count; i++) {
		unsigned long uaddr = (unsigned long)iov[i].iov_base;
		unsigned long len = iov[i].iov_len;
		unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
		unsigned long start = uaddr >> PAGE_SHIFT;

		/*
		 * Overflow, abort
		 */
		if (end < start)
			return ERR_PTR(-EINVAL);

		nr_pages += end - start;
		/*
		 * buffer must be aligned to at least hardsector size for now
		 */
		if (uaddr & queue_dma_alignment(q))
			return ERR_PTR(-EINVAL);
	}

	if (!nr_pages)
		return ERR_PTR(-EINVAL);

	bio = bio_kmalloc(gfp_mask, nr_pages);
	if (!bio)
		return ERR_PTR(-ENOMEM);

	ret = -ENOMEM;
	pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
	if (!pages)
		goto out;

	for (i = 0; i < iov_count; i++) {
		unsigned long uaddr = (unsigned long)iov[i].iov_base;
		unsigned long len = iov[i].iov_len;
		unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
		unsigned long start = uaddr >> PAGE_SHIFT;
		const int local_nr_pages = end - start;
		const int page_limit = cur_page + local_nr_pages;

		ret = get_user_pages_fast(uaddr, local_nr_pages,
				write_to_vm, &pages[cur_page]);
		if (ret < local_nr_pages) {
			ret = -EFAULT;
			goto out_unmap;
		}

		offset = uaddr & ~PAGE_MASK;
		for (j = cur_page; j < page_limit; j++) {
			unsigned int bytes = PAGE_SIZE - offset;

			if (len <= 0)
				break;
			
			if (bytes > len)
				bytes = len;

			/*
			 * sorry...
			 */
			if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
					    bytes)
				break;

			len -= bytes;
			offset = 0;
		}

		cur_page = j;
		/*
		 * release the pages we didn't map into the bio, if any
		 */
		while (j < page_limit)
			page_cache_release(pages[j++]);
	}

	kfree(pages);

	/*
	 * set data direction, and check if mapped pages need bouncing
	 */
	if (!write_to_vm)
		bio->bi_rw |= (1 << BIO_RW);

	bio->bi_bdev = bdev;
	bio->bi_flags |= (1 << BIO_USER_MAPPED);
	return bio;

 out_unmap:
	for (i = 0; i < nr_pages; i++) {
		if(!pages[i])
			break;
		page_cache_release(pages[i]);
	}
 out:
	kfree(pages);
	bio_put(bio);
	return ERR_PTR(ret);
}

/**
 *	bio_map_user	-	map user address into bio
 *	@q: the struct request_queue for the bio
 *	@bdev: destination block device
 *	@uaddr: start of user address
 *	@len: length in bytes
 *	@write_to_vm: bool indicating writing to pages or not
 *	@gfp_mask: memory allocation flags
 *
 *	Map the user space address into a bio suitable for io to a block
 *	device. Returns an error pointer in case of error.
 */
struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
			 unsigned long uaddr, unsigned int len, int write_to_vm,
			 gfp_t gfp_mask)
{
	struct sg_iovec iov;

	iov.iov_base = (void __user *)uaddr;
	iov.iov_len = len;

	return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask);
}
EXPORT_SYMBOL(bio_map_user);

/**
 *	bio_map_user_iov - map user sg_iovec table into bio
 *	@q: the struct request_queue for the bio
 *	@bdev: destination block device
 *	@iov:	the iovec.
 *	@iov_count: number of elements in the iovec
 *	@write_to_vm: bool indicating writing to pages or not
 *	@gfp_mask: memory allocation flags
 *
 *	Map the user space address into a bio suitable for io to a block
 *	device. Returns an error pointer in case of error.
 */
struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
			     struct sg_iovec *iov, int iov_count,
			     int write_to_vm, gfp_t gfp_mask)
{
	struct bio *bio;

	bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm,
				 gfp_mask);
	if (IS_ERR(bio))
		return bio;

	/*
	 * subtle -- if __bio_map_user() ended up bouncing a bio,
	 * it would normally disappear when its bi_end_io is run.
	 * however, we need it for the unmap, so grab an extra
	 * reference to it
	 */
	bio_get(bio);

	return bio;
}

static void __bio_unmap_user(struct bio *bio)
{
	struct bio_vec *bvec;
	int i;

	/*
	 * make sure we dirty pages we wrote to
	 */
	__bio_for_each_segment(bvec, bio, i, 0) {
		if (bio_data_dir(bio) == READ)
			set_page_dirty_lock(bvec->bv_page);

		page_cache_release(bvec->bv_page);
	}

	bio_put(bio);
}

/**
 *	bio_unmap_user	-	unmap a bio
 *	@bio:		the bio being unmapped
 *
 *	Unmap a bio previously mapped by bio_map_user(). Must be called with
 *	a process context.
 *
 *	bio_unmap_user() may sleep.
 */
void bio_unmap_user(struct bio *bio)
{
	__bio_unmap_user(bio);
	bio_put(bio);
}
EXPORT_SYMBOL(bio_unmap_user);

static void bio_map_kern_endio(struct bio *bio, int err)
{
	bio_put(bio);
}

static struct bio *__bio_map_kern(struct request_queue *q, void *data,
				  unsigned int len, gfp_t gfp_mask)
{
	unsigned long kaddr = (unsigned long)data;
	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
	unsigned long start = kaddr >> PAGE_SHIFT;
	const int nr_pages = end - start;
	int offset, i;
	struct bio *bio;

	bio = bio_kmalloc(gfp_mask, nr_pages);
	if (!bio)
		return ERR_PTR(-ENOMEM);

	offset = offset_in_page(kaddr);
	for (i = 0; i < nr_pages; i++) {
		unsigned int bytes = PAGE_SIZE - offset;

		if (len <= 0)
			break;

		if (bytes > len)
			bytes = len;

		if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
				    offset) < bytes)
			break;

		data += bytes;
		len -= bytes;
		offset = 0;
	}

	bio->bi_end_io = bio_map_kern_endio;
	return bio;
}

/**
 *	bio_map_kern	-	map kernel address into bio
 *	@q: the struct request_queue for the bio
 *	@data: pointer to buffer to map
 *	@len: length in bytes
 *	@gfp_mask: allocation flags for bio allocation
 *
 *	Map the kernel address into a bio suitable for io to a block
 *	device. Returns an error pointer in case of error.
 */
struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
			 gfp_t gfp_mask)
{
	struct bio *bio;

	bio = __bio_map_kern(q, data, len, gfp_mask);
	if (IS_ERR(bio))
		return bio;

	if (bio->bi_size == len)
		return bio;

	/*
	 * Don't support partial mappings.
	 */
	bio_put(bio);
	return ERR_PTR(-EINVAL);
}
EXPORT_SYMBOL(bio_map_kern);

static void bio_copy_kern_endio(struct bio *bio, int err)
{
	struct bio_vec *bvec;
	const int read = bio_data_dir(bio) == READ;
	struct bio_map_data *bmd = bio->bi_private;
	int i;
	char *p = bmd->sgvecs[0].iov_base;

	__bio_for_each_segment(bvec, bio, i, 0) {
		char *addr = page_address(bvec->bv_page);
		int len = bmd->iovecs[i].bv_len;

		if (read)
			memcpy(p, addr, len);

		__free_page(bvec->bv_page);
		p += len;
	}

	bio_free_map_data(bmd);
	bio_put(bio);
}

/**
 *	bio_copy_kern	-	copy kernel address into bio
 *	@q: the struct request_queue for the bio
 *	@data: pointer to buffer to copy
 *	@len: length in bytes
 *	@gfp_mask: allocation flags for bio and page allocation
 *	@reading: data direction is READ
 *
 *	copy the kernel address into a bio suitable for io to a block
 *	device. Returns an error pointer in case of error.
 */
struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
			  gfp_t gfp_mask, int reading)
{
	struct bio *bio;
	struct bio_vec *bvec;
	int i;

	bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask);
	if (IS_ERR(bio))
		return bio;

	if (!reading) {
		void *p = data;

		bio_for_each_segment(bvec, bio, i) {
			char *addr = page_address(bvec->bv_page);

			memcpy(addr, p, bvec->bv_len);
			p += bvec->bv_len;
		}
	}

	bio->bi_end_io = bio_copy_kern_endio;

	return bio;
}
EXPORT_SYMBOL(bio_copy_kern);

/*
 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
 * for performing direct-IO in BIOs.
 *
 * The problem is that we cannot run set_page_dirty() from interrupt context
 * because the required locks are not interrupt-safe.  So what we can do is to
 * mark the pages dirty _before_ performing IO.  And in interrupt context,
 * check that the pages are still dirty.   If so, fine.  If not, redirty them
 * in process context.
 *
 * We special-case compound pages here: normally this means reads into hugetlb
 * pages.  The logic in here doesn't really work right for compound pages
 * because the VM does not uniformly chase down the head page in all cases.
 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
 * handle them at all.  So we skip compound pages here at an early stage.
 *
 * Note that this code is very hard to test under normal circumstances because
 * direct-io pins the pages with get_user_pages().  This makes
 * is_page_cache_freeable return false, and the VM will not clean the pages.
 * But other code (eg, pdflush) could clean the pages if they are mapped
 * pagecache.
 *
 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
 * deferred bio dirtying paths.
 */

/*
 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
 */
void bio_set_pages_dirty(struct bio *bio)
{
	struct bio_vec *bvec = bio->bi_io_vec;
	int i;

	for (i = 0; i < bio->bi_vcnt; i++) {
		struct page *page = bvec[i].bv_page;

		if (page && !PageCompound(page))
			set_page_dirty_lock(page);
	}
}

static void bio_release_pages(struct bio *bio)
{
	struct bio_vec *bvec = bio->bi_io_vec;
	int i;

	for (i = 0; i < bio->bi_vcnt; i++) {
		struct page *page = bvec[i].bv_page;

		if (page)
			put_page(page);
	}
}

/*
 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
 * If they are, then fine.  If, however, some pages are clean then they must
 * have been written out during the direct-IO read.  So we take another ref on
 * the BIO and the offending pages and re-dirty the pages in process context.
 *
 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
 * here on.  It will run one page_cache_release() against each page and will
 * run one bio_put() against the BIO.
 */

static void bio_dirty_fn(struct work_struct *work);

static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
static DEFINE_SPINLOCK(bio_dirty_lock);
static struct bio *bio_dirty_list;

/*
 * This runs in process context
 */
static void bio_dirty_fn(struct work_struct *work)
{
	unsigned long flags;
	struct bio *bio;

	spin_lock_irqsave(&bio_dirty_lock, flags);
	bio = bio_dirty_list;
	bio_dirty_list = NULL;
	spin_unlock_irqrestore(&bio_dirty_lock, flags);

	while (bio) {
		struct bio *next = bio->bi_private;

		bio_set_pages_dirty(bio);
		bio_release_pages(bio);
		bio_put(bio);
		bio = next;
	}
}

void bio_check_pages_dirty(struct bio *bio)
{
	struct bio_vec *bvec = bio->bi_io_vec;
	int nr_clean_pages = 0;
	int i;

	for (i = 0; i < bio->bi_vcnt; i++) {
		struct page *page = bvec[i].bv_page;

		if (PageDirty(page) || PageCompound(page)) {
			page_cache_release(page);
			bvec[i].bv_page = NULL;
		} else {
			nr_clean_pages++;
		}
	}

	if (nr_clean_pages) {
		unsigned long flags;

		spin_lock_irqsave(&bio_dirty_lock, flags);
		bio->bi_private = bio_dirty_list;
		bio_dirty_list = bio;
		spin_unlock_irqrestore(&bio_dirty_lock, flags);
		schedule_work(&bio_dirty_work);
	} else {
		bio_put(bio);
	}
}

#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
void bio_flush_dcache_pages(struct bio *bi)
{
	int i;
	struct bio_vec *bvec;

	bio_for_each_segment(bvec, bi, i)
		flush_dcache_page(bvec->bv_page);
}
EXPORT_SYMBOL(bio_flush_dcache_pages);
#endif

/**
 * bio_endio - end I/O on a bio
 * @bio:	bio
 * @error:	error, if any
 *
 * Description:
 *   bio_endio() will end I/O on the whole bio. bio_endio() is the
 *   preferred way to end I/O on a bio, it takes care of clearing
 *   BIO_UPTODATE on error. @error is 0 on success, and and one of the
 *   established -Exxxx (-EIO, for instance) error values in case
 *   something went wrong. Noone should call bi_end_io() directly on a
 *   bio unless they own it and thus know that it has an end_io
 *   function.
 **/
void bio_endio(struct bio *bio, int error)
{
	if (error)
		clear_bit(BIO_UPTODATE, &bio->bi_flags);
	else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
		error = -EIO;

	if (bio->bi_end_io)
		bio->bi_end_io(bio, error);
}
EXPORT_SYMBOL(bio_endio);

void bio_pair_release(struct bio_pair *bp)
{
	if (atomic_dec_and_test(&bp->cnt)) {
		struct bio *master = bp->bio1.bi_private;

		bio_endio(master, bp->error);
		mempool_free(bp, bp->bio2.bi_private);
	}
}
EXPORT_SYMBOL(bio_pair_release);

static void bio_pair_end_1(struct bio *bi, int err)
{
	struct bio_pair *bp = container_of(bi, struct bio_pair, bio1);

	if (err)
		bp->error = err;

	bio_pair_release(bp);
}

static void bio_pair_end_2(struct bio *bi, int err)
{
	struct bio_pair *bp = container_of(bi, struct bio_pair, bio2);

	if (err)
		bp->error = err;

	bio_pair_release(bp);
}

/*
 * split a bio - only worry about a bio with a single page in its iovec
 */
struct bio_pair *bio_split(struct bio *bi, int first_sectors)
{
	struct bio_pair *bp = mempool_alloc(bio_split_pool, GFP_NOIO);

	if (!bp)
		return bp;

	trace_block_split(bdev_get_queue(bi->bi_bdev), bi,
				bi->bi_sector + first_sectors);

	BUG_ON(bi->bi_vcnt != 1);
	BUG_ON(bi->bi_idx != 0);
	atomic_set(&bp->cnt, 3);
	bp->error = 0;
	bp->bio1 = *bi;
	bp->bio2 = *bi;
	bp->bio2.bi_sector += first_sectors;
	bp->bio2.bi_size -= first_sectors << 9;
	bp->bio1.bi_size = first_sectors << 9;

	bp->bv1 = bi->bi_io_vec[0];
	bp->bv2 = bi->bi_io_vec[0];
	bp->bv2.bv_offset += first_sectors << 9;
	bp->bv2.bv_len -= first_sectors << 9;
	bp->bv1.bv_len = first_sectors << 9;

	bp->bio1.bi_io_vec = &bp->bv1;
	bp->bio2.bi_io_vec = &bp->bv2;

	bp->bio1.bi_max_vecs = 1;
	bp->bio2.bi_max_vecs = 1;

	bp->bio1.bi_end_io = bio_pair_end_1;
	bp->bio2.bi_end_io = bio_pair_end_2;

	bp->bio1.bi_private = bi;
	bp->bio2.bi_private = bio_split_pool;

	if (bio_integrity(bi))
		bio_integrity_split(bi, bp, first_sectors);

	return bp;
}
EXPORT_SYMBOL(bio_split);

/**
 *      bio_sector_offset - Find hardware sector offset in bio
 *      @bio:           bio to inspect
 *      @index:         bio_vec index
 *      @offset:        offset in bv_page
 *
 *      Return the number of hardware sectors between beginning of bio
 *      and an end point indicated by a bio_vec index and an offset
 *      within that vector's page.
 */
sector_t bio_sector_offset(struct bio *bio, unsigned short index,
			   unsigned int offset)
{
	unsigned int sector_sz;
	struct bio_vec *bv;
	sector_t sectors;
	int i;

	sector_sz = queue_logical_block_size(bio->bi_bdev->bd_disk->queue);
	sectors = 0;

	if (index >= bio->bi_idx)
		index = bio->bi_vcnt - 1;

	__bio_for_each_segment(bv, bio, i, 0) {
		if (i == index) {
			if (offset > bv->bv_offset)
				sectors += (offset - bv->bv_offset) / sector_sz;
			break;
		}

		sectors += bv->bv_len / sector_sz;
	}

	return sectors;
}
EXPORT_SYMBOL(bio_sector_offset);

/*
 * create memory pools for biovec's in a bio_set.
 * use the global biovec slabs created for general use.
 */
static int biovec_create_pools(struct bio_set *bs, int pool_entries)
{
	struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;

	bs->bvec_pool = mempool_create_slab_pool(pool_entries, bp->slab);
	if (!bs->bvec_pool)
		return -ENOMEM;

	return 0;
}

static void biovec_free_pools(struct bio_set *bs)
{
	mempool_destroy(bs->bvec_pool);
}

void bioset_free(struct bio_set *bs)
{
	if (bs->bio_pool)
		mempool_destroy(bs->bio_pool);

	bioset_integrity_free(bs);
	biovec_free_pools(bs);
	bio_put_slab(bs);

	kfree(bs);
}
EXPORT_SYMBOL(bioset_free);

/**
 * bioset_create  - Create a bio_set
 * @pool_size:	Number of bio and bio_vecs to cache in the mempool
 * @front_pad:	Number of bytes to allocate in front of the returned bio
 *
 * Description:
 *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
 *    to ask for a number of bytes to be allocated in front of the bio.
 *    Front pad allocation is useful for embedding the bio inside
 *    another structure, to avoid allocating extra data to go with the bio.
 *    Note that the bio must be embedded at the END of that structure always,
 *    or things will break badly.
 */
struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
{
	unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
	struct bio_set *bs;

	bs = kzalloc(sizeof(*bs), GFP_KERNEL);
	if (!bs)
		return NULL;

	bs->front_pad = front_pad;

	bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
	if (!bs->bio_slab) {
		kfree(bs);
		return NULL;
	}

	bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
	if (!bs->bio_pool)
		goto bad;

	if (bioset_integrity_create(bs, pool_size))
		goto bad;

	if (!biovec_create_pools(bs, pool_size))
		return bs;

bad:
	bioset_free(bs);
	return NULL;
}
EXPORT_SYMBOL(bioset_create);

static void __init biovec_init_slabs(void)
{
	int i;

	for (i = 0; i < BIOVEC_NR_POOLS; i++) {
		int size;
		struct biovec_slab *bvs = bvec_slabs + i;

#ifndef CONFIG_BLK_DEV_INTEGRITY
		if (bvs->nr_vecs <= BIO_INLINE_VECS) {
			bvs->slab = NULL;
			continue;
		}
#endif

		size = bvs->nr_vecs * sizeof(struct bio_vec);
		bvs->slab = kmem_cache_create(bvs->name, size, 0,
                                SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
	}
}

static int __init init_bio(void)
{
	bio_slab_max = 2;
	bio_slab_nr = 0;
	bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
	if (!bio_slabs)
		panic("bio: can't allocate bios\n");

	bio_integrity_init();
	biovec_init_slabs();

	fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
	if (!fs_bio_set)
		panic("bio: can't allocate bios\n");

	bio_split_pool = mempool_create_kmalloc_pool(BIO_SPLIT_ENTRIES,
						     sizeof(struct bio_pair));
	if (!bio_split_pool)
		panic("bio: can't create split pool\n");

	return 0;
}
subsys_initcall(init_bio);