Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 | /* * Copyright (C) 2001 Jens Axboe <axboe@suse.de> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public Licens * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- * */ #include <linux/mm.h> #include <linux/bio.h> #include <linux/blk.h> #include <linux/slab.h> #include <linux/iobuf.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/mempool.h> #define BIO_POOL_SIZE 256 static mempool_t *bio_pool; static kmem_cache_t *bio_slab; #define BIOVEC_NR_POOLS 6 struct biovec_pool { int size; char *name; kmem_cache_t *slab; mempool_t *pool; }; /* * if you change this list, also change bvec_alloc or things will * break badly! cannot be bigger than what you can fit into an * unsigned short */ #define BV(x) { x, "biovec-" #x } static struct biovec_pool bvec_array[BIOVEC_NR_POOLS] = { BV(1), BV(4), BV(16), BV(64), BV(128), BV(256) }; #undef BV #define BIO_MAX_PAGES (bvec_array[BIOVEC_NR_POOLS - 1].size) static void *slab_pool_alloc(int gfp_mask, void *data) { return kmem_cache_alloc(data, gfp_mask); } static void slab_pool_free(void *ptr, void *data) { kmem_cache_free(data, ptr); } static inline struct bio_vec *bvec_alloc(int gfp_mask, int nr, int *idx) { struct biovec_pool *bp; struct bio_vec *bvl; /* * see comment near bvec_array define! */ switch (nr) { case 1 : *idx = 0; break; case 2 ... 4: *idx = 1; break; case 5 ... 16: *idx = 2; break; case 17 ... 64: *idx = 3; break; case 65 ... 128: *idx = 4; break; case 129 ... 256: *idx = 5; break; default: return NULL; } /* * idx now points to the pool we want to allocate from */ bp = bvec_array + *idx; bvl = mempool_alloc(bp->pool, gfp_mask); if (bvl) memset(bvl, 0, bp->size); return bvl; } /* * default destructor for a bio allocated with bio_alloc() */ void bio_destructor(struct bio *bio) { struct biovec_pool *bp = bvec_array + bio->bi_max; BIO_BUG_ON(bio->bi_max >= BIOVEC_NR_POOLS); /* * cloned bio doesn't own the veclist */ if (!(bio->bi_flags & (1 << BIO_CLONED))) mempool_free(bio->bi_io_vec, bp->pool); mempool_free(bio, bio_pool); } inline void bio_init(struct bio *bio) { bio->bi_next = NULL; bio->bi_flags = 0; bio->bi_rw = 0; bio->bi_vcnt = 0; bio->bi_idx = 0; bio->bi_phys_segments = 0; bio->bi_hw_segments = 0; bio->bi_size = 0; bio->bi_end_io = NULL; atomic_set(&bio->bi_cnt, 1); } /** * bio_alloc - allocate a bio for I/O * @gfp_mask: the GFP_ mask given to the slab allocator * @nr_iovecs: number of iovecs to pre-allocate * * Description: * bio_alloc will first try it's on mempool to satisfy the allocation. * If %__GFP_WAIT is set then we will block on the internal pool waiting * for a &struct bio to become free. **/ struct bio *bio_alloc(int gfp_mask, int nr_iovecs) { struct bio *bio = mempool_alloc(bio_pool, gfp_mask); struct bio_vec *bvl = NULL; if (unlikely(!bio)) return NULL; if (!nr_iovecs || (bvl = bvec_alloc(gfp_mask,nr_iovecs,&bio->bi_max))) { bio_init(bio); bio->bi_destructor = bio_destructor; bio->bi_io_vec = bvl; return bio; } mempool_free(bio, bio_pool); return NULL; } /** * bio_put - release a reference to a bio * @bio: bio to release reference to * * Description: * Put a reference to a &struct bio, either one you have gotten with * bio_alloc or bio_get. The last put of a bio will free it. **/ void bio_put(struct bio *bio) { BIO_BUG_ON(!atomic_read(&bio->bi_cnt)); /* * last put frees it */ if (atomic_dec_and_test(&bio->bi_cnt)) { bio->bi_next = NULL; bio->bi_destructor(bio); } } inline int bio_phys_segments(request_queue_t *q, struct bio *bio) { if (unlikely(!(bio->bi_flags & (1 << BIO_SEG_VALID)))) blk_recount_segments(q, bio); return bio->bi_phys_segments; } inline int bio_hw_segments(request_queue_t *q, struct bio *bio) { if (unlikely(!(bio->bi_flags & (1 << BIO_SEG_VALID)))) blk_recount_segments(q, bio); return bio->bi_hw_segments; } /** * __bio_clone - clone a bio * @bio: destination bio * @bio_src: bio to clone * * Clone a &bio. Caller will own the returned bio, but not * the actual data it points to. Reference count of returned * bio will be one. */ inline void __bio_clone(struct bio *bio, struct bio *bio_src) { bio->bi_io_vec = bio_src->bi_io_vec; bio->bi_sector = bio_src->bi_sector; bio->bi_bdev = bio_src->bi_bdev; bio->bi_flags |= 1 << BIO_CLONED; bio->bi_rw = bio_src->bi_rw; /* * notes -- maybe just leave bi_idx alone. bi_max has no use * on a cloned bio. assume identical mapping for the clone */ bio->bi_vcnt = bio_src->bi_vcnt; bio->bi_idx = bio_src->bi_idx; if (bio_src->bi_flags & (1 << BIO_SEG_VALID)) { bio->bi_phys_segments = bio_src->bi_phys_segments; bio->bi_hw_segments = bio_src->bi_hw_segments; bio->bi_flags |= (1 << BIO_SEG_VALID); } bio->bi_size = bio_src->bi_size; bio->bi_max = bio_src->bi_max; } /** * bio_clone - clone a bio * @bio: bio to clone * @gfp_mask: allocation priority * * Like __bio_clone, only also allocates the returned bio */ struct bio *bio_clone(struct bio *bio, int gfp_mask) { struct bio *b = bio_alloc(gfp_mask, 0); if (b) __bio_clone(b, bio); return b; } /** * bio_copy - create copy of a bio * @bio: bio to copy * @gfp_mask: allocation priority * @copy: copy data to allocated bio * * Create a copy of a &bio. Caller will own the returned bio and * the actual data it points to. Reference count of returned * bio will be one. */ struct bio *bio_copy(struct bio *bio, int gfp_mask, int copy) { struct bio *b = bio_alloc(gfp_mask, bio->bi_vcnt); unsigned long flags = 0; /* gcc silly */ struct bio_vec *bv; int i; if (unlikely(!b)) return NULL; /* * iterate iovec list and alloc pages + copy data */ __bio_for_each_segment(bv, bio, i, 0) { struct bio_vec *bbv = &b->bi_io_vec[i]; char *vfrom, *vto; bbv->bv_page = alloc_page(gfp_mask); if (bbv->bv_page == NULL) goto oom; bbv->bv_len = bv->bv_len; bbv->bv_offset = bv->bv_offset; /* * if doing a copy for a READ request, no need * to memcpy page data */ if (!copy) continue; if (gfp_mask & __GFP_WAIT) { vfrom = kmap(bv->bv_page); vto = kmap(bbv->bv_page); } else { local_irq_save(flags); vfrom = kmap_atomic(bv->bv_page, KM_BIO_SRC_IRQ); vto = kmap_atomic(bbv->bv_page, KM_BIO_DST_IRQ); } memcpy(vto + bbv->bv_offset, vfrom + bv->bv_offset, bv->bv_len); if (gfp_mask & __GFP_WAIT) { kunmap(bbv->bv_page); kunmap(bv->bv_page); } else { kunmap_atomic(vto, KM_BIO_DST_IRQ); kunmap_atomic(vfrom, KM_BIO_SRC_IRQ); local_irq_restore(flags); } } b->bi_sector = bio->bi_sector; b->bi_bdev = bio->bi_bdev; b->bi_rw = bio->bi_rw; b->bi_vcnt = bio->bi_vcnt; b->bi_size = bio->bi_size; return b; oom: while (--i >= 0) __free_page(b->bi_io_vec[i].bv_page); mempool_free(b, bio_pool); return NULL; } static void bio_end_io_kio(struct bio *bio) { struct kiobuf *kio = (struct kiobuf *) bio->bi_private; end_kio_request(kio, test_bit(BIO_UPTODATE, &bio->bi_flags)); bio_put(bio); } /** * ll_rw_kio - submit a &struct kiobuf for I/O * @rw: %READ or %WRITE * @kio: the kiobuf to do I/O on * @bdev: target device * @sector: start location on disk * * Description: * ll_rw_kio will map the page list inside the &struct kiobuf to * &struct bio and queue them for I/O. The kiobuf given must describe * a continous range of data, and must be fully prepared for I/O. **/ void ll_rw_kio(int rw, struct kiobuf *kio, struct block_device *bdev, sector_t sector) { int i, offset, size, err, map_i, total_nr_pages, nr_pages; struct bio_vec *bvec; struct bio *bio; err = 0; if ((rw & WRITE) && bdev_read_only(bdev)) { printk("ll_rw_bio: WRITE to ro device %s\n", bdevname(bdev)); err = -EPERM; goto out; } if (!kio->nr_pages) { err = -EINVAL; goto out; } /* * maybe kio is bigger than the max we can easily map into a bio. * if so, split it up in appropriately sized chunks. */ total_nr_pages = kio->nr_pages; offset = kio->offset & ~PAGE_MASK; size = kio->length; atomic_set(&kio->io_count, 1); map_i = 0; next_chunk: nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - 9); if (nr_pages > total_nr_pages) nr_pages = total_nr_pages; atomic_inc(&kio->io_count); /* * allocate bio and do initial setup */ if ((bio = bio_alloc(GFP_NOIO, nr_pages)) == NULL) { err = -ENOMEM; goto out; } bio->bi_sector = sector; bio->bi_bdev = bdev; bio->bi_idx = 0; bio->bi_end_io = bio_end_io_kio; bio->bi_private = kio; bvec = bio->bi_io_vec; for (i = 0; i < nr_pages; i++, bvec++, map_i++) { int nbytes = PAGE_SIZE - offset; if (nbytes > size) nbytes = size; BUG_ON(kio->maplist[map_i] == NULL); if (bio->bi_size + nbytes > (BIO_MAX_SECTORS << 9)) goto queue_io; bio->bi_vcnt++; bio->bi_size += nbytes; bvec->bv_page = kio->maplist[map_i]; bvec->bv_len = nbytes; bvec->bv_offset = offset; /* * kiobuf only has an offset into the first page */ offset = 0; sector += nbytes >> 9; size -= nbytes; total_nr_pages--; kio->offset += nbytes; } queue_io: submit_bio(rw, bio); if (total_nr_pages) goto next_chunk; if (size) { printk("ll_rw_kio: size %d left (kio %d)\n", size, kio->length); BUG(); } out: if (err) kio->errno = err; /* * final atomic_dec of io_count to match our initial setting of 1. * I/O may or may not have completed at this point, final completion * handler is only run on last decrement. */ end_kio_request(kio, !err); } void bio_endio(struct bio *bio, int uptodate) { if (uptodate) set_bit(BIO_UPTODATE, &bio->bi_flags); else clear_bit(BIO_UPTODATE, &bio->bi_flags); if (bio->bi_end_io) bio->bi_end_io(bio); } static void __init biovec_init_pool(void) { int i, size; for (i = 0; i < BIOVEC_NR_POOLS; i++) { struct biovec_pool *bp = bvec_array + i; size = bp->size * sizeof(struct bio_vec); printk("biovec: init pool %d, %d entries, %d bytes\n", i, bp->size, size); bp->slab = kmem_cache_create(bp->name, size, 0, SLAB_HWCACHE_ALIGN, NULL, NULL); if (!bp->slab) panic("biovec: can't init slab cache\n"); bp->pool = mempool_create(BIO_POOL_SIZE, slab_pool_alloc, slab_pool_free, bp->slab); if (!bp->pool) panic("biovec: can't init mempool\n"); bp->size = size; } } static int __init init_bio(void) { bio_slab = kmem_cache_create("bio", sizeof(struct bio), 0, SLAB_HWCACHE_ALIGN, NULL, NULL); if (!bio_slab) panic("bio: can't create slab cache\n"); bio_pool = mempool_create(BIO_POOL_SIZE, slab_pool_alloc, slab_pool_free, bio_slab); if (!bio_pool) panic("bio: can't create mempool\n"); printk("BIO: pool of %d setup, %ZuKb (%Zd bytes/bio)\n", BIO_POOL_SIZE, BIO_POOL_SIZE * sizeof(struct bio) >> 10, sizeof(struct bio)); biovec_init_pool(); return 0; } module_init(init_bio); EXPORT_SYMBOL(bio_alloc); EXPORT_SYMBOL(bio_put); EXPORT_SYMBOL(ll_rw_kio); EXPORT_SYMBOL(bio_endio); EXPORT_SYMBOL(bio_init); EXPORT_SYMBOL(bio_copy); EXPORT_SYMBOL(__bio_clone); EXPORT_SYMBOL(bio_clone); EXPORT_SYMBOL(bio_phys_segments); EXPORT_SYMBOL(bio_hw_segments); |