Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 | /* * Copyright (C) 2001 Jens Axboe <axboe@suse.de> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public Licens * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- * */ #include <linux/mm.h> #include <linux/swap.h> #include <linux/bio.h> #include <linux/blk.h> #include <linux/slab.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/mempool.h> #include <linux/workqueue.h> #define BIO_POOL_SIZE 256 static mempool_t *bio_pool; static kmem_cache_t *bio_slab; #define BIOVEC_NR_POOLS 6 /* * a small number of entries is fine, not going to be performance critical. * basically we just need to survive */ #define BIO_SPLIT_ENTRIES 8 mempool_t *bio_split_pool; struct biovec_pool { int nr_vecs; char *name; kmem_cache_t *slab; mempool_t *pool; }; /* * if you change this list, also change bvec_alloc or things will * break badly! cannot be bigger than what you can fit into an * unsigned short */ #define BV(x) { .nr_vecs = x, .name = "biovec-" #x } static struct biovec_pool bvec_array[BIOVEC_NR_POOLS] = { BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES), }; #undef BV static inline struct bio_vec *bvec_alloc(int gfp_mask, int nr, unsigned long *idx) { struct biovec_pool *bp; struct bio_vec *bvl; /* * see comment near bvec_array define! */ switch (nr) { case 1 : *idx = 0; break; case 2 ... 4: *idx = 1; break; case 5 ... 16: *idx = 2; break; case 17 ... 64: *idx = 3; break; case 65 ... 128: *idx = 4; break; case 129 ... BIO_MAX_PAGES: *idx = 5; break; default: return NULL; } /* * idx now points to the pool we want to allocate from */ bp = bvec_array + *idx; bvl = mempool_alloc(bp->pool, gfp_mask); if (bvl) memset(bvl, 0, bp->nr_vecs * sizeof(struct bio_vec)); return bvl; } /* * default destructor for a bio allocated with bio_alloc() */ void bio_destructor(struct bio *bio) { const int pool_idx = BIO_POOL_IDX(bio); struct biovec_pool *bp = bvec_array + pool_idx; BIO_BUG_ON(pool_idx >= BIOVEC_NR_POOLS); /* * cloned bio doesn't own the veclist */ if (!bio_flagged(bio, BIO_CLONED)) mempool_free(bio->bi_io_vec, bp->pool); mempool_free(bio, bio_pool); } inline void bio_init(struct bio *bio) { bio->bi_next = NULL; bio->bi_flags = 1 << BIO_UPTODATE; bio->bi_rw = 0; bio->bi_vcnt = 0; bio->bi_idx = 0; bio->bi_phys_segments = 0; bio->bi_hw_segments = 0; bio->bi_size = 0; bio->bi_max_vecs = 0; bio->bi_end_io = NULL; atomic_set(&bio->bi_cnt, 1); bio->bi_private = NULL; } /** * bio_alloc - allocate a bio for I/O * @gfp_mask: the GFP_ mask given to the slab allocator * @nr_iovecs: number of iovecs to pre-allocate * * Description: * bio_alloc will first try it's on mempool to satisfy the allocation. * If %__GFP_WAIT is set then we will block on the internal pool waiting * for a &struct bio to become free. **/ struct bio *bio_alloc(int gfp_mask, int nr_iovecs) { struct bio_vec *bvl = NULL; unsigned long idx; struct bio *bio; bio = mempool_alloc(bio_pool, gfp_mask); if (unlikely(!bio)) goto out; bio_init(bio); if (unlikely(!nr_iovecs)) goto noiovec; bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx); if (bvl) { bio->bi_flags |= idx << BIO_POOL_OFFSET; bio->bi_max_vecs = bvec_array[idx].nr_vecs; noiovec: bio->bi_io_vec = bvl; bio->bi_destructor = bio_destructor; out: return bio; } mempool_free(bio, bio_pool); bio = NULL; goto out; } /** * bio_put - release a reference to a bio * @bio: bio to release reference to * * Description: * Put a reference to a &struct bio, either one you have gotten with * bio_alloc or bio_get. The last put of a bio will free it. **/ void bio_put(struct bio *bio) { BIO_BUG_ON(!atomic_read(&bio->bi_cnt)); /* * last put frees it */ if (atomic_dec_and_test(&bio->bi_cnt)) { bio->bi_next = NULL; bio->bi_destructor(bio); } } inline int bio_phys_segments(request_queue_t *q, struct bio *bio) { if (unlikely(!bio_flagged(bio, BIO_SEG_VALID))) blk_recount_segments(q, bio); return bio->bi_phys_segments; } inline int bio_hw_segments(request_queue_t *q, struct bio *bio) { if (unlikely(!bio_flagged(bio, BIO_SEG_VALID))) blk_recount_segments(q, bio); return bio->bi_hw_segments; } /** * __bio_clone - clone a bio * @bio: destination bio * @bio_src: bio to clone * * Clone a &bio. Caller will own the returned bio, but not * the actual data it points to. Reference count of returned * bio will be one. */ inline void __bio_clone(struct bio *bio, struct bio *bio_src) { bio->bi_io_vec = bio_src->bi_io_vec; bio->bi_sector = bio_src->bi_sector; bio->bi_bdev = bio_src->bi_bdev; bio->bi_flags |= 1 << BIO_CLONED; bio->bi_rw = bio_src->bi_rw; /* * notes -- maybe just leave bi_idx alone. assume identical mapping * for the clone */ bio->bi_vcnt = bio_src->bi_vcnt; bio->bi_idx = bio_src->bi_idx; if (bio_flagged(bio, BIO_SEG_VALID)) { bio->bi_phys_segments = bio_src->bi_phys_segments; bio->bi_hw_segments = bio_src->bi_hw_segments; bio->bi_flags |= (1 << BIO_SEG_VALID); } bio->bi_size = bio_src->bi_size; /* * cloned bio does not own the bio_vec, so users cannot fiddle with * it. clear bi_max_vecs and clear the BIO_POOL_BITS to make this * apparent */ bio->bi_max_vecs = 0; bio->bi_flags &= (BIO_POOL_MASK - 1); } /** * bio_clone - clone a bio * @bio: bio to clone * @gfp_mask: allocation priority * * Like __bio_clone, only also allocates the returned bio */ struct bio *bio_clone(struct bio *bio, int gfp_mask) { struct bio *b = bio_alloc(gfp_mask, 0); if (b) __bio_clone(b, bio); return b; } /** * bio_get_nr_vecs - return approx number of vecs * @bdev: I/O target * * Return the approximate number of pages we can send to this target. * There's no guarantee that you will be able to fit this number of pages * into a bio, it does not account for dynamic restrictions that vary * on offset. */ int bio_get_nr_vecs(struct block_device *bdev) { request_queue_t *q = bdev_get_queue(bdev); int nr_pages; nr_pages = ((q->max_sectors << 9) + PAGE_SIZE - 1) >> PAGE_SHIFT; if (nr_pages > q->max_phys_segments) nr_pages = q->max_phys_segments; if (nr_pages > q->max_hw_segments) nr_pages = q->max_hw_segments; return nr_pages; } /** * bio_add_page - attempt to add page to bio * @bio: destination bio * @page: page to add * @len: vec entry length * @offset: vec entry offset * * Attempt to add a page to the bio_vec maplist. This can fail for a * number of reasons, such as the bio being full or target block * device limitations. */ int bio_add_page(struct bio *bio, struct page *page, unsigned int len, unsigned int offset) { request_queue_t *q = bdev_get_queue(bio->bi_bdev); int fail_segments = 0, retried_segments = 0; struct bio_vec *bvec; /* * cloned bio must not modify vec list */ if (unlikely(bio_flagged(bio, BIO_CLONED))) return 0; if (bio->bi_vcnt >= bio->bi_max_vecs) return 0; if (((bio->bi_size + len) >> 9) > q->max_sectors) return 0; /* * we might lose a segment or two here, but rather that than * make this too complex. */ retry_segments: if (bio_phys_segments(q, bio) >= q->max_phys_segments || bio_hw_segments(q, bio) >= q->max_hw_segments) fail_segments = 1; if (fail_segments) { if (retried_segments) return 0; bio->bi_flags &= ~(1 << BIO_SEG_VALID); retried_segments = 1; goto retry_segments; } /* * setup the new entry, we might clear it again later if we * cannot add the page */ bvec = &bio->bi_io_vec[bio->bi_vcnt]; bvec->bv_page = page; bvec->bv_len = len; bvec->bv_offset = offset; /* * if queue has other restrictions (eg varying max sector size * depending on offset), it can specify a merge_bvec_fn in the * queue to get further control */ if (q->merge_bvec_fn) { /* * merge_bvec_fn() returns number of bytes it can accept * at this offset */ if (q->merge_bvec_fn(q, bio, bvec) < len) { bvec->bv_page = NULL; bvec->bv_len = 0; bvec->bv_offset = 0; return 0; } } bio->bi_vcnt++; bio->bi_phys_segments++; bio->bi_hw_segments++; bio->bi_size += len; return len; } static struct bio *__bio_map_user(struct block_device *bdev, unsigned long uaddr, unsigned int len, int write_to_vm) { unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; unsigned long start = uaddr >> PAGE_SHIFT; const int nr_pages = end - start; request_queue_t *q = bdev_get_queue(bdev); int ret, offset, i; struct page **pages; struct bio *bio; /* * transfer and buffer must be aligned to at least hardsector * size for now, in the future we can relax this restriction */ if ((uaddr & queue_dma_alignment(q)) || (len & queue_dma_alignment(q))) return NULL; bio = bio_alloc(GFP_KERNEL, nr_pages); if (!bio) return NULL; pages = kmalloc(nr_pages * sizeof(struct page *), GFP_KERNEL); if (!pages) goto out; down_read(¤t->mm->mmap_sem); ret = get_user_pages(current, current->mm, uaddr, nr_pages, write_to_vm, 0, pages, NULL); up_read(¤t->mm->mmap_sem); if (ret < nr_pages) goto out; bio->bi_bdev = bdev; offset = uaddr & ~PAGE_MASK; for (i = 0; i < nr_pages; i++) { unsigned int bytes = PAGE_SIZE - offset; if (len <= 0) break; if (bytes > len) bytes = len; /* * sorry... */ if (bio_add_page(bio, pages[i], bytes, offset) < bytes) break; len -= bytes; offset = 0; } /* * release the pages we didn't map into the bio, if any */ while (i < nr_pages) page_cache_release(pages[i++]); kfree(pages); /* * set data direction, and check if mapped pages need bouncing */ if (!write_to_vm) bio->bi_rw |= (1 << BIO_RW); blk_queue_bounce(q, &bio); return bio; out: kfree(pages); bio_put(bio); return NULL; } /** * bio_map_user - map user address into bio * @bdev: destination block device * @uaddr: start of user address * @len: length in bytes * @write_to_vm: bool indicating writing to pages or not * * Map the user space address into a bio suitable for io to a block * device. */ struct bio *bio_map_user(struct block_device *bdev, unsigned long uaddr, unsigned int len, int write_to_vm) { struct bio *bio; bio = __bio_map_user(bdev, uaddr, len, write_to_vm); if (bio) { /* * subtle -- if __bio_map_user() ended up bouncing a bio, * it would normally disappear when its bi_end_io is run. * however, we need it for the unmap, so grab an extra * reference to it */ bio_get(bio); if (bio->bi_size < len) { bio_endio(bio, bio->bi_size, 0); bio_unmap_user(bio, 0); return NULL; } } return bio; } static void __bio_unmap_user(struct bio *bio, int write_to_vm) { struct bio_vec *bvec; int i; /* * find original bio if it was bounced */ if (bio->bi_private) { /* * someone stole our bio, must not happen */ BUG_ON(!bio_flagged(bio, BIO_BOUNCED)); bio = bio->bi_private; } /* * make sure we dirty pages we wrote to */ __bio_for_each_segment(bvec, bio, i, 0) { if (write_to_vm) set_page_dirty_lock(bvec->bv_page); page_cache_release(bvec->bv_page); } bio_put(bio); } /** * bio_unmap_user - unmap a bio * @bio: the bio being unmapped * @write_to_vm: bool indicating whether pages were written to * * Unmap a bio previously mapped by bio_map_user(). The @write_to_vm * must be the same as passed into bio_map_user(). Must be called with * a process context. * * bio_unmap_user() may sleep. */ void bio_unmap_user(struct bio *bio, int write_to_vm) { __bio_unmap_user(bio, write_to_vm); bio_put(bio); } /* * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions * for performing direct-IO in BIOs. * * The problem is that we cannot run set_page_dirty() from interrupt context * because the required locks are not interrupt-safe. So what we can do is to * mark the pages dirty _before_ performing IO. And in interrupt context, * check that the pages are still dirty. If so, fine. If not, redirty them * in process context. * * Note that this code is very hard to test under normal circumstances because * direct-io pins the pages with get_user_pages(). This makes * is_page_cache_freeable return false, and the VM will not clean the pages. * But other code (eg, pdflush) could clean the pages if they are mapped * pagecache. * * Simply disabling the call to bio_set_pages_dirty() is a good way to test the * deferred bio dirtying paths. */ /* * bio_set_pages_dirty() will mark all the bio's pages as dirty. */ void bio_set_pages_dirty(struct bio *bio) { struct bio_vec *bvec = bio->bi_io_vec; int i; for (i = 0; i < bio->bi_vcnt; i++) { struct page *page = bvec[i].bv_page; if (page) set_page_dirty_lock(bvec[i].bv_page); } } /* * bio_check_pages_dirty() will check that all the BIO's pages are still dirty. * If they are, then fine. If, however, some pages are clean then they must * have been written out during the direct-IO read. So we take another ref on * the BIO and the offending pages and re-dirty the pages in process context. * * It is expected that bio_check_pages_dirty() will wholly own the BIO from * here on. It will run one page_cache_release() against each page and will * run one bio_put() against the BIO. */ static void bio_dirty_fn(void *data); static DECLARE_WORK(bio_dirty_work, bio_dirty_fn, NULL); static spinlock_t bio_dirty_lock = SPIN_LOCK_UNLOCKED; static struct bio *bio_dirty_list = NULL; /* * This runs in process context */ static void bio_dirty_fn(void *data) { unsigned long flags; struct bio *bio; spin_lock_irqsave(&bio_dirty_lock, flags); bio = bio_dirty_list; bio_dirty_list = NULL; spin_unlock_irqrestore(&bio_dirty_lock, flags); while (bio) { struct bio *next = bio->bi_private; bio_set_pages_dirty(bio); bio_put(bio); bio = next; } } void bio_check_pages_dirty(struct bio *bio) { struct bio_vec *bvec = bio->bi_io_vec; int nr_clean_pages = 0; int i; for (i = 0; i < bio->bi_vcnt; i++) { struct page *page = bvec[i].bv_page; if (PageDirty(page)) { page_cache_release(page); bvec[i].bv_page = NULL; } else { nr_clean_pages++; } } if (nr_clean_pages) { unsigned long flags; spin_lock_irqsave(&bio_dirty_lock, flags); bio->bi_private = bio_dirty_list; bio_dirty_list = bio; spin_unlock_irqrestore(&bio_dirty_lock, flags); schedule_work(&bio_dirty_work); } else { bio_put(bio); } } /** * bio_endio - end I/O on a bio * @bio: bio * @bytes_done: number of bytes completed * @error: error, if any * * Description: * bio_endio() will end I/O on @bytes_done number of bytes. This may be * just a partial part of the bio, or it may be the whole bio. bio_endio() * is the preferred way to end I/O on a bio, it takes care of decrementing * bi_size and clearing BIO_UPTODATE on error. @error is 0 on success, and * and one of the established -Exxxx (-EIO, for instance) error values in * case something went wrong. Noone should call bi_end_io() directly on * a bio unless they own it and thus know that it has an end_io function. **/ void bio_endio(struct bio *bio, unsigned int bytes_done, int error) { if (error) clear_bit(BIO_UPTODATE, &bio->bi_flags); if (unlikely(bytes_done > bio->bi_size)) { printk("%s: want %u bytes done, only %u left\n", __FUNCTION__, bytes_done, bio->bi_size); bytes_done = bio->bi_size; } bio->bi_size -= bytes_done; bio->bi_sector += (bytes_done >> 9); if (bio->bi_end_io) bio->bi_end_io(bio, bytes_done, error); } void bio_pair_release(struct bio_pair *bp) { if (atomic_dec_and_test(&bp->cnt)) { struct bio *master = bp->bio1.bi_private; bio_endio(master, master->bi_size, bp->error); mempool_free(bp, bp->bio2.bi_private); } } static int bio_pair_end_1(struct bio * bi, unsigned int done, int err) { struct bio_pair *bp = container_of(bi, struct bio_pair, bio1); if (bi->bi_size) return 1; if (err) bp->error = err; bio_pair_release(bp); return 0; } static int bio_pair_end_2(struct bio * bi, unsigned int done, int err) { struct bio_pair *bp = container_of(bi, struct bio_pair, bio2); if (bi->bi_size) return 1; if (err) bp->error = err; bio_pair_release(bp); return 0; } /* * split a bio - only worry about a bio with a single page * in it's iovec */ struct bio_pair *bio_split(struct bio *bi, mempool_t *pool, int first_sectors) { struct bio_pair *bp = mempool_alloc(pool, GFP_NOIO); if (!bp) return bp; BUG_ON(bi->bi_vcnt != 1); BUG_ON(bi->bi_idx != 0); atomic_set(&bp->cnt, 3); bp->error = 0; bp->bio1 = *bi; bp->bio2 = *bi; bp->bio2.bi_sector += first_sectors; bp->bio2.bi_size -= first_sectors << 9; bp->bio1.bi_size = first_sectors << 9; bp->bv1 = bi->bi_io_vec[0]; bp->bv2 = bi->bi_io_vec[0]; bp->bv2.bv_offset += first_sectors << 9; bp->bv2.bv_len -= first_sectors << 9; bp->bv1.bv_len = first_sectors << 9; bp->bio1.bi_io_vec = &bp->bv1; bp->bio2.bi_io_vec = &bp->bv2; bp->bio1.bi_end_io = bio_pair_end_1; bp->bio2.bi_end_io = bio_pair_end_2; bp->bio1.bi_private = bi; bp->bio2.bi_private = pool; return bp; } static void *bio_pair_alloc(int gfp_flags, void *data) { return kmalloc(sizeof(struct bio_pair), gfp_flags); } static void bio_pair_free(void *bp, void *data) { kfree(bp); } static void __init biovec_init_pools(void) { int i, size, megabytes, pool_entries = BIO_POOL_SIZE; int scale = BIOVEC_NR_POOLS; megabytes = nr_free_pages() >> (20 - PAGE_SHIFT); /* * find out where to start scaling */ if (megabytes <= 16) scale = 0; else if (megabytes <= 32) scale = 1; else if (megabytes <= 64) scale = 2; else if (megabytes <= 96) scale = 3; else if (megabytes <= 128) scale = 4; /* * scale number of entries */ pool_entries = megabytes * 2; if (pool_entries > 256) pool_entries = 256; for (i = 0; i < BIOVEC_NR_POOLS; i++) { struct biovec_pool *bp = bvec_array + i; size = bp->nr_vecs * sizeof(struct bio_vec); bp->slab = kmem_cache_create(bp->name, size, 0, SLAB_HWCACHE_ALIGN, NULL, NULL); if (!bp->slab) panic("biovec: can't init slab cache\n"); if (i >= scale) pool_entries >>= 1; bp->pool = mempool_create(pool_entries, mempool_alloc_slab, mempool_free_slab, bp->slab); if (!bp->pool) panic("biovec: can't init mempool\n"); printk("biovec pool[%d]: %3d bvecs: %3d entries (%d bytes)\n", i, bp->nr_vecs, pool_entries, size); } } static int __init init_bio(void) { bio_slab = kmem_cache_create("bio", sizeof(struct bio), 0, SLAB_HWCACHE_ALIGN, NULL, NULL); if (!bio_slab) panic("bio: can't create slab cache\n"); bio_pool = mempool_create(BIO_POOL_SIZE, mempool_alloc_slab, mempool_free_slab, bio_slab); if (!bio_pool) panic("bio: can't create mempool\n"); printk("BIO: pool of %d setup, %ZuKb (%Zd bytes/bio)\n", BIO_POOL_SIZE, BIO_POOL_SIZE * sizeof(struct bio) >> 10, sizeof(struct bio)); biovec_init_pools(); bio_split_pool = mempool_create(BIO_SPLIT_ENTRIES, bio_pair_alloc, bio_pair_free, NULL); if (!bio_split_pool) panic("bio: can't create split pool\n"); return 0; } subsys_initcall(init_bio); EXPORT_SYMBOL(bio_alloc); EXPORT_SYMBOL(bio_put); EXPORT_SYMBOL(bio_endio); EXPORT_SYMBOL(bio_init); EXPORT_SYMBOL(__bio_clone); EXPORT_SYMBOL(bio_clone); EXPORT_SYMBOL(bio_phys_segments); EXPORT_SYMBOL(bio_hw_segments); EXPORT_SYMBOL(bio_add_page); EXPORT_SYMBOL(bio_get_nr_vecs); EXPORT_SYMBOL(bio_map_user); EXPORT_SYMBOL(bio_unmap_user); EXPORT_SYMBOL(bio_pair_release); EXPORT_SYMBOL(bio_split); EXPORT_SYMBOL(bio_split_pool); |