Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
/*
 * High memory handling common code and variables.
 *
 * (C) 1999 Andrea Arcangeli, SuSE GmbH, andrea@suse.de
 *          Gerhard Wichert, Siemens AG, Gerhard.Wichert@pdb.siemens.de
 *
 *
 * Redesigned the x86 32-bit VM architecture to deal with
 * 64-bit physical space. With current x86 CPUs this
 * means up to 64 Gigabytes physical RAM.
 *
 * Rewrote high memory support to move the page cache into
 * high memory. Implemented permanent (schedulable) kmaps
 * based on Linus' idea.
 *
 * Copyright (C) 1999 Ingo Molnar <mingo@redhat.com>
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/swap.h>
#include <linux/bio.h>
#include <linux/pagemap.h>
#include <linux/mempool.h>
#include <linux/blkdev.h>
#include <linux/init.h>
#include <linux/hash.h>
#include <linux/highmem.h>
#include <linux/blktrace_api.h>
#include <asm/tlbflush.h>

static mempool_t *page_pool, *isa_page_pool;

static void *mempool_alloc_pages_isa(gfp_t gfp_mask, void *data)
{
	return mempool_alloc_pages(gfp_mask | GFP_DMA, data);
}

/*
 * Virtual_count is not a pure "count".
 *  0 means that it is not mapped, and has not been mapped
 *    since a TLB flush - it is usable.
 *  1 means that there are no users, but it has been mapped
 *    since the last TLB flush - so we can't use it.
 *  n means that there are (n-1) current users of it.
 */
#ifdef CONFIG_HIGHMEM

static int pkmap_count[LAST_PKMAP];
static unsigned int last_pkmap_nr;
static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(kmap_lock);

pte_t * pkmap_page_table;

static DECLARE_WAIT_QUEUE_HEAD(pkmap_map_wait);

static void flush_all_zero_pkmaps(void)
{
	int i;

	flush_cache_kmaps();

	for (i = 0; i < LAST_PKMAP; i++) {
		struct page *page;

		/*
		 * zero means we don't have anything to do,
		 * >1 means that it is still in use. Only
		 * a count of 1 means that it is free but
		 * needs to be unmapped
		 */
		if (pkmap_count[i] != 1)
			continue;
		pkmap_count[i] = 0;

		/* sanity check */
		BUG_ON(pte_none(pkmap_page_table[i]));

		/*
		 * Don't need an atomic fetch-and-clear op here;
		 * no-one has the page mapped, and cannot get at
		 * its virtual address (and hence PTE) without first
		 * getting the kmap_lock (which is held here).
		 * So no dangers, even with speculative execution.
		 */
		page = pte_page(pkmap_page_table[i]);
		pte_clear(&init_mm, (unsigned long)page_address(page),
			  &pkmap_page_table[i]);

		set_page_address(page, NULL);
	}
	flush_tlb_kernel_range(PKMAP_ADDR(0), PKMAP_ADDR(LAST_PKMAP));
}

static inline unsigned long map_new_virtual(struct page *page)
{
	unsigned long vaddr;
	int count;

start:
	count = LAST_PKMAP;
	/* Find an empty entry */
	for (;;) {
		last_pkmap_nr = (last_pkmap_nr + 1) & LAST_PKMAP_MASK;
		if (!last_pkmap_nr) {
			flush_all_zero_pkmaps();
			count = LAST_PKMAP;
		}
		if (!pkmap_count[last_pkmap_nr])
			break;	/* Found a usable entry */
		if (--count)
			continue;

		/*
		 * Sleep for somebody else to unmap their entries
		 */
		{
			DECLARE_WAITQUEUE(wait, current);

			__set_current_state(TASK_UNINTERRUPTIBLE);
			add_wait_queue(&pkmap_map_wait, &wait);
			spin_unlock(&kmap_lock);
			schedule();
			remove_wait_queue(&pkmap_map_wait, &wait);
			spin_lock(&kmap_lock);

			/* Somebody else might have mapped it while we slept */
			if (page_address(page))
				return (unsigned long)page_address(page);

			/* Re-start */
			goto start;
		}
	}
	vaddr = PKMAP_ADDR(last_pkmap_nr);
	set_pte_at(&init_mm, vaddr,
		   &(pkmap_page_table[last_pkmap_nr]), mk_pte(page, kmap_prot));

	pkmap_count[last_pkmap_nr] = 1;
	set_page_address(page, (void *)vaddr);

	return vaddr;
}

void fastcall *kmap_high(struct page *page)
{
	unsigned long vaddr;

	/*
	 * For highmem pages, we can't trust "virtual" until
	 * after we have the lock.
	 *
	 * We cannot call this from interrupts, as it may block
	 */
	spin_lock(&kmap_lock);
	vaddr = (unsigned long)page_address(page);
	if (!vaddr)
		vaddr = map_new_virtual(page);
	pkmap_count[PKMAP_NR(vaddr)]++;
	BUG_ON(pkmap_count[PKMAP_NR(vaddr)] < 2);
	spin_unlock(&kmap_lock);
	return (void*) vaddr;
}

EXPORT_SYMBOL(kmap_high);

void fastcall kunmap_high(struct page *page)
{
	unsigned long vaddr;
	unsigned long nr;
	int need_wakeup;

	spin_lock(&kmap_lock);
	vaddr = (unsigned long)page_address(page);
	BUG_ON(!vaddr);
	nr = PKMAP_NR(vaddr);

	/*
	 * A count must never go down to zero
	 * without a TLB flush!
	 */
	need_wakeup = 0;
	switch (--pkmap_count[nr]) {
	case 0:
		BUG();
	case 1:
		/*
		 * Avoid an unnecessary wake_up() function call.
		 * The common case is pkmap_count[] == 1, but
		 * no waiters.
		 * The tasks queued in the wait-queue are guarded
		 * by both the lock in the wait-queue-head and by
		 * the kmap_lock.  As the kmap_lock is held here,
		 * no need for the wait-queue-head's lock.  Simply
		 * test if the queue is empty.
		 */
		need_wakeup = waitqueue_active(&pkmap_map_wait);
	}
	spin_unlock(&kmap_lock);

	/* do wake-up, if needed, race-free outside of the spin lock */
	if (need_wakeup)
		wake_up(&pkmap_map_wait);
}

EXPORT_SYMBOL(kunmap_high);

#define POOL_SIZE	64

static __init int init_emergency_pool(void)
{
	struct sysinfo i;
	si_meminfo(&i);
	si_swapinfo(&i);
        
	if (!i.totalhigh)
		return 0;

	page_pool = mempool_create_page_pool(POOL_SIZE, 0);
	BUG_ON(!page_pool);
	printk("highmem bounce pool size: %d pages\n", POOL_SIZE);

	return 0;
}

__initcall(init_emergency_pool);

/*
 * highmem version, map in to vec
 */
static void bounce_copy_vec(struct bio_vec *to, unsigned char *vfrom)
{
	unsigned long flags;
	unsigned char *vto;

	local_irq_save(flags);
	vto = kmap_atomic(to->bv_page, KM_BOUNCE_READ);
	memcpy(vto + to->bv_offset, vfrom, to->bv_len);
	kunmap_atomic(vto, KM_BOUNCE_READ);
	local_irq_restore(flags);
}

#else /* CONFIG_HIGHMEM */

#define bounce_copy_vec(to, vfrom)	\
	memcpy(page_address((to)->bv_page) + (to)->bv_offset, vfrom, (to)->bv_len)

#endif

#define ISA_POOL_SIZE	16

/*
 * gets called "every" time someone init's a queue with BLK_BOUNCE_ISA
 * as the max address, so check if the pool has already been created.
 */
int init_emergency_isa_pool(void)
{
	if (isa_page_pool)
		return 0;

	isa_page_pool = mempool_create(ISA_POOL_SIZE, mempool_alloc_pages_isa,
				       mempool_free_pages, (void *) 0);
	BUG_ON(!isa_page_pool);

	printk("isa bounce pool size: %d pages\n", ISA_POOL_SIZE);
	return 0;
}

/*
 * Simple bounce buffer support for highmem pages. Depending on the
 * queue gfp mask set, *to may or may not be a highmem page. kmap it
 * always, it will do the Right Thing
 */
static void copy_to_high_bio_irq(struct bio *to, struct bio *from)
{
	unsigned char *vfrom;
	struct bio_vec *tovec, *fromvec;
	int i;

	__bio_for_each_segment(tovec, to, i, 0) {
		fromvec = from->bi_io_vec + i;

		/*
		 * not bounced
		 */
		if (tovec->bv_page == fromvec->bv_page)
			continue;

		/*
		 * fromvec->bv_offset and fromvec->bv_len might have been
		 * modified by the block layer, so use the original copy,
		 * bounce_copy_vec already uses tovec->bv_len
		 */
		vfrom = page_address(fromvec->bv_page) + tovec->bv_offset;

		flush_dcache_page(tovec->bv_page);
		bounce_copy_vec(tovec, vfrom);
	}
}

static void bounce_end_io(struct bio *bio, mempool_t *pool, int err)
{
	struct bio *bio_orig = bio->bi_private;
	struct bio_vec *bvec, *org_vec;
	int i;

	if (test_bit(BIO_EOPNOTSUPP, &bio->bi_flags))
		set_bit(BIO_EOPNOTSUPP, &bio_orig->bi_flags);

	/*
	 * free up bounce indirect pages used
	 */
	__bio_for_each_segment(bvec, bio, i, 0) {
		org_vec = bio_orig->bi_io_vec + i;
		if (bvec->bv_page == org_vec->bv_page)
			continue;

		mempool_free(bvec->bv_page, pool);	
		dec_page_state(nr_bounce);
	}

	bio_endio(bio_orig, bio_orig->bi_size, err);
	bio_put(bio);
}

static int bounce_end_io_write(struct bio *bio, unsigned int bytes_done, int err)
{
	if (bio->bi_size)
		return 1;

	bounce_end_io(bio, page_pool, err);
	return 0;
}

static int bounce_end_io_write_isa(struct bio *bio, unsigned int bytes_done, int err)
{
	if (bio->bi_size)
		return 1;

	bounce_end_io(bio, isa_page_pool, err);
	return 0;
}

static void __bounce_end_io_read(struct bio *bio, mempool_t *pool, int err)
{
	struct bio *bio_orig = bio->bi_private;

	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
		copy_to_high_bio_irq(bio_orig, bio);

	bounce_end_io(bio, pool, err);
}

static int bounce_end_io_read(struct bio *bio, unsigned int bytes_done, int err)
{
	if (bio->bi_size)
		return 1;

	__bounce_end_io_read(bio, page_pool, err);
	return 0;
}

static int bounce_end_io_read_isa(struct bio *bio, unsigned int bytes_done, int err)
{
	if (bio->bi_size)
		return 1;

	__bounce_end_io_read(bio, isa_page_pool, err);
	return 0;
}

static void __blk_queue_bounce(request_queue_t *q, struct bio **bio_orig,
			       mempool_t *pool)
{
	struct page *page;
	struct bio *bio = NULL;
	int i, rw = bio_data_dir(*bio_orig);
	struct bio_vec *to, *from;

	bio_for_each_segment(from, *bio_orig, i) {
		page = from->bv_page;

		/*
		 * is destination page below bounce pfn?
		 */
		if (page_to_pfn(page) < q->bounce_pfn)
			continue;

		/*
		 * irk, bounce it
		 */
		if (!bio)
			bio = bio_alloc(GFP_NOIO, (*bio_orig)->bi_vcnt);

		to = bio->bi_io_vec + i;

		to->bv_page = mempool_alloc(pool, q->bounce_gfp);
		to->bv_len = from->bv_len;
		to->bv_offset = from->bv_offset;
		inc_page_state(nr_bounce);

		if (rw == WRITE) {
			char *vto, *vfrom;

			flush_dcache_page(from->bv_page);
			vto = page_address(to->bv_page) + to->bv_offset;
			vfrom = kmap(from->bv_page) + from->bv_offset;
			memcpy(vto, vfrom, to->bv_len);
			kunmap(from->bv_page);
		}
	}

	/*
	 * no pages bounced
	 */
	if (!bio)
		return;

	/*
	 * at least one page was bounced, fill in possible non-highmem
	 * pages
	 */
	__bio_for_each_segment(from, *bio_orig, i, 0) {
		to = bio_iovec_idx(bio, i);
		if (!to->bv_page) {
			to->bv_page = from->bv_page;
			to->bv_len = from->bv_len;
			to->bv_offset = from->bv_offset;
		}
	}

	bio->bi_bdev = (*bio_orig)->bi_bdev;
	bio->bi_flags |= (1 << BIO_BOUNCED);
	bio->bi_sector = (*bio_orig)->bi_sector;
	bio->bi_rw = (*bio_orig)->bi_rw;

	bio->bi_vcnt = (*bio_orig)->bi_vcnt;
	bio->bi_idx = (*bio_orig)->bi_idx;
	bio->bi_size = (*bio_orig)->bi_size;

	if (pool == page_pool) {
		bio->bi_end_io = bounce_end_io_write;
		if (rw == READ)
			bio->bi_end_io = bounce_end_io_read;
	} else {
		bio->bi_end_io = bounce_end_io_write_isa;
		if (rw == READ)
			bio->bi_end_io = bounce_end_io_read_isa;
	}

	bio->bi_private = *bio_orig;
	*bio_orig = bio;
}

void blk_queue_bounce(request_queue_t *q, struct bio **bio_orig)
{
	mempool_t *pool;

	/*
	 * for non-isa bounce case, just check if the bounce pfn is equal
	 * to or bigger than the highest pfn in the system -- in that case,
	 * don't waste time iterating over bio segments
	 */
	if (!(q->bounce_gfp & GFP_DMA)) {
		if (q->bounce_pfn >= blk_max_pfn)
			return;
		pool = page_pool;
	} else {
		BUG_ON(!isa_page_pool);
		pool = isa_page_pool;
	}

	blk_add_trace_bio(q, *bio_orig, BLK_TA_BOUNCE);

	/*
	 * slow path
	 */
	__blk_queue_bounce(q, bio_orig, pool);
}

EXPORT_SYMBOL(blk_queue_bounce);

#if defined(HASHED_PAGE_VIRTUAL)

#define PA_HASH_ORDER	7

/*
 * Describes one page->virtual association
 */
struct page_address_map {
	struct page *page;
	void *virtual;
	struct list_head list;
};

/*
 * page_address_map freelist, allocated from page_address_maps.
 */
static struct list_head page_address_pool;	/* freelist */
static spinlock_t pool_lock;			/* protects page_address_pool */

/*
 * Hash table bucket
 */
static struct page_address_slot {
	struct list_head lh;			/* List of page_address_maps */
	spinlock_t lock;			/* Protect this bucket's list */
} ____cacheline_aligned_in_smp page_address_htable[1<<PA_HASH_ORDER];

static struct page_address_slot *page_slot(struct page *page)
{
	return &page_address_htable[hash_ptr(page, PA_HASH_ORDER)];
}

void *page_address(struct page *page)
{
	unsigned long flags;
	void *ret;
	struct page_address_slot *pas;

	if (!PageHighMem(page))
		return lowmem_page_address(page);

	pas = page_slot(page);
	ret = NULL;
	spin_lock_irqsave(&pas->lock, flags);
	if (!list_empty(&pas->lh)) {
		struct page_address_map *pam;

		list_for_each_entry(pam, &pas->lh, list) {
			if (pam->page == page) {
				ret = pam->virtual;
				goto done;
			}
		}
	}
done:
	spin_unlock_irqrestore(&pas->lock, flags);
	return ret;
}

EXPORT_SYMBOL(page_address);

void set_page_address(struct page *page, void *virtual)
{
	unsigned long flags;
	struct page_address_slot *pas;
	struct page_address_map *pam;

	BUG_ON(!PageHighMem(page));

	pas = page_slot(page);
	if (virtual) {		/* Add */
		BUG_ON(list_empty(&page_address_pool));

		spin_lock_irqsave(&pool_lock, flags);
		pam = list_entry(page_address_pool.next,
				struct page_address_map, list);
		list_del(&pam->list);
		spin_unlock_irqrestore(&pool_lock, flags);

		pam->page = page;
		pam->virtual = virtual;

		spin_lock_irqsave(&pas->lock, flags);
		list_add_tail(&pam->list, &pas->lh);
		spin_unlock_irqrestore(&pas->lock, flags);
	} else {		/* Remove */
		spin_lock_irqsave(&pas->lock, flags);
		list_for_each_entry(pam, &pas->lh, list) {
			if (pam->page == page) {
				list_del(&pam->list);
				spin_unlock_irqrestore(&pas->lock, flags);
				spin_lock_irqsave(&pool_lock, flags);
				list_add_tail(&pam->list, &page_address_pool);
				spin_unlock_irqrestore(&pool_lock, flags);
				goto done;
			}
		}
		spin_unlock_irqrestore(&pas->lock, flags);
	}
done:
	return;
}

static struct page_address_map page_address_maps[LAST_PKMAP];

void __init page_address_init(void)
{
	int i;

	INIT_LIST_HEAD(&page_address_pool);
	for (i = 0; i < ARRAY_SIZE(page_address_maps); i++)
		list_add(&page_address_maps[i].list, &page_address_pool);
	for (i = 0; i < ARRAY_SIZE(page_address_htable); i++) {
		INIT_LIST_HEAD(&page_address_htable[i].lh);
		spin_lock_init(&page_address_htable[i].lock);
	}
	spin_lock_init(&pool_lock);
}

#endif	/* defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) */