Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 | /* * High memory handling common code and variables. * * (C) 1999 Andrea Arcangeli, SuSE GmbH, andrea@suse.de * Gerhard Wichert, Siemens AG, Gerhard.Wichert@pdb.siemens.de * * * Redesigned the x86 32-bit VM architecture to deal with * 64-bit physical space. With current x86 CPUs this * means up to 64 Gigabytes physical RAM. * * Rewrote high memory support to move the page cache into * high memory. Implemented permanent (schedulable) kmaps * based on Linus' idea. * * Copyright (C) 1999 Ingo Molnar <mingo@redhat.com> */ #include <linux/mm.h> #include <linux/pagemap.h> #include <linux/highmem.h> #include <linux/swap.h> #include <linux/slab.h> /* * Take one locked page, return another low-memory locked page. */ struct page * prepare_highmem_swapout(struct page * page) { struct page *new_page; unsigned long regular_page; /* * If this is a highmem page so it can't be swapped out directly * otherwise the b_data buffer addresses will break * the lowlevel device drivers. */ if (!PageHighMem(page)) return page; /* * Here we break the page lock, and we split the * dirty page into two. We can unlock the old page, * and we'll now have two of them. Too bad, it would * have been nice to continue to potentially share * across a fork(). */ UnlockPage(page); regular_page = __get_free_page(GFP_ATOMIC); if (!regular_page) return NULL; copy_page((void *)regular_page, kmap(page)); kunmap(page); /* * ok, we can just forget about our highmem page since * we stored its data into the new regular_page. */ page_cache_release(page); new_page = virt_to_page(regular_page); LockPage(new_page); return new_page; } struct page * replace_with_highmem(struct page * page) { struct page *highpage; if (PageHighMem(page) || !nr_free_highpages()) return page; highpage = alloc_page(GFP_ATOMIC|__GFP_HIGHMEM); if (!highpage) return page; if (!PageHighMem(highpage)) { page_cache_release(highpage); return page; } copy_page(kmap(highpage), page_address(page)); kunmap(highpage); if (page->mapping) BUG(); /* * We can just forget the old page since * we stored its data into the new highmem-page. */ page_cache_release(page); return highpage; } /* * Virtual_count is not a pure "count". * 0 means that it is not mapped, and has not been mapped * since a TLB flush - it is usable. * 1 means that there are no users, but it has been mapped * since the last TLB flush - so we can't use it. * n means that there are (n-1) current users of it. */ static int pkmap_count[LAST_PKMAP]; static unsigned int last_pkmap_nr; static spinlock_t kmap_lock = SPIN_LOCK_UNLOCKED; pte_t * pkmap_page_table; static DECLARE_WAIT_QUEUE_HEAD(pkmap_map_wait); static void flush_all_zero_pkmaps(void) { int i; flush_cache_all(); for (i = 0; i < LAST_PKMAP; i++) { struct page *page; pte_t pte; /* * zero means we don't have anything to do, * >1 means that it is still in use. Only * a count of 1 means that it is free but * needs to be unmapped */ if (pkmap_count[i] != 1) continue; pkmap_count[i] = 0; pte = ptep_get_and_clear(pkmap_page_table+i); if (pte_none(pte)) BUG(); page = pte_page(pte); page->virtual = NULL; } flush_tlb_all(); } static inline unsigned long map_new_virtual(struct page *page) { unsigned long vaddr; int count; start: count = LAST_PKMAP; /* Find an empty entry */ for (;;) { last_pkmap_nr = (last_pkmap_nr + 1) & LAST_PKMAP_MASK; if (!last_pkmap_nr) { flush_all_zero_pkmaps(); count = LAST_PKMAP; } if (!pkmap_count[last_pkmap_nr]) break; /* Found a usable entry */ if (--count) continue; /* * Sleep for somebody else to unmap their entries */ { DECLARE_WAITQUEUE(wait, current); current->state = TASK_UNINTERRUPTIBLE; add_wait_queue(&pkmap_map_wait, &wait); spin_unlock(&kmap_lock); schedule(); remove_wait_queue(&pkmap_map_wait, &wait); spin_lock(&kmap_lock); /* Somebody else might have mapped it while we slept */ if (page->virtual) return (unsigned long) page->virtual; /* Re-start */ goto start; } } vaddr = PKMAP_ADDR(last_pkmap_nr); set_pte(&(pkmap_page_table[last_pkmap_nr]), mk_pte(page, kmap_prot)); pkmap_count[last_pkmap_nr] = 1; page->virtual = (void *) vaddr; return vaddr; } void *kmap_high(struct page *page) { unsigned long vaddr; /* * For highmem pages, we can't trust "virtual" until * after we have the lock. * * We cannot call this from interrupts, as it may block */ spin_lock(&kmap_lock); vaddr = (unsigned long) page->virtual; if (!vaddr) vaddr = map_new_virtual(page); pkmap_count[PKMAP_NR(vaddr)]++; if (pkmap_count[PKMAP_NR(vaddr)] < 2) BUG(); spin_unlock(&kmap_lock); return (void*) vaddr; } void kunmap_high(struct page *page) { unsigned long vaddr; unsigned long nr; spin_lock(&kmap_lock); vaddr = (unsigned long) page->virtual; if (!vaddr) BUG(); nr = PKMAP_NR(vaddr); /* * A count must never go down to zero * without a TLB flush! */ switch (--pkmap_count[nr]) { case 0: BUG(); case 1: wake_up(&pkmap_map_wait); } spin_unlock(&kmap_lock); } /* * Simple bounce buffer support for highmem pages. * This will be moved to the block layer in 2.5. */ static inline void copy_from_high_bh (struct buffer_head *to, struct buffer_head *from) { struct page *p_from; char *vfrom; unsigned long flags; p_from = from->b_page; /* * Since this can be executed from IRQ context, reentrance * on the same CPU must be avoided: */ __save_flags(flags); __cli(); vfrom = kmap_atomic(p_from, KM_BOUNCE_WRITE); memcpy(to->b_data, vfrom + bh_offset(from), to->b_size); kunmap_atomic(vfrom, KM_BOUNCE_WRITE); __restore_flags(flags); } static inline void copy_to_high_bh_irq (struct buffer_head *to, struct buffer_head *from) { struct page *p_to; char *vto; unsigned long flags; p_to = to->b_page; __save_flags(flags); __cli(); vto = kmap_atomic(p_to, KM_BOUNCE_READ); memcpy(vto + bh_offset(to), from->b_data, to->b_size); kunmap_atomic(vto, KM_BOUNCE_READ); __restore_flags(flags); } static inline void bounce_end_io (struct buffer_head *bh, int uptodate) { struct buffer_head *bh_orig = (struct buffer_head *)(bh->b_private); bh_orig->b_end_io(bh_orig, uptodate); __free_page(bh->b_page); kmem_cache_free(bh_cachep, bh); } static void bounce_end_io_write (struct buffer_head *bh, int uptodate) { bounce_end_io(bh, uptodate); } static void bounce_end_io_read (struct buffer_head *bh, int uptodate) { struct buffer_head *bh_orig = (struct buffer_head *)(bh->b_private); if (uptodate) copy_to_high_bh_irq(bh_orig, bh); bounce_end_io(bh, uptodate); } struct buffer_head * create_bounce(int rw, struct buffer_head * bh_orig) { struct page *page; struct buffer_head *bh; if (!PageHighMem(bh_orig->b_page)) return bh_orig; repeat_bh: bh = kmem_cache_alloc(bh_cachep, SLAB_BUFFER); if (!bh) { wakeup_bdflush(1); /* Sets task->state to TASK_RUNNING */ goto repeat_bh; } /* * This is wasteful for 1k buffers, but this is a stopgap measure * and we are being ineffective anyway. This approach simplifies * things immensly. On boxes with more than 4GB RAM this should * not be an issue anyway. */ repeat_page: page = alloc_page(GFP_BUFFER); if (!page) { wakeup_bdflush(1); /* Sets task->state to TASK_RUNNING */ goto repeat_page; } set_bh_page(bh, page, 0); bh->b_next = NULL; bh->b_blocknr = bh_orig->b_blocknr; bh->b_size = bh_orig->b_size; bh->b_list = -1; bh->b_dev = bh_orig->b_dev; bh->b_count = bh_orig->b_count; bh->b_rdev = bh_orig->b_rdev; bh->b_state = bh_orig->b_state; bh->b_flushtime = jiffies; bh->b_next_free = NULL; bh->b_prev_free = NULL; /* bh->b_this_page */ bh->b_reqnext = NULL; bh->b_pprev = NULL; /* bh->b_page */ if (rw == WRITE) { bh->b_end_io = bounce_end_io_write; copy_from_high_bh(bh, bh_orig); } else bh->b_end_io = bounce_end_io_read; bh->b_private = (void *)bh_orig; bh->b_rsector = bh_orig->b_rsector; memset(&bh->b_wait, -1, sizeof(bh->b_wait)); return bh; } |