Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 | /* * High memory handling common code and variables. * * (C) 1999 Andrea Arcangeli, SuSE GmbH, andrea@suse.de * Gerhard Wichert, Siemens AG, Gerhard.Wichert@pdb.siemens.de * * * Redesigned the x86 32-bit VM architecture to deal with * 64-bit physical space. With current x86 CPUs this * means up to 64 Gigabytes physical RAM. * * Rewrote high memory support to move the page cache into * high memory. Implemented permanent (schedulable) kmaps * based on Linus' idea. * * Copyright (C) 1999 Ingo Molnar <mingo@redhat.com> */ #include <linux/mm.h> #include <linux/pagemap.h> #include <linux/highmem.h> #include <linux/swap.h> #include <linux/slab.h> /* * Virtual_count is not a pure "count". * 0 means that it is not mapped, and has not been mapped * since a TLB flush - it is usable. * 1 means that there are no users, but it has been mapped * since the last TLB flush - so we can't use it. * n means that there are (n-1) current users of it. */ static int pkmap_count[LAST_PKMAP]; static unsigned int last_pkmap_nr; static spinlock_t kmap_lock = SPIN_LOCK_UNLOCKED; pte_t * pkmap_page_table; static DECLARE_WAIT_QUEUE_HEAD(pkmap_map_wait); static void flush_all_zero_pkmaps(void) { int i; flush_cache_all(); for (i = 0; i < LAST_PKMAP; i++) { struct page *page; /* * zero means we don't have anything to do, * >1 means that it is still in use. Only * a count of 1 means that it is free but * needs to be unmapped */ if (pkmap_count[i] != 1) continue; pkmap_count[i] = 0; /* sanity check */ if (pte_none(pkmap_page_table[i])) BUG(); /* * Don't need an atomic fetch-and-clear op here; * no-one has the page mapped, and cannot get at * its virtual address (and hence PTE) without first * getting the kmap_lock (which is held here). * So no dangers, even with speculative execution. */ page = pte_page(pkmap_page_table[i]); pte_clear(&pkmap_page_table[i]); page->virtual = NULL; } flush_tlb_all(); } static inline unsigned long map_new_virtual(struct page *page) { unsigned long vaddr; int count; start: count = LAST_PKMAP; /* Find an empty entry */ for (;;) { last_pkmap_nr = (last_pkmap_nr + 1) & LAST_PKMAP_MASK; if (!last_pkmap_nr) { flush_all_zero_pkmaps(); count = LAST_PKMAP; } if (!pkmap_count[last_pkmap_nr]) break; /* Found a usable entry */ if (--count) continue; /* * Sleep for somebody else to unmap their entries */ { DECLARE_WAITQUEUE(wait, current); current->state = TASK_UNINTERRUPTIBLE; add_wait_queue(&pkmap_map_wait, &wait); spin_unlock(&kmap_lock); schedule(); remove_wait_queue(&pkmap_map_wait, &wait); spin_lock(&kmap_lock); /* Somebody else might have mapped it while we slept */ if (page->virtual) return (unsigned long) page->virtual; /* Re-start */ goto start; } } vaddr = PKMAP_ADDR(last_pkmap_nr); set_pte(&(pkmap_page_table[last_pkmap_nr]), mk_pte(page, kmap_prot)); pkmap_count[last_pkmap_nr] = 1; page->virtual = (void *) vaddr; return vaddr; } void *kmap_high(struct page *page) { unsigned long vaddr; /* * For highmem pages, we can't trust "virtual" until * after we have the lock. * * We cannot call this from interrupts, as it may block */ spin_lock(&kmap_lock); vaddr = (unsigned long) page->virtual; if (!vaddr) vaddr = map_new_virtual(page); pkmap_count[PKMAP_NR(vaddr)]++; if (pkmap_count[PKMAP_NR(vaddr)] < 2) BUG(); spin_unlock(&kmap_lock); return (void*) vaddr; } void kunmap_high(struct page *page) { unsigned long vaddr; unsigned long nr; int need_wakeup; spin_lock(&kmap_lock); vaddr = (unsigned long) page->virtual; if (!vaddr) BUG(); nr = PKMAP_NR(vaddr); /* * A count must never go down to zero * without a TLB flush! */ need_wakeup = 0; switch (--pkmap_count[nr]) { case 0: BUG(); case 1: /* * Avoid an unnecessary wake_up() function call. * The common case is pkmap_count[] == 1, but * no waiters. * The tasks queued in the wait-queue are guarded * by both the lock in the wait-queue-head and by * the kmap_lock. As the kmap_lock is held here, * no need for the wait-queue-head's lock. Simply * test if the queue is empty. */ need_wakeup = waitqueue_active(&pkmap_map_wait); } spin_unlock(&kmap_lock); /* do wake-up, if needed, race-free outside of the spin lock */ if (need_wakeup) wake_up(&pkmap_map_wait); } #define POOL_SIZE 32 /* * This lock gets no contention at all, normally. */ static spinlock_t emergency_lock = SPIN_LOCK_UNLOCKED; int nr_emergency_pages; static LIST_HEAD(emergency_pages); int nr_emergency_bhs; static LIST_HEAD(emergency_bhs); /* * Simple bounce buffer support for highmem pages. * This will be moved to the block layer in 2.5. */ static inline void copy_from_high_bh (struct buffer_head *to, struct buffer_head *from) { struct page *p_from; char *vfrom; p_from = from->b_page; vfrom = kmap_atomic(p_from, KM_USER0); memcpy(to->b_data, vfrom + bh_offset(from), to->b_size); kunmap_atomic(vfrom, KM_USER0); } static inline void copy_to_high_bh_irq (struct buffer_head *to, struct buffer_head *from) { struct page *p_to; char *vto; unsigned long flags; p_to = to->b_page; __save_flags(flags); __cli(); vto = kmap_atomic(p_to, KM_BOUNCE_READ); memcpy(vto + bh_offset(to), from->b_data, to->b_size); kunmap_atomic(vto, KM_BOUNCE_READ); __restore_flags(flags); } static inline void bounce_end_io (struct buffer_head *bh, int uptodate) { struct page *page; struct buffer_head *bh_orig = (struct buffer_head *)(bh->b_private); unsigned long flags; bh_orig->b_end_io(bh_orig, uptodate); page = bh->b_page; spin_lock_irqsave(&emergency_lock, flags); if (nr_emergency_pages >= POOL_SIZE) __free_page(page); else { /* * We are abusing page->list to manage * the highmem emergency pool: */ list_add(&page->list, &emergency_pages); nr_emergency_pages++; } if (nr_emergency_bhs >= POOL_SIZE) { #ifdef HIGHMEM_DEBUG /* Don't clobber the constructed slab cache */ init_waitqueue_head(&bh->b_wait); #endif kmem_cache_free(bh_cachep, bh); } else { /* * Ditto in the bh case, here we abuse b_inode_buffers: */ list_add(&bh->b_inode_buffers, &emergency_bhs); nr_emergency_bhs++; } spin_unlock_irqrestore(&emergency_lock, flags); } static __init int init_emergency_pool(void) { struct sysinfo i; si_meminfo(&i); si_swapinfo(&i); if (!i.totalhigh) return 0; spin_lock_irq(&emergency_lock); while (nr_emergency_pages < POOL_SIZE) { struct page * page = alloc_page(GFP_ATOMIC); if (!page) { printk("couldn't refill highmem emergency pages"); break; } list_add(&page->list, &emergency_pages); nr_emergency_pages++; } while (nr_emergency_bhs < POOL_SIZE) { struct buffer_head * bh = kmem_cache_alloc(bh_cachep, SLAB_ATOMIC); if (!bh) { printk("couldn't refill highmem emergency bhs"); break; } list_add(&bh->b_inode_buffers, &emergency_bhs); nr_emergency_bhs++; } spin_unlock_irq(&emergency_lock); printk("allocated %d pages and %d bhs reserved for the highmem bounces\n", nr_emergency_pages, nr_emergency_bhs); return 0; } __initcall(init_emergency_pool); static void bounce_end_io_write (struct buffer_head *bh, int uptodate) { bounce_end_io(bh, uptodate); } static void bounce_end_io_read (struct buffer_head *bh, int uptodate) { struct buffer_head *bh_orig = (struct buffer_head *)(bh->b_private); if (uptodate) copy_to_high_bh_irq(bh_orig, bh); bounce_end_io(bh, uptodate); } struct page *alloc_bounce_page (void) { struct list_head *tmp; struct page *page; repeat_alloc: page = alloc_page(GFP_NOHIGHIO); if (page) return page; /* * No luck. First, kick the VM so it doesnt idle around while * we are using up our emergency rations. */ wakeup_bdflush(); /* * Try to allocate from the emergency pool. */ tmp = &emergency_pages; spin_lock_irq(&emergency_lock); if (!list_empty(tmp)) { page = list_entry(tmp->next, struct page, list); list_del(tmp->next); nr_emergency_pages--; } spin_unlock_irq(&emergency_lock); if (page) return page; /* we need to wait I/O completion */ run_task_queue(&tq_disk); current->policy |= SCHED_YIELD; __set_current_state(TASK_RUNNING); schedule(); goto repeat_alloc; } struct buffer_head *alloc_bounce_bh (void) { struct list_head *tmp; struct buffer_head *bh; repeat_alloc: bh = kmem_cache_alloc(bh_cachep, SLAB_NOHIGHIO); if (bh) return bh; /* * No luck. First, kick the VM so it doesnt idle around while * we are using up our emergency rations. */ wakeup_bdflush(); /* * Try to allocate from the emergency pool. */ tmp = &emergency_bhs; spin_lock_irq(&emergency_lock); if (!list_empty(tmp)) { bh = list_entry(tmp->next, struct buffer_head, b_inode_buffers); list_del(tmp->next); nr_emergency_bhs--; } spin_unlock_irq(&emergency_lock); if (bh) return bh; /* we need to wait I/O completion */ run_task_queue(&tq_disk); current->policy |= SCHED_YIELD; __set_current_state(TASK_RUNNING); schedule(); goto repeat_alloc; } struct buffer_head * create_bounce(int rw, struct buffer_head * bh_orig) { struct page *page; struct buffer_head *bh; if (!PageHighMem(bh_orig->b_page)) return bh_orig; bh = alloc_bounce_bh(); /* * This is wasteful for 1k buffers, but this is a stopgap measure * and we are being ineffective anyway. This approach simplifies * things immensly. On boxes with more than 4GB RAM this should * not be an issue anyway. */ page = alloc_bounce_page(); set_bh_page(bh, page, 0); bh->b_next = NULL; bh->b_blocknr = bh_orig->b_blocknr; bh->b_size = bh_orig->b_size; bh->b_list = -1; bh->b_dev = bh_orig->b_dev; bh->b_count = bh_orig->b_count; bh->b_rdev = bh_orig->b_rdev; bh->b_state = bh_orig->b_state; #ifdef HIGHMEM_DEBUG bh->b_flushtime = jiffies; bh->b_next_free = NULL; bh->b_prev_free = NULL; /* bh->b_this_page */ bh->b_reqnext = NULL; bh->b_pprev = NULL; #endif /* bh->b_page */ if (rw == WRITE) { bh->b_end_io = bounce_end_io_write; copy_from_high_bh(bh, bh_orig); } else bh->b_end_io = bounce_end_io_read; bh->b_private = (void *)bh_orig; bh->b_rsector = bh_orig->b_rsector; #ifdef HIGHMEM_DEBUG memset(&bh->b_wait, -1, sizeof(bh->b_wait)); #endif return bh; } |