Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 | /* * General Purpose functions for the global management of the * Communication Processor Module. * Copyright (c) 1997 Dan Malek (dmalek@jlc.net) * * In addition to the individual control of the communication * channels, there are a few functions that globally affect the * communication processor. * * Buffer descriptors must be allocated from the dual ported memory * space. The allocator for that is here. When the communication * process is reset, we reclaim the memory available. There is * currently no deallocator for this memory. * The amount of space available is platform dependent. On the * MBX, the EPPC software loads additional microcode into the * communication processor, and uses some of the DP ram for this * purpose. Current, the first 512 bytes and the last 256 bytes of * memory are used. Right now I am conservative and only use the * memory that can never be used for microcode. If there are * applications that require more DP ram, we can expand the boundaries * but then we have to be careful of any downloaded microcode. */ #include <linux/errno.h> #include <linux/sched.h> #include <linux/kernel.h> #include <linux/dma-mapping.h> #include <linux/param.h> #include <linux/string.h> #include <linux/mm.h> #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/module.h> #include <asm/mpc8xx.h> #include <asm/page.h> #include <asm/pgtable.h> #include <asm/8xx_immap.h> #include <asm/commproc.h> #include <asm/io.h> #include <asm/tlbflush.h> #include <asm/rheap.h> extern int get_pteptr(struct mm_struct *mm, unsigned long addr, pte_t **ptep); static void m8xx_cpm_dpinit(void); static uint host_buffer; /* One page of host buffer */ static uint host_end; /* end + 1 */ cpm8xx_t *cpmp; /* Pointer to comm processor space */ /* CPM interrupt vector functions. */ struct cpm_action { void (*handler)(void *, struct pt_regs * regs); void *dev_id; }; static struct cpm_action cpm_vecs[CPMVEC_NR]; static irqreturn_t cpm_interrupt(int irq, void * dev, struct pt_regs * regs); static irqreturn_t cpm_error_interrupt(int irq, void *dev, struct pt_regs * regs); static void alloc_host_memory(void); /* Define a table of names to identify CPM interrupt handlers in * /proc/interrupts. */ const char *cpm_int_name[] = { "error", "PC4", "PC5", "SMC2", "SMC1", "SPI", "PC6", "Timer 4", "", "PC7", "PC8", "PC9", "Timer 3", "", "PC10", "PC11", "I2C", "RISC Timer", "Timer 2", "", "IDMA2", "IDMA1", "SDMA error", "PC12", "PC13", "Timer 1", "PC14", "SCC4", "SCC3", "SCC2", "SCC1", "PC15" }; static void cpm_mask_irq(unsigned int irq) { int cpm_vec = irq - CPM_IRQ_OFFSET; ((immap_t *)IMAP_ADDR)->im_cpic.cpic_cimr &= ~(1 << cpm_vec); } static void cpm_unmask_irq(unsigned int irq) { int cpm_vec = irq - CPM_IRQ_OFFSET; ((immap_t *)IMAP_ADDR)->im_cpic.cpic_cimr |= (1 << cpm_vec); } static void cpm_ack(unsigned int irq) { /* We do not need to do anything here. */ } static void cpm_eoi(unsigned int irq) { int cpm_vec = irq - CPM_IRQ_OFFSET; ((immap_t *)IMAP_ADDR)->im_cpic.cpic_cisr = (1 << cpm_vec); } struct hw_interrupt_type cpm_pic = { .typename = " CPM ", .enable = cpm_unmask_irq, .disable = cpm_mask_irq, .ack = cpm_ack, .end = cpm_eoi, }; extern void flush_tlb_page(struct vm_area_struct *vma, unsigned long vmaddr); void m8xx_cpm_reset(uint bootpage) { volatile immap_t *imp; volatile cpm8xx_t *commproc; pte_t *pte; imp = (immap_t *)IMAP_ADDR; commproc = (cpm8xx_t *)&imp->im_cpm; #ifdef CONFIG_UCODE_PATCH /* Perform a reset. */ commproc->cp_cpcr = (CPM_CR_RST | CPM_CR_FLG); /* Wait for it. */ while (commproc->cp_cpcr & CPM_CR_FLG); cpm_load_patch(imp); #endif /* Set SDMA Bus Request priority 5. * On 860T, this also enables FEC priority 6. I am not sure * this is what we realy want for some applications, but the * manual recommends it. * Bit 25, FAM can also be set to use FEC aggressive mode (860T). */ imp->im_siu_conf.sc_sdcr = 1; /* Reclaim the DP memory for our use. */ m8xx_cpm_dpinit(); /* get the PTE for the bootpage */ if (!get_pteptr(&init_mm, bootpage, &pte)) panic("get_pteptr failed\n"); /* and make it uncachable */ pte_val(*pte) |= _PAGE_NO_CACHE; _tlbie(bootpage); host_buffer = bootpage; host_end = host_buffer + PAGE_SIZE; /* Tell everyone where the comm processor resides. */ cpmp = (cpm8xx_t *)commproc; } /* We used to do this earlier, but have to postpone as long as possible * to ensure the kernel VM is now running. */ static void alloc_host_memory(void) { dma_addr_t physaddr; /* Set the host page for allocation. */ host_buffer = (uint)dma_alloc_coherent(NULL, PAGE_SIZE, &physaddr, GFP_KERNEL); host_end = host_buffer + PAGE_SIZE; } /* This is called during init_IRQ. We used to do it above, but this * was too early since init_IRQ was not yet called. */ static struct irqaction cpm_error_irqaction = { .handler = cpm_error_interrupt, .mask = CPU_MASK_NONE, }; static struct irqaction cpm_interrupt_irqaction = { .handler = cpm_interrupt, .mask = CPU_MASK_NONE, .name = "CPM cascade", }; void cpm_interrupt_init(void) { int i; /* Initialize the CPM interrupt controller. */ ((immap_t *)IMAP_ADDR)->im_cpic.cpic_cicr = (CICR_SCD_SCC4 | CICR_SCC_SCC3 | CICR_SCB_SCC2 | CICR_SCA_SCC1) | ((CPM_INTERRUPT/2) << 13) | CICR_HP_MASK; ((immap_t *)IMAP_ADDR)->im_cpic.cpic_cimr = 0; /* install the CPM interrupt controller routines for the CPM * interrupt vectors */ for ( i = CPM_IRQ_OFFSET ; i < CPM_IRQ_OFFSET + NR_CPM_INTS ; i++ ) irq_desc[i].handler = &cpm_pic; /* Set our interrupt handler with the core CPU. */ if (setup_irq(CPM_INTERRUPT, &cpm_interrupt_irqaction)) panic("Could not allocate CPM IRQ!"); /* Install our own error handler. */ cpm_error_irqaction.name = cpm_int_name[CPMVEC_ERROR]; if (setup_irq(CPM_IRQ_OFFSET + CPMVEC_ERROR, &cpm_error_irqaction)) panic("Could not allocate CPM error IRQ!"); ((immap_t *)IMAP_ADDR)->im_cpic.cpic_cicr |= CICR_IEN; } /* * Get the CPM interrupt vector. */ int cpm_get_irq(struct pt_regs *regs) { int cpm_vec; /* Get the vector by setting the ACK bit and then reading * the register. */ ((volatile immap_t *)IMAP_ADDR)->im_cpic.cpic_civr = 1; cpm_vec = ((volatile immap_t *)IMAP_ADDR)->im_cpic.cpic_civr; cpm_vec >>= 11; return cpm_vec; } /* CPM interrupt controller cascade interrupt. */ static irqreturn_t cpm_interrupt(int irq, void * dev, struct pt_regs * regs) { /* This interrupt handler never actually gets called. It is * installed only to unmask the CPM cascade interrupt in the SIU * and to make the CPM cascade interrupt visible in /proc/interrupts. */ return IRQ_HANDLED; } /* The CPM can generate the error interrupt when there is a race condition * between generating and masking interrupts. All we have to do is ACK it * and return. This is a no-op function so we don't need any special * tests in the interrupt handler. */ static irqreturn_t cpm_error_interrupt(int irq, void *dev, struct pt_regs *regs) { return IRQ_HANDLED; } /* A helper function to translate the handler prototype required by * request_irq() to the handler prototype required by cpm_install_handler(). */ static irqreturn_t cpm_handler_helper(int irq, void *dev_id, struct pt_regs *regs) { int cpm_vec = irq - CPM_IRQ_OFFSET; (*cpm_vecs[cpm_vec].handler)(dev_id, regs); return IRQ_HANDLED; } /* Install a CPM interrupt handler. * This routine accepts a CPM interrupt vector in the range 0 to 31. * This routine is retained for backward compatibility. Rather than using * this routine to install a CPM interrupt handler, you can now use * request_irq() with an IRQ in the range CPM_IRQ_OFFSET to * CPM_IRQ_OFFSET + NR_CPM_INTS - 1 (16 to 47). * * Notice that the prototype of the interrupt handler function must be * different depending on whether you install the handler with * request_irq() or cpm_install_handler(). */ void cpm_install_handler(int cpm_vec, void (*handler)(void *, struct pt_regs *regs), void *dev_id) { int err; /* If null handler, assume we are trying to free the IRQ. */ if (!handler) { free_irq(CPM_IRQ_OFFSET + cpm_vec, dev_id); return; } if (cpm_vecs[cpm_vec].handler != 0) printk(KERN_INFO "CPM interrupt %x replacing %x\n", (uint)handler, (uint)cpm_vecs[cpm_vec].handler); cpm_vecs[cpm_vec].handler = handler; cpm_vecs[cpm_vec].dev_id = dev_id; if ((err = request_irq(CPM_IRQ_OFFSET + cpm_vec, cpm_handler_helper, 0, cpm_int_name[cpm_vec], dev_id))) printk(KERN_ERR "request_irq() returned %d for CPM vector %d\n", err, cpm_vec); } /* Free a CPM interrupt handler. * This routine accepts a CPM interrupt vector in the range 0 to 31. * This routine is retained for backward compatibility. */ void cpm_free_handler(int cpm_vec) { request_irq(CPM_IRQ_OFFSET + cpm_vec, NULL, 0, 0, cpm_vecs[cpm_vec].dev_id); cpm_vecs[cpm_vec].handler = NULL; cpm_vecs[cpm_vec].dev_id = NULL; } /* We also own one page of host buffer space for the allocation of * UART "fifos" and the like. */ uint m8xx_cpm_hostalloc(uint size) { uint retloc; if (host_buffer == 0) alloc_host_memory(); if ((host_buffer + size) >= host_end) return(0); retloc = host_buffer; host_buffer += size; return(retloc); } /* Set a baud rate generator. This needs lots of work. There are * four BRGs, any of which can be wired to any channel. * The internal baud rate clock is the system clock divided by 16. * This assumes the baudrate is 16x oversampled by the uart. */ #define BRG_INT_CLK (((bd_t *)__res)->bi_intfreq) #define BRG_UART_CLK (BRG_INT_CLK/16) #define BRG_UART_CLK_DIV16 (BRG_UART_CLK/16) void cpm_setbrg(uint brg, uint rate) { volatile uint *bp; /* This is good enough to get SMCs running..... */ bp = (uint *)&cpmp->cp_brgc1; bp += brg; /* The BRG has a 12-bit counter. For really slow baud rates (or * really fast processors), we may have to further divide by 16. */ if (((BRG_UART_CLK / rate) - 1) < 4096) *bp = (((BRG_UART_CLK / rate) - 1) << 1) | CPM_BRG_EN; else *bp = (((BRG_UART_CLK_DIV16 / rate) - 1) << 1) | CPM_BRG_EN | CPM_BRG_DIV16; } /* * dpalloc / dpfree bits. */ static spinlock_t cpm_dpmem_lock; /* * 16 blocks should be enough to satisfy all requests * until the memory subsystem goes up... */ static rh_block_t cpm_boot_dpmem_rh_block[16]; static rh_info_t cpm_dpmem_info; #define CPM_DPMEM_ALIGNMENT 8 void m8xx_cpm_dpinit(void) { cpm8xx_t *cp = &((immap_t *)IMAP_ADDR)->im_cpm; spin_lock_init(&cpm_dpmem_lock); /* Initialize the info header */ rh_init(&cpm_dpmem_info, CPM_DPMEM_ALIGNMENT, sizeof(cpm_boot_dpmem_rh_block) / sizeof(cpm_boot_dpmem_rh_block[0]), cpm_boot_dpmem_rh_block); /* * Attach the usable dpmem area. * XXX: This is actually crap. CPM_DATAONLY_BASE and * CPM_DATAONLY_SIZE are a subset of the available dparm. It varies * with the processor and the microcode patches applied / activated. * But the following should be at least safe. */ rh_attach_region(&cpm_dpmem_info, (void *)CPM_DATAONLY_BASE, CPM_DATAONLY_SIZE); } /* * Allocate the requested size worth of DP memory. * This function used to return an index into the DPRAM area. * Now it returns the actuall physical address of that area. * use m8xx_cpm_dpram_offset() to get the index */ uint cpm_dpalloc(uint size, uint align) { void *start; unsigned long flags; spin_lock_irqsave(&cpm_dpmem_lock, flags); cpm_dpmem_info.alignment = align; start = rh_alloc(&cpm_dpmem_info, size, "commproc"); spin_unlock_irqrestore(&cpm_dpmem_lock, flags); return (uint)start; } EXPORT_SYMBOL(cpm_dpalloc); int cpm_dpfree(uint offset) { int ret; unsigned long flags; spin_lock_irqsave(&cpm_dpmem_lock, flags); ret = rh_free(&cpm_dpmem_info, (void *)offset); spin_unlock_irqrestore(&cpm_dpmem_lock, flags); return ret; } EXPORT_SYMBOL(cpm_dpfree); uint cpm_dpalloc_fixed(uint offset, uint size, uint align) { void *start; unsigned long flags; spin_lock_irqsave(&cpm_dpmem_lock, flags); cpm_dpmem_info.alignment = align; start = rh_alloc_fixed(&cpm_dpmem_info, (void *)offset, size, "commproc"); spin_unlock_irqrestore(&cpm_dpmem_lock, flags); return (uint)start; } EXPORT_SYMBOL(cpm_dpalloc_fixed); void cpm_dpdump(void) { rh_dump(&cpm_dpmem_info); } EXPORT_SYMBOL(cpm_dpdump); void *cpm_dpram_addr(uint offset) { return ((immap_t *)IMAP_ADDR)->im_cpm.cp_dpmem + offset; } EXPORT_SYMBOL(cpm_dpram_addr); |