Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 | /* * General Purpose functions for the global management of the * Communication Processor Module. * Copyright (c) 1997 Dan Malek (dmalek@jlc.net) * * In addition to the individual control of the communication * channels, there are a few functions that globally affect the * communication processor. * * Buffer descriptors must be allocated from the dual ported memory * space. The allocator for that is here. When the communication * process is reset, we reclaim the memory available. There is * currently no deallocator for this memory. * The amount of space available is platform dependent. On the * MBX, the EPPC software loads additional microcode into the * communication processor, and uses some of the DP ram for this * purpose. Current, the first 512 bytes and the last 256 bytes of * memory are used. Right now I am conservative and only use the * memory that can never be used for microcode. If there are * applications that require more DP ram, we can expand the boundaries * but then we have to be careful of any downloaded microcode. */ #include <linux/errno.h> #include <linux/sched.h> #include <linux/kernel.h> #include <linux/param.h> #include <linux/string.h> #include <linux/mm.h> #include <linux/interrupt.h> #include <asm/irq.h> #include <asm/mpc8xx.h> #include <asm/page.h> #include <asm/pgtable.h> #include <asm/8xx_immap.h> #include "commproc.h" static uint dp_alloc_base; /* Starting offset in DP ram */ static uint dp_alloc_top; /* Max offset + 1 */ static uint host_buffer; /* One page of host buffer */ static uint host_end; /* end + 1 */ cpm8xx_t *cpmp; /* Pointer to comm processor space */ /* CPM interrupt vector functions. */ struct cpm_action { void (*handler)(void *); void *dev_id; }; static struct cpm_action cpm_vecs[CPMVEC_NR]; static void cpm_interrupt(int irq, void * dev, struct pt_regs * regs); static void cpm_error_interrupt(void *); void m8xx_cpm_reset(uint host_page_addr) { volatile immap_t *imp; volatile cpm8xx_t *commproc; pte_t *pte; imp = (immap_t *)IMAP_ADDR; commproc = (cpm8xx_t *)&imp->im_cpm; #ifdef notdef /* We can't do this. It seems to blow away the microcode * patch that EPPC-Bug loaded for us. EPPC-Bug uses SCC1 for * Ethernet, SMC1 for the console, and I2C for serial EEPROM. * Our own drivers quickly reset all of these. */ /* Perform a reset. */ commproc->cp_cpcr = (CPM_CR_RST | CPM_CR_FLG); /* Wait for it. */ while (commproc->cp_cpcr & CPM_CR_FLG); #endif /* Set SDMA Bus Request priority 5. * On 860T, this also enables FEC priority 6. I am not sure * this is what we realy want for some applications, but the * manual recommends it. * Bit 25, FAM can also be set to use FEC aggressive mode (860T). */ imp->im_siu_conf.sc_sdcr = 1; /* Reclaim the DP memory for our use. */ dp_alloc_base = CPM_DATAONLY_BASE; dp_alloc_top = dp_alloc_base + CPM_DATAONLY_SIZE; /* Set the host page for allocation. */ host_buffer = host_page_addr; /* Host virtual page address */ host_end = host_page_addr + PAGE_SIZE; pte = find_pte(&init_mm, host_page_addr); pte_val(*pte) |= _PAGE_NO_CACHE; flush_tlb_page(current->mm->mmap, host_buffer); /* Tell everyone where the comm processor resides. */ cpmp = (cpm8xx_t *)commproc; } /* This is called during init_IRQ. We used to do it above, but this * was too early since init_IRQ was not yet called. */ void cpm_interrupt_init(void) { /* Initialize the CPM interrupt controller. */ ((immap_t *)IMAP_ADDR)->im_cpic.cpic_cicr = (CICR_SCD_SCC4 | CICR_SCC_SCC3 | CICR_SCB_SCC2 | CICR_SCA_SCC1) | ((CPM_INTERRUPT/2) << 13) | CICR_HP_MASK; ((immap_t *)IMAP_ADDR)->im_cpic.cpic_cimr = 0; /* Set our interrupt handler with the core CPU. */ if (request_8xxirq(CPM_INTERRUPT, cpm_interrupt, 0, "cpm", NULL) != 0) panic("Could not allocate CPM IRQ!"); /* Install our own error handler. */ cpm_install_handler(CPMVEC_ERROR, cpm_error_interrupt, NULL); ((immap_t *)IMAP_ADDR)->im_cpic.cpic_cicr |= CICR_IEN; } /* CPM interrupt controller interrupt. */ static void cpm_interrupt(int irq, void * dev, struct pt_regs * regs) { uint vec; /* Get the vector by setting the ACK bit and then reading * the register. */ ((volatile immap_t *)IMAP_ADDR)->im_cpic.cpic_civr = 1; vec = ((volatile immap_t *)IMAP_ADDR)->im_cpic.cpic_civr; vec >>= 11; if (cpm_vecs[vec].handler != 0) (*cpm_vecs[vec].handler)(cpm_vecs[vec].dev_id); else ((immap_t *)IMAP_ADDR)->im_cpic.cpic_cimr &= ~(1 << vec); /* After servicing the interrupt, we have to remove the status * indicator. */ ((immap_t *)IMAP_ADDR)->im_cpic.cpic_cisr |= (1 << vec); } /* The CPM can generate the error interrupt when there is a race condition * between generating and masking interrupts. All we have to do is ACK it * and return. This is a no-op function so we don't need any special * tests in the interrupt handler. */ static void cpm_error_interrupt(void *dev) { } /* Install a CPM interrupt handler. */ void cpm_install_handler(int vec, void (*handler)(void *), void *dev_id) { if (cpm_vecs[vec].handler != 0) printk("CPM interrupt %x replacing %x\n", (uint)handler, (uint)cpm_vecs[vec].handler); cpm_vecs[vec].handler = handler; cpm_vecs[vec].dev_id = dev_id; ((immap_t *)IMAP_ADDR)->im_cpic.cpic_cimr |= (1 << vec); } /* Free a CPM interrupt handler. */ void cpm_free_handler(int vec) { cpm_vecs[vec].handler = NULL; cpm_vecs[vec].dev_id = NULL; ((immap_t *)IMAP_ADDR)->im_cpic.cpic_cimr &= ~(1 << vec); } /* Allocate some memory from the dual ported ram. We may want to * enforce alignment restrictions, but right now everyone is a good * citizen. */ uint m8xx_cpm_dpalloc(uint size) { uint retloc; if ((dp_alloc_base + size) >= dp_alloc_top) return(CPM_DP_NOSPACE); retloc = dp_alloc_base; dp_alloc_base += size; return(retloc); } /* We also own one page of host buffer space for the allocation of * UART "fifos" and the like. */ uint m8xx_cpm_hostalloc(uint size) { uint retloc; if ((host_buffer + size) >= host_end) return(0); retloc = host_buffer; host_buffer += size; return(retloc); } /* Set a baud rate generator. This needs lots of work. There are * four BRGs, any of which can be wired to any channel. * The internal baud rate clock is the system clock divided by 16. * This assumes the baudrate is 16x oversampled by the uart. */ #define BRG_INT_CLK (((bd_t *)__res)->bi_intfreq * 1000000) #define BRG_UART_CLK (BRG_INT_CLK/16) void m8xx_cpm_setbrg(uint brg, uint rate) { volatile uint *bp; /* This is good enough to get SMCs running..... */ bp = (uint *)&cpmp->cp_brgc1; bp += brg; *bp = ((BRG_UART_CLK / rate) << 1) | CPM_BRG_EN; } |